
11Вопросы кибербезопасности №1(25) - 2018

LAN ABNORMALITIES THREAT DETECTION: AN OUTLOOK
AND APPLICABILITY ANALYSIS

A.M.Modorskiy1, A.S.Minzov2, O.R.Baronov3, A.Y.Nevskiy4.

In this article contemporary LAN threats are considered in scope of signatures, where a pile of polymor-
phic elements, not applicable for diverse analysis by itself are combining along with preambles, traffic strains
and flows, as well as protocols and ports, could be reviewed to tell if there are threats detected. The point is
to compile a standalone system, capable of scoping and triaging diversified elements on a LAN Core, giving a
system owner an opportunity to early detect, prioritize and workaround threat that standard security sys-
tems allow by default. However, it is wrong to consider such mechanism a classic signature-based, where
traffic dump is investigated for known issues. Conversely, the system in scope should act proactive, which
require shaping of basic, likewise ideal, traffic flow, seeking for abnormalities in an early threat occurrence.
For this occasion, the neural network should step in, utilizing the vector comparison for the abnormalities
detection process being effective.

Keywords: Security, Networks, LAN, Threat Detection, Cisco, Neural Networks, Signature, Firewalling,
Traffic dump.

1  Alexey Modorskiy, Master degree student Information and Economic Security Institute,, CCNA, CCNA Instructor, National research
University «MPEI», Moscow, Russia. E-mail: alexeymodorskiy@gmail.com

2  Anatoliy Minzov, Dr.Sc. Professor, National research University «MPEI», Moscow, Russia. E-mail: aminzov@mpei.ru

3  Oleg Baronov, Associate Professor, Ph.D., National research University «MPEI», Moscow, Russia. E-mail: baronovor@mpei.ru

4  Alexander Nevskiy, Associate Professor, Ph.D., National research University «MPEI», Moscow, Russia. E-mail: nevskyay@mpei.ru

Introduction
A contemporary world of Data Security could

seemingly have a whole set of defensive mecha-
nisms: depends on a current need we have firewalls,
IDS/IPS, antiviruses, integrated security solutions
etc. However, could we suppose this set complete?
As Cisco CEO John Chambers recently said: «There
are two types of companies: those that have been
hacked and those who don’t know they have been
hacked». Couldn’t agree with him more; despite con-
stant improvement in data security field, despite a
bunch on new technologies, all the researches and
product range we still suffer severe attacks and, as a
consequence, casualties.

Why is this topic a thing? Well, the answer is sim-
ple, yet catchy. IT world has no current systems ca-
pable of acting fully proactive. The closest to this
we have is a signature-based defense systems. The
point is once each signature met, the prevention
mechanism is triggered, so a full attack is mitigated
(or neglected) at the very beginning acting so-called
«proactive». In fact, this is not 100% true. The signa-
ture is yet to be found, established, processed and
spread until it became functional. Suppose we have
no defense against not-well-known threats, making
a zero-day and system vulnerabilities a thing we may
only overcome once recorded and studied. In fact, if a
hacker (intruder, attacker) is first to find a weak point,
we may only pray our system is sufficiently protected

on access level otherwise attack is predefined suc-
cessful.

What can we do with this state? Obviously, we
need a system to have a fully proactive mechanism,
meaning, if we are focusing on a network POV and
LAN specifically, some sort of traffic flow control,
which allowing us to detect any abnormalities, thus
decreasing both 1st and 2nd type errors.

Chapter 1. Abnormalities thread detection
method overview

Leading to contemporary world techniques and
defense systems, signature threat detection systems
are not a newbie to a data security. The most com-
mon solution closest to considerate topic is IDS/IPS
class systems. IDSs are devices that in promiscuous
mode detect malicious activity within the network.
IPS devices are capable of detecting all these se-
curity threats; however, they are also able to drop
noncompliant packets inline. Traditionally, IDS sys-
tems have provided excellent application layer at-
tack-detection capabilities; however, they were not
able to protect against day-zero attacks using valid
packets. The problem is that most attacks today use
valid packets. On the other hand, now IPS systems
such as the Cisco IPS software Version 6.x and lat-
er offer anomaly-based capabilities that help you
detect such attacks. This is a big advantage, since it
makes the IPS devices less dependent on signature
updates for protection against DDoS, worms, and

DOI: 10.21681/2311-3456-2018-1-11-18

mailto:alexeymodorskiy@gmail.com
mailto:aminzov@mpei.ru
mailto:baronovor@mpei.ru
mailto:nevskyay@mpei.ru

12

Оценка защищенности информации	 УДК 004.056

Вопросы кибербезопасности №1(25) - 2018

any day-zero threats. Just like any other anomaly
detection systems, the sensors need to learn what
is «normal.» In other words, they need to create a
baseline of legitimate behavior [1].

