
2 Вопросы кибербезопасности №3(21) - 2017

FIRST ORDER LOGIC FOR PROGRAM CODE FUNCTIONAL
REQUIREMENTS DESCRIPTION

Kozachok A.V.1, Bochkov M.V. 2, Lai M.T.3, Kochetkov E.V.4

Abstract. Currently the problem of information security during designing and exploiting the objects of
critical information infrastructure is paid special attention to. One of the most common approaches to pro-
viding information security, processed on the objects, is creating isolated programming environment. The en-
vironment security is determined by its invariability. However, the evolutional development of data processing
systems gives rise to the necessity of implementing the new components and software in this environment
under condition that security requirements are satisfied. The most important requirement consists in trust
in the new programming code. The given paper is devoted to developing formal logical language of description
of functional requirements for programming code, allowing to make further demands at the stage of statical
analysis and to control their implementation in dynamics.

Keywords: formal logical language, modeling, process, malware, model checking, security automata.

1  Aleksandr Kozachok, Ph.D., The Academy of the Federal Guard Service of the Russian Federation, Orel, Russia. E-mail:alex.totrin@
gmail.com

2  Maxim Bochkov, Dr.Sc., Professor, Business Risk Educational Center, Saint-Petersburg, Russia. E-mail: mvboch@yandex.ru

3  Tuan Lai Minh, Ph.D., The Academy of Cryptographic Techniques, Hanoi, Vietnam, E-mail: lm.tuan.gov.vn@gmail.com

4  Еvgeniy Kochetkov, The Academy of the Federal Guard Service of the Russian Federation, Orel, Russia. E-mail: mr.Koch91@mail.ru

Introduction
During the last few years in researches devoted to

information security special attention is paid to the
problem of providing data security of the objects
of critical information infrastructure (CII). The fact is
proved by the developed and submitted for consider-
ation the federal law «Security of critical information
infrastructure of the Russian Federation», published
in December 6, 2016. Special emphasis is placed on
providing security of CII object against computer at-
tacks and malware impact [1]. In this article the mat-
ter at issue is protecting CII objects against malware
impact.

Very often the possibility of implementing these
threats is determined by the availability of CII objects
access to the Internet. Current systems and means of
providing information security do not provide secure
protection. For example, the study carried out by
AV-Comparatives Company showed that the devices
used in modern antivirus facilities do not allow to
achieve the level of 0,974 heuristic detection («Avast
Internet Security»), 468 harmful samples of software
being undetected [2].

One of the possible approaches to providing se-
curity against malware impact is applying isolated
programming environment that is reliable and se-
cure on the assumption of its invariability. However,
the evolutional development of information gather-
ing and processing systems as well as availability of
CII objects access to Internet gives rise to the need

DOI: 10.21681/2311-3456-2017-3-2-7

for implementing new components and software
that may affect its integrity and security, the most es-
sential things being the problem of reliability of the
new content and programming code.

One of the possible versions of constructing se-
cure environment with the capability of trust in the
incoming content is application of a system of secure
implementation of programming code [3]. The pro-
posed system is enlarged composition of two cur-
rently developed approaches to detecting malware
impact, namely: using methods of formal model-
checking [4-7] and applying security automata for
monitoring real-time properties of the studied pro-
gram [8–12].

At the heart of the system secure programming
code performance there is an assumption that if
the programming code security with a priori known
functional requirements is not proved, its application
is forbidden. The given research is devoted to devel-
oping formal language of description of functional
requirements for programming code for its using in
the developed systems of secure programming code
performance

1. Overview of the studies in the field of malware
detection based on model-checking

The idea of using the method of formal model
checking while solving the problems of destruc-
tive malware impact consists in constructing formal
(mathematical) malware model simulating its pos-
sible behavior in operational system. Competent

3

First order logic for program code...

Вопросы кибербезопасности №3(21) - 2017

program behavior is assigned as a specification. On
the basis of this program and the model of the file
performed using the method «Model checking» the
decision concerning the possibility of applying the
analyzed program.

For the first time this method was used to solve
the problem of detecting malicious code by Kinder
J. in 2005 [4]. A team of authors proposed to analyze
behaviour of programs and on the basis of «Model
checking» to decide about its similarity to malware
behaviour. The proposed approach consists in as-
signing specifications for each class of destructive
programs by means of formula of temporal logic.
Representatives of each class had similar behaviour
but differed in their binary representation, that’s why
they could not be detected by signature method.
Each studied binary file was automatically converted
into model assigned in verifier language. On the ba-
sis of this model the verifier determined whether it
corresponds to one of the sets of the assigned speci-
fications corresponding to malware families. For
shortening of specifications recording the authors
introduced CTPL (Computation Tree Predicate Logic)
that is expansion of the well-known CTL.