Looks a rather close to a topic being reviewed,
isn’t it? The basics are solid milestone: everything
we need to protect our network undercover a con-
venient and reliable vendor. Let’s dig a little deeper
into a underlying mechanism. Turns out, as the most
of IDS/IPS, Cisco utilizes a monitoring mechanism –
Netflow – as shown on Figure 1. Other vendors of-
ten rely on vendor-independent technologies, yet

the outcome is still: monitoring sys tem is a key to
work on anomalies.

The figures above only gives us a stratified and
simplified look to the technology, which is, of course,
more complicated and advance.

Allow us to have a look at Neflow:
Each packet that is forwarded within a router or

switch is examined for a set of IP packet attributes.
These attributes are the IP packet identity or finger-
print of the packet and determine if the packet is
unique or similar to other packets, as presented on
Figure 3.

Figure 1-2. IDS/IPS solution based on MARS example

Figure 3. Cisco NetFlow v5 network utilization data report example [3]

13

LAN abnormalities threat detection...

Вопросы кибербезопасности №1(25) - 2018

Traditionally, an IP Flow is based on a set of 5 and
up to 7 IP packet attributes.

IP Packet attributes used by NetFlow:
• IP source address;
• IP destination address;
• Source port;
• Destination port;
• Layer 3 protocol type;
• Class of Service;
• Router or switch interface [2].
Away with the Cisco technologies, the rest of net-

work-based IDS/IPS systems are quite alike, for exam-
ple, Juniper SRX utilizes PCAP Syslog along with Juni-
per Secure Analytics (JSA) appliance, which basically
is the same filtering solution [4]. Same may be found
under Checkpoint, PaloAlto and other market lead-
ing vendor solutions.

Is this really enough? Well, to find out we need
again to dive into the underlying principle, which is
an OSI packet flow relation and processing ability.

Turns out that mentioned traffic flow control proto-
cols are strictly limited to routing and transport layers
of OSI, since classic routers, as well as firewalls or gate-
ways are operating at four below OSI layers (it’s often
misunderstood those devices are only operating at
layers 3-4, however it’s obviously has a physical lay-
er, and those devices does have a Layer 2 operational
units since ARP tables are exists and default routing
contains MAC-address changes from one routing
device to another – otherwise neighbours could not
know each other), as shown on Figure 4 and Table 1.

As we can see, such IDS/IPS solutions are limited
by design, since they utilize embedded, built-in rout-
ing mechanism. The advantages of these solutions are
considerable: significant decrease of additional load
on active net device, standard architecture and con-
figuration, optimization, topology-independency etc.

However there is certainly the flip side of a coin. For
the default router, as well as classic firewall, each OSI
layer above 4th is just a payload with no considerate

Figure 4. ARP table overview, as issued on Cisco Router Series 2900

Table 1. OSI standard representation as presented in LAN

Layer
Protocol data

unit (PDU)
Functions

Host
layers

7. Application

Data payload

Application internal information, often
described as payload.

6. Presentation
Translation of data from application to

network format and vise versa

5. Session
Session control between two endpoints

including time sync

4. Transport
Segment (for
TCP) or Data-

gram (for UDP)

Reliability control between endpoints,
segmentation and fragmentation con-

trol.

Media
layers

3. Network Packets
Routing between either endpoints or

subnets using routing protocols

2. Datalink Frames
Switching between two or more end-

points (connected to the same switching
infrastructure) and reliability control

1. Physical Bits Transmission of electrical signals

14

Оценка защищенности информации	 УДК 004.056

Вопросы кибербезопасности №1(25) - 2018

indexes/preambles etc. Hence, it couldn’t be investi-
gated for further decision-making process and is not
considerate useful for mentioned IDS/IPS solutions.