The benefit of the proposed approach is the possi-
bility of detecting malware families. The shortcoming
consists in the fact that it ignores the performance of
the studied program with stack as well as the need
for manual assignment of behaviour specification for
each class of malicious code.

In 2012 Song F., Touili T. proposed to use «Model
checking» method for detecting malware taking into
account its behaviour and interaction with stack [5].

To describe the malicious code behaviour model
the authors introduced Stack Computation Tree Pred-
icate Logic that allows taking the work with stack into
account. Application of the given approach made it
possible to enhance the accuracy of detecting mal-
ware. As a result of developing the given approach
the authors proposed SLTPL (Stack Linear Tree Predi-
cate Logic) [6].

2. Description of the system for secure code ex-
ecution

The distinctive feature of the developed system
consists in retrieving information about the behav-
iour of the program being studied either on the stor-
ing stage or at the stage of performance (fig. 1). The
received information is compared with the behaviour
specification in accordance with assigned functional
requirements. In case of their conformity the studied
program is considered to be secure.

To carry the proposed approach into effect one

must solve the following immediate tasks:
– analysis (retrieving and converting information

from the program being studied into the form suit-
able for further processing – specifications);

– synthesis (constructing model of secure pro-
gramming code performance in accordance with as-
signed functional requirements);

– verification (algorithm, receiving specification of
the analyzed program for the access and taking deci-
sion concerning its conformity with model of secure
programming code performance;

– monitoring performance (implementation of
program performance monitor allowing to intercept
all the signals of the process interaction with the oper-
ating system, to track the conformity of the program
condition of the assigned configuration and to close
the special purpose program in case of necessity).

At the block 1 input the studied file being per-
formed is put. The security of it must be checked. At
the given block one checks whether there are self-
identification constructions in the programming
code (including packers) and mechanisms to protect
code against analysis. Meeting these requirements
is necessary for further investigation of the file be-
ing operated with. In case of their presence the file is
considered to be dangerous and its further checking
is stopped. Then one converts the file being operated

Preprocessing Setting specification

Executable file

Control Flow Graph
Data Flow Graph

Formal verification

Execution monitoring

Decision according to the
functional requirements

Setting security
automata

Functional
requirements

A priory information about
program functional assignment

Decision according to the
executable file security

1 2

3

5 4

Fig. 1. Model of secure programming code
performance system

4

Методы анализа программ и верификации	 УДК 004.056

Вопросы кибербезопасности №3(21) - 2017

with from binary representation into the set of as-
sembly language instructions and data. On their ba-
sis one constructs Control Flow Graph and Data Flow
Graph. At this stage one collects and systematizes a
priori data concerning functional assignment of the
program that are introduced into input of the block 2.

In the «Specification Assignments» Block on the
basis of a priori data concerning functional assign-
ment of the program, the list of constraints of its func-
tional capabilities is formed, the realization of which
is necessary for secure program application. The list
includes functional requirements which implemen-
tation can be provided in the framework of the oper-
ation of the secure programming code performance
system. They can be divided into groups according to
the category of the studied program.

The output of the block is formalized functional
constraints for program operation in the form of for-
mula of temporal logic and configuration of security
automata.

In block 3 the process of formal verification of
the model of the performed file is executed, that is
built on the basis of control flow graph and data flow
graph. The purpose is to check its conformity with
functional requirements of the static stage of check-
ing by means of the «Model checking» method.

Requirements concerning correctness of secure
behaviour are described in the form of specification
reflecting framework of the competent program be-
haviour. Because of mathematical verification, deci-
sion concerning concordance, that is, conformity of
possible behaviour with the required one is correct.
The model checking algorithms, as a rule, are based
on exhaustive attainability of a multitude of module
states [13].

Thus, each state is checked if it satisfies the as-
signed specifications requirements. In the simplest
form model checking algorithms allow to answer
the question concerning the attainability of the as-
signed states. In this case it is necessary to determine
all the forbidden states the attainability of which is
not secure, and to find out if there is such a sequence
of their replacement that can result in a forbidden
one. If such a sequence does exist, then a decision
to forbid application of the studied program is made.
It should be noted that exhaustive attainability of a
multitude of states is guaranteed in view of finiteness
of the number of the model states [14]. In case of the
program model nonconformity with security specifi-
cation the performed file is considered to be danger-
ous and its future application is stopped. The output
of the given block is the decision about secure use of
the given program in accordance with the results of

verification at the static checking stage.
To monitor fulfillment of functional constraints

during the program operation it is suggested to
use a system similar to the intrusion prevention sys-
tem at the computer level. The execution monitor is
switched simultaneously with the performed pro-
gram and intercepts all the systems calls made by
it. From the very beginning the execution monitor
loads the authorized behaviour model and sets the
initial state. Every call of the system function is com-
pared with the authorized behaviour model and the
transition into the new state takes place, or in case of
the absence of such a transition, instruction to finish
the process is given. At the heart of execution moni-
tor security automata is put [8] that is built as a rule
on the basis of automata with stack. The automata
input symbols are the multitude of events of process
functioning. The automata configuration determines
the multitude of allowed operations for each state.

In block 4, conversion of functional program re-
quirements into configuration of terminal automata
with stack takes place. In block 5, continuous moni-
toring of the program functioning in the framework
of the assigned secure performance model is carried
out. The output of the given block is decision about
safe execution of the performed file.

3. Formal logical language for functional re-
quirements description

In the sphere of operational system (OS) perfor-
mance the fundamental concepts are process and
resources. According to [15] process is a container for
a set of resources used during performing a copy of a
program. The main kinds of OS resources are the fol-
lowing elements [16]:

– processing time;
– main storage
– external memory;
– input-output devices.
At the heart of the construction of the proposed

secure programming code performance system is
the functional process description model in opera-
tion system.

The subjects are the processes performing the ac-
tion with the objects. The objects are the OS resourc-
es and processes subjected to the actions of other
subjects:

– «process» (p);
– «main storage» (m);
– «external memory» (e);
– «peripheral devices» (d);
– «network subsystem» (n).
To access the resources the process performs the

appropriate OS function, that is, makes a request for

5

First order logic for program code...

Вопросы кибербезопасности №3(21) - 2017

performing some actions. On the basis of inside re-
sources distribution mechanisms as well as security
policy, OS makes decision concerning the access of
the performed file of the given processor to the re-
quested resources.

In the process of operation, applications possess
the entire access to its virtual address space for per-
forming operations of reading and recording.

To input and output data outside the limits of its
address space of the application program, it is nec-
essary to stimulate the corresponding OS functions,
if it has the appropriate privileges for performing
such operations. These OS functions are the follow-
ing: reading operation, recording operation, starting/
completion operation, allocation of additional mem-
ory space, its emptying etc.

Review of investigations in the field of formal veri-
fications shows that current approaches to descrip-
tion of specifications for solving the problems of
detecting malware are not universal, since some of
them are oriented to assembly language commands,
the other part being oriented to API-functions.

Thus we propose the following formal logical lan-
guage to assign functional requirements with the ca-
pability of one way transition to formula of temporal
logic for further verification according to the models.

In accordance with the logic definition of the first
order [17] it is necessary to assign the following sub-
sets:

In the sphere of operational system (OS) performance the fundamental concepts
are process and resources. According to [15] process is a container for a set of resources
used during performing a copy of a program. The main kinds of OS resources are the
following elements [16]:

– processing time;
– main storage
– external memory;
– input-output devices.
At the heart of the construction of the proposed secure programming code

performance system is the functional process description model in operation system.
The subjects are the processes performing the action with the objects. The objects

are the OS resources and processes subjected to the actions of other subjects:
– "process" (p);
– "main storage" (m);
– "external memory" (e);
– "peripheral devices" (d);
– "network subsystem" (n).
To access the resources the process performs the appropriate OS function, that is,

makes a request for performing some actions. On the basis of inside resources
distribution mechanisms as well as security policy, OS makes decision concerning the
access of the performed file of the given processor to the requested resources.

In the process of operation, applications possess the entire access to its virtual
address space for performing operations of reading and recording.

To input and output data outside the limits of its address space of the application
program, it is necessary to stimulate the corresponding OS functions, if it has the
appropriate privileges for performing such operations. These OS functions are the
following: reading operation, recording operation, starting/ completion operation,
allocation of additional memory space, its emptying etc.

Review of investigations in the field of formal verifications shows that current
approaches to description of specifications for solving the problems of detecting
malware are not universal, since some of them are oriented to assembly language
commands, the other part being oriented to API-functions.

Thus we propose the following formal logical language to assign functional
requirements with the capability of one way transition to formula of temporal logic for
further verification according to the models.

In accordance with the logic definition of the first order [17] it is necessary to
assign the following subsets:

.Pr AuxLogVaredFuncFormSpec 
At that the set of functional symbols will include the following operations:

},,,,,{ writereaddeleteopencreateFunc 
where create is operation of creating the object, open is operation of opening the object,
delete is operation of deleting (completing) of the object, read is operation of reading in
the object, write is operation of recording in the object.

Set of predicative symbols includes basic predicates of temporal CTL logic [18]
and security check-up predicate:

},,,,,,,
,,,,,{Pr

ECEREUEGEFEXAR
AUAGAFAXIsSecureed 

where IsSecure is the predicate of security check-up of the current state with regard to
the route of performance on the whole, А is universal quantifier showing that the given

At that the set of functional symbols will include
the following operations:

In the sphere of operational system (OS) performance the fundamental concepts
are process and resources. According to [15] process is a container for a set of resources
used during performing a copy of a program. The main kinds of OS resources are the
following elements [16]:

– processing time;
– main storage
– external memory;
– input-output devices.
At the heart of the construction of the proposed secure programming code

performance system is the functional process description model in operation system.
The subjects are the processes performing the action with the objects. The objects

are the OS resources and processes subjected to the actions of other subjects:
– "process" (p);
– "main storage" (m);
– "external memory" (e);
– "peripheral devices" (d);
– "network subsystem" (n).
To access the resources the process performs the appropriate OS function, that is,

makes a request for performing some actions. On the basis of inside resources
distribution mechanisms as well as security policy, OS makes decision concerning the
access of the performed file of the given processor to the requested resources.

In the process of operation, applications possess the entire access to its virtual
address space for performing operations of reading and recording.

To input and output data outside the limits of its address space of the application
program, it is necessary to stimulate the corresponding OS functions, if it has the
appropriate privileges for performing such operations. These OS functions are the
following: reading operation, recording operation, starting/ completion operation,
allocation of additional memory space, its emptying etc.

Review of investigations in the field of formal verifications shows that current
approaches to description of specifications for solving the problems of detecting
malware are not universal, since some of them are oriented to assembly language
commands, the other part being oriented to API-functions.

Thus we propose the following formal logical language to assign functional
requirements with the capability of one way transition to formula of temporal logic for
further verification according to the models.

In accordance with the logic definition of the first order [17] it is necessary to
assign the following subsets:

.Pr AuxLogVaredFuncFormSpec 
At that the set of functional symbols will include the following operations:

},,,,,{ writereaddeleteopencreateFunc 
where create is operation of creating the object, open is operation of opening the object,
delete is operation of deleting (completing) of the object, read is operation of reading in
the object, write is operation of recording in the object.

Set of predicative symbols includes basic predicates of temporal CTL logic [18]
and security check-up predicate:

},,,,,,,
,,,,,{Pr

ECEREUEGEFEXAR
AUAGAFAXIsSecureed 

where IsSecure is the predicate of security check-up of the current state with regard to
the route of performance on the whole, А is universal quantifier showing that the given

where create is operation of creating the object,
open is operation of opening the object, delete is op-
eration of deleting (completing) of the object, read is
operation of reading in the object, write is operation
of recording in the object.

Set of predicative symbols includes basic predi-
cates of temporal CTL logic [18] and security check-
up predicate:

In the sphere of operational system (OS) performance the fundamental concepts
are process and resources. According to [15] process is a container for a set of resources
used during performing a copy of a program. The main kinds of OS resources are the
following elements [16]:

– processing time;
– main storage
– external memory;
– input-output devices.
At the heart of the construction of the proposed secure programming code

performance system is the functional process description model in operation system.
The subjects are the processes performing the action with the objects. The objects

are the OS resources and processes subjected to the actions of other subjects:
– "process" (p);
– "main storage" (m);
– "external memory" (e);
– "peripheral devices" (d);
– "network subsystem" (n).
To access the resources the process performs the appropriate OS function, that is,

makes a request for performing some actions. On the basis of inside resources
distribution mechanisms as well as security policy, OS makes decision concerning the
access of the performed file of the given processor to the requested resources.

In the process of operation, applications possess the entire access to its virtual
address space for performing operations of reading and recording.

To input and output data outside the limits of its address space of the application
program, it is necessary to stimulate the corresponding OS functions, if it has the
appropriate privileges for performing such operations. These OS functions are the
following: reading operation, recording operation, starting/ completion operation,
allocation of additional memory space, its emptying etc.

Review of investigations in the field of formal verifications shows that current
approaches to description of specifications for solving the problems of detecting
malware are not universal, since some of them are oriented to assembly language
commands, the other part being oriented to API-functions.

Thus we propose the following formal logical language to assign functional
requirements with the capability of one way transition to formula of temporal logic for
further verification according to the models.

In accordance with the logic definition of the first order [17] it is necessary to
assign the following subsets:

.Pr AuxLogVaredFuncFormSpec 
At that the set of functional symbols will include the following operations:

},,,,,{ writereaddeleteopencreateFunc 
where create is operation of creating the object, open is operation of opening the object,
delete is operation of deleting (completing) of the object, read is operation of reading in
the object, write is operation of recording in the object.

Set of predicative symbols includes basic predicates of temporal CTL logic [18]
and security check-up predicate:

},,,,,,,
,,,,,{Pr

ECEREUEGEFEXAR
AUAGAFAXIsSecureed 

where IsSecure is the predicate of security check-up of the current state with regard to
the route of performance on the whole, А is universal quantifier showing that the given where IsSecure is the predicate of security check-up

of the current state with regard to the route of perfor-
mance on the whole, А is universal quantifier showing
that the given property is fulfilled for all the routes, Е
is existential quantifier of existence showing that the
given property is for a certain route, X is unary opera-
tor showing that the given property if fulfilled at the

next state of the current route, G is unary operator
showing that the given property is fulfilled at every
state of the current route, F is unary operator show-
ing that the given property is fulfilled at some state
in future, U is binary operator showing that the first
property is fulfilled for all states of the route previous
to the state where the second property is fulfilled, R is
binary operator showing that the second property is
fulfilled for all the states following to the state where
the first property is fulfilled, С is unary operator show-
ing that the given property is fulfilled at the current
state of the current route (additionally introduced by
the authors).

Set of symbols of subject variables includes the
following elements:

property is fulfilled for all the routes, Е is existential quantifier of existence showing
that the given property is for a certain route, X is unary operator showing that the given
property if fulfilled at the next state of the current route, G is unary operator showing
that the given property is fulfilled at every state of the current route, F is unary operator
showing that the given property is fulfilled at some state in future, U is binary operator
showing that the first property is fulfilled for all states of the route previous to the state
where the second property is fulfilled, R is binary operator showing that the second
property is fulfilled for all the states following to the state where the first property is
fulfilled, С is unary operator showing that the given property is fulfilled at the current
state of the current route (additionally introduced by the authors).

Set of symbols of subject variables includes the following elements:
},,,,,,{ catdenmpVar 

where p,m,n,e,d are the objects subjected to actions, cat is index of the object
(subject) category (table 1).

Table 1.
Categories of objects and subjects.

definitionе description
Subject "Process" (p)

1 system process
2 privileged process
3 user process

Object "main storage" (m)

1 system process
address space

2 address space of another
process

3 own process address space
Object " external memory " (e)

1 performed files

2 system catalogues and
system configuration

3 files and catalogues of other
users

4 system libraries
5 own files and catalogues

Object "Peripheral devices" (d)
1 output devices
2 input devices
Object "Network subsystem " (n)

1 node services
global networks

2 node services
of local networks

3 local network services

Set of logical symbol include the following elements:

},,,,,,{ Log
where  is symbol of logical negation,  is conjunction symbol,  is disjunction
symbol,  – implication symbol,  – existential quantifier,  – universal quantifier.

Set of subsidiary symbols include the following elements:

where p,m,n,e,d are the objects subjected to ac-
tions, cat is index of the object (subject) category
(table 1).

Table 1.
Categories of objects and subjects.

definitionе description

Subject «Process» (p)

1 system process

2 privileged process

3 user process

Object «main storage» (m)

1 system process
address space

2 address space of another
process

3 own process address space

Object «external memory» (e)

1 performed files

2 system catalogues and
system configuration

3 files and catalogues of other
users

4 system libraries

5 own files and catalogues

Object «Peripheral devices» (d)

1 output devices

2 input devices

Object «Network subsystem» (n)

1 node services
global networks

2 node services
of local networks

3 local network services

6

Методы анализа программ и верификации	 УДК 004.056

Вопросы кибербезопасности №3(21) - 2017

Set of logical symbol include the following ele-
ments:

property is fulfilled for all the routes, Е is existential quantifier of existence showing
that the given property is for a certain route, X is unary operator showing that the given
property if fulfilled at the next state of the current route, G is unary operator showing
that the given property is fulfilled at every state of the current route, F is unary operator
showing that the given property is fulfilled at some state in future, U is binary operator
showing that the first property is fulfilled for all states of the route previous to the state
where the second property is fulfilled, R is binary operator showing that the second
property is fulfilled for all the states following to the state where the first property is
fulfilled, С is unary operator showing that the given property is fulfilled at the current
state of the current route (additionally introduced by the authors).

Set of symbols of subject variables includes the following elements:
},,,,,,{ catdenmpVar 

where p,m,n,e,d are the objects subjected to actions, cat is index of the object
(subject) category (table 1).

Table 1.
Categories of objects and subjects.

definitionе description
Subject "Process" (p)

1 system process
2 privileged process
3 user process

Object "main storage" (m)

1 system process
address space

2 address space of another
process

3 own process address space
Object " external memory " (e)

1 performed files

2 system catalogues and
system configuration

3 files and catalogues of other
users

4 system libraries
5 own files and catalogues

Object "Peripheral devices" (d)
1 output devices
2 input devices
Object "Network subsystem " (n)

1 node services
global networks

2 node services
of local networks

3 local network services

Set of logical symbol include the following elements:

},,,,,,{ Log
where  is symbol of logical negation,  is conjunction symbol,  is disjunction
symbol,  – implication symbol,  – existential quantifier,  – universal quantifier.

Set of subsidiary symbols include the following elements:

where ¬ is symbol of logical negation, ∧ is
conjunction symbol, ∨ is disjunction symbol, → –
implication symbol, ∃ – existential quantifier, ∀ –
universal quantifier.

Set of subsidiary symbols include the following
elements:

()}.{,Aux
4. Basis of functional requirements to provide secure program code execution
On the basis of the proposed FormSpec formal logical language the basic rules

(formulas) of secure programming code performance were formulated for each
functional symbol. Symbol * denotes object (subject) of any category from all possible
members of the given class.

For the operation of creating the object:
 EF create (p,*,p,*) – ban on creating child processes;
EF create (p,*,m,3) – memory allotment only in its own process address space;
EF create (p,*,e,5) – authorization for creating new files (catalogues) only in the

catalogue of the current process;
 EF create (p,*,n,*) – ban on creating network connections;
 EF create (p,*,d,*) – ban on creating devices (drivers).
For operations of an open object:
 EF open (p,*,p,*) – ban on opening processes;
EF open (p,*,e,4)  EF open (p,*,e,5) – authorization for opening system libraries

and files contained in current process catalogue;
 EF open (p,*,d,*) – ban on opening devices.
For object delete operations (completion):
EF delete (pi,*,pi,*) – the process may terminate its operation;
EС open (p,*,ej,5)  EF delete(p,*,ej,5) – the process may delete files created by

it.
For reading from the object operation:
 EF read(p,*,p,*) – ban on getting information about processes;
EF read(p,*,m,3) – authorization for reading the address space of one’s own

process;
EС open(p,*,ej,4)  EF read(p,*,ej,4) – authorization for reading from system

libraries;
(EС open(p,*,ej,5)  EС create(p,*,ej,5))  EF read(p,*,ej,5) – authorization for

reading files opened (created) by the process;
 EF read(p,*,n,*) – ban on the work with the network
 EF read(p,*,d,*) – ban on the work with devices.
For operation of recording in the object:
EF write(p,*,m,3) – authorization for recording in the address space of one’s own

process;
(EС open(p,*,ej,5)  EС create(p,*,ej,5))  EF write(p,*,ej,5) – authorization for

reading files opened (created) by the process;
 EF write(p,*,n,*) – ban on the work with the network;
 EF write(p,*,d,*) – ban on the work with devices.
It should be noted that the presented basis may be considered as axiomatic one,

since its execution provides security performance of programming code (IsSecure
predicate performance) in perspective of protection against malware code. Constraints
introduced by it concerning interaction with network and file subsystems may be
overcome owing to introduction of limitations for subsequence of performed actions
and isolations of possible informational contours.

5. Results and Discussion
One of the versions of the practical application of the proposed formal logical

description of functional requirements to programming code is formalization of threats
from "Bank of data of information threat" [19].

4. Basis of functional requirements to provide
secure program code execution

On the basis of the proposed FormSpec formal
logical language the basic rules (formulas) of secure
programming code performance were formulated
for each functional symbol. Symbol * denotes object
(subject) of any category from all possible members
of the given class.

For the operation of creating the object:
¬ EF create (p,*,p,*) – ban on creating child

processes;
EF create (p,*,m,3) – memory allotment only in its

own process address space;
EF create (p,*,e,5) – authorization for creating

new files (catalogues) only in the catalogue of the
current process;

¬ EF create (p,*,n,*) – ban on creating network
connections;

¬ EF create (p,*,d,*) – ban on creating devices
(drivers).

For operations of an open object:
¬ EF open (p,*,p,*) – ban on opening processes;
EF open (p,*,e,4) ∨ EF open (p,*,e,5) –

authorization for opening system libraries and files
contained in current process catalogue;

¬ EF open (p,*,d,*) – ban on opening devices.
For object delete operations (completion):
EF delete (pi,*,pi,*) – the process may terminate

its operation;
EС open (p,*,ej,5) ∧ EF delete(p,*,ej,5) – the

process may delete files created by it.
For reading from the object operation:
¬ EF read(p,*,p,*) – ban on getting information

about processes;
EF read(p,*,m,3) – authorization for reading the

address space of one’s own process;
EС open(p,*,ej,4) ∧ EF read(p,*,ej,4) –

authorization for reading from system libraries;
(EС open(p,*,ej,5) ∨ EС create(p,*,ej,5)) ∧ EF

read(p,*,ej,5) – authorization for reading files opened
(created) by the process;

¬ EF read(p,*,n,*) – ban on the work with the
network

¬ EF read(p,*,d,*) – ban on the work with devices.
For operation of recording in the object:
EF write(p,*,m,3) – authorization for recording in

the address space of one’s own process;
(EС open(p,*,ej,5) ∨ EС create(p,*,ej,5)) ∧ EF

write(p,*,ej,5) – authorization for reading files
opened (created) by the process;

¬ EF write(p,*,n,*) – ban on the work with the
network;

¬ EF write(p,*,d,*) – ban on the work with
devices.

It should be noted that the presented basis may
be considered as axiomatic one, since its execution
provides security performance of programming code
(IsSecure predicate performance) in perspective of
protection against malware code. Constraints intro-
duced by it concerning interaction with network and
file subsystems may be overcome owing to introduc-
tion of limitations for subsequence of performed ac-
tions and isolations of possible informational contours.

5. Results and Discussion
One of the versions of the practical application

of the proposed formal logical description of func-
tional requirements to programming code is formal-
ization of threats from «Bank of data of information
threat» [19].

«Threat to changing system and global variables»
by intruder may be realized at the expense of using
malware that may cause to mediate destructive im-
pact on certain programs and system as a whole. To
neutralize the threat it is necessary to assign the fol-
lowing rule: «To disallow the 3 category processes to
carry out changes of system and global variables». It
is expressed in the following way:

¬ EF (create (p,3,e,2) ∨ write (p,3,e,2)) (1)

Formally the expression means (1) that 3 catego-
ry processes cannot carry out creation or modifica-
tion of system catalogues and configuration files.
This rule can also prevent «threat of unauthorized
editing register».

The essence of «threat of unauthorized copying
protected information» consists in malefactor’s get-
ting the copy of protected information of another
user and its further withdrawal outside the system.

To constrain the sequence of such actions it is nec-
essary to accept the following rule:

¬ EF(EC read (p,*,e,3) ∧ (EF create (p,*,e,5) ∨
∨ EF write (p,*,e,5) ∨ EF write (p,*,d,1) ∨
∨ EF write (p,*,n,1)) (2)

7

First order logic for program code...

Вопросы кибербезопасности №3(21) - 2017

The expression (2) means that process of any cate-
gory is disallowed to read some information in other
user’s file and then to record it in files of one’s own
catalogue or to send it to output devices or network.

For «the threat of intercepting information that is
input or output on peripheral devices» one can as-
sign the rule limiting direct interaction of the 3 cat-
egory processes and input devices:

¬ EF read(p,3,d,2) (3)

The expression (3) inhibits direct access to reading
information from input devices in a roundabout way
from existing mechanisms in operating system.

A set of the given examples proves opulence and
variety of possibilities to describe current threats
in proposed formal logical language. Taking them
into consideration while working with the system of
secure code performance, will allow excluding the

possibility of treat realization.
Conclusion
The proposed formal logical language of descrip-

tion of functional requirements enabling to describe
any process behaviour without concrete definition of
operations or elementary actions (at a high abstrac-
tion level) and in generalized mathematical formula
to express subject-object relations of process and re-
sources of different OS categories forms the basis of
designing the system of secure programming code
performance that will allow to trust the new pro-
gramming code and not to affect integrity of isolated
programming environment.

The orientation of further research is construct-
ing the whole set of rules of secure programming
code performance using the introduced formal
logical language enabling to eliminate constrains
set by axiomatic basis.

References
1.	 Proekt federal’nogo zakona ot 06.12.2016 № 9198-P10 «O bezopasnosti kriticheskoj informacionnoj infrastruktury Rossijskoj

Federacii». URL: http://asozd2.duma.gov.ru/main.nsf/ (SpravkaNew)/OpenAgent&RN=47571-7&02.
2.	 Bekbosynova A.A. Testirovanie i analiz jeffektivnosti i proizvoditel’nosti antivirusov // Teorija i praktika sovremennoj nauki [The

theory and practice of modern science], 2015. № 5 (5). Pp. 53-56.
3.	 Kozachok A.V., Kochetkov E.V. Obosnovanie vozmozhnosti primenenija verifikacii programm dlja obnaruzhenija vredonosnogo

koda // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2016. № 3 (16). Pp. 25-32.
4.	 Kinder J. et al. Detecting malicious code by model checking // International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. – Springer Berlin Heidelberg. 2005. Pp. 174-187.
5.	 Song F., Touili T. Efficient malware detection using model-checking // International Symposium on Formal Methods. – Springer

Berlin Heidelberg. 2012. Pp. 418-433.
6.	 Song F., Touili T. PoMMaDe: pushdown model-checking for malware detection //Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering. – ACM. 2013. Pp. 607-610.
7.	 Jasiul B., Szpyrka M., Śliwa J. Formal Specification of Malware Models in the Form of Colored Petri Nets // Computer Science and

its Applications. – Springer Berlin Heidelberg. 2015.Pp. 475-482.
8.	 Schneider F.B. Enforceable security policies // ACM Transactions on Information and System Security (TISSEC). 2000. Vol. 3 .no. 1.

Pp. 30-50.
9.	 Feng H.H. et al. Formalizing sensitivity in static analysis for intrusion detection // Security and Privacy, 2004. Proceedings. 2004

IEEE Symposium on. – IEEE. 2004. Pp. 194-208.
10.	 Basin D. et al. Enforceable security policies revisited // ACM Transactions on Information and System Security (TISSEC). 2013. vol.

16. no. 1. Pp. 3–8.
11.	 Feng H.H. et al. Anomaly detection using call stack information //Security and Privacy, 2003. Proceedings. 2003 Symposium on. –

IEEE. 2003. Pp. 62-75.
12.	 Basin D., Klaedtke F., Zălinescu E. Algorithms for monitoring real-time properties // International Conference on Runtime

Verification. – Springer Berlin Heidelberg. 2011. Pp. 260-275.
13.	 Klark Je., Gramberg O., Peled D. Verifikacija modelej programm: Model Checking. M.: MCNMO., 2002. 416 p.
14.	 Vel’der S.Je., Lukin M.A., Shalyto A.A., Jaminov B.R. Verifikacija avtomatnyh programm SPb. Nauka., 2011, 244 p.
15.	 Russinovich M., Solomon D. Vnutrennee ustrojstvo Microsoft Windows. 6-e izd. SPb.: Piter., 2013, 800 p.
16.	 Gordeev A.V. Operacionnye sistemy. Izdatel’skij dom «Piter»., 2009, 412 p.
17.	 Korotkov M.A., Stepanov E.O Osnovy formal’nyh logicheskih jazykov. SPb: SPb GITMO (TU), 2003, 84 p.
18.	 Hafer T., Thomas W. Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree // International

Colloquium on Automata, Languages and Programming. – Springer Berlin Heidelberg, 1987. – Pp. 269–279.
19.	 FSTJeK «Bank dannyh ugroz bezopasnosti informacii» URL: http://bdu.fstec.ru.