If we need a solution to scope a whole packet
into investigation and filtering, we obviously have to
have a Layer 7 device, either a same called firewall or
server, capable of running appropriate software and
equipped with a set of required hardware/firmware.
This is not a new solution to a market, those devices
are called host-based IDS/IPS and they utilize a varie-
ty of advantages:

• Full 7 layer OSI coverage;
• Any IP-demanded filtering;
• Flexibility of use.
As far as we have advantages, disadvantages are

also in place:
• Dedicated environment demand;
• Low speed of filtering;
• Network traffic is not counted for host-based

solutions;
• Costs etc.
Those solutions are extremely protective yet ex-

pensive, hard to tune and support. Host-based IDS
often require a small-cell diversion of LAN, since are
only capable of carrying application traffic parame-
ters [5]. Layer 7 Firewalls (as well as Multilayer Fire-
walls) are way more advanced, yet extremely costly,
and often work as a transparent devices (it is recom-
mended to implement transparent firewall mode on
a network, if firewall is implemented along router [6]),
which means they are routing-insensitive.

As a result, there is currently no end-to-end solu-
tion to cover a whole scope of LAN network security.
Since valid packet threats are a thing we cannot only
rely on integrated network IDS/IPS [7], while filtering
is a target of networking devices. A complete solu-
tion is a more like a compilation of Host-based IDS,
Network-based and a Multilayer (7th layer) Firewall.
This is a compilation of disadvantages as well: a poor
performance, costs and a rather challenging support.

Chapter 2. How to perform
Clearly, the solution to original agenda should

aggregate a whole scope of technologies to perform

a complete investigation of traffic. Yet the most ef-
ficient way is to have an ideal dump, therefore hav-
ing the non-standard traffic analyzed separately.
There are multiple advantages to this solution: we
do not need to have a filtering device working 24/7,
inspecting a whole flow of payload, but enabling
specifically at the time anomaly detected, improving
performance and boosting the routing; the analysis
itself becomes more efficient due to a considerate
decrease on a data marked to investigate. As a conse-
quence, a LAN may miss a whole set of infrastructure
dedicated to act IDS-alike, while bearing specific de-
vice, say, a server, performing on-demand with a few
recourses allocated at the time.

This raises a couple of reasonable questions:
1. How do we have a normal traffic dump idea?
2. How to analyze an ideal dump for abnormalities?
3. Where to have analyzing equipment installed?
The first question is basically a matter of modeling.

Since only a LAN traffic is in scope, we are able to de-
crease the area to the data being send and received
between local resources. Nevertheless, the problem
of modeling this traffic flow is a thing. To solve this
task it is better to have original traffic decomposed to
several components easier to analyze [8-9].

Firstly, a service traffic – data, required by network
devices to communicate between each other and
function around dedicated mechanisms (e.g. routing,
fail-proof, redundancy etc.) [10]. A formalizing of this
traffic could be done by simply listing a used technol-
ogies or sniffing traffic in a «silent mode», where no
payload is neither sent nor received. It is worth saying
such test should be done on an isolated LAN where
no suspicious traffic is presented, and there is only
one way to have it done: on the network cut-over,
when LAN is initially disconnected from unprotected
environments such as Internet or adjacent LANs.

Having a listed scope of service data circling on a
network we may proceed to determining user traffic
and at this point we may need to divide payload flow
from servicing traffic to have a clear representation of
ideal (or normal) dump. How can we have this done?
Modeling is the best way to perform in this case.

Figure 5. Iperf relations schema

15

LAN abnormalities threat detection...

Вопросы кибербезопасности №1(25) - 2018

First of all, we need to exclude service traffic, and
there’s only one way to do it with 100% efficiency:
getting rid of network device, stratifying a host-serv-
er relations. There are several techniques to do it, let’s
consider the simplest: a traffic generator [11].

In this example we will use iperf traffic generator
as a simple, free-based software available online.

For the correct usage we will need to consider a fol-
lowing simple topology presented below on Figure 5:

The point is to have a both way relations required
to establish a model which is maximum close to a
real one, excluding any service-related flow. Syntax is
clear and easy to use (refer to Table 2).

Having this utility settled and tune we may pro-
ceed to collecting a dump of ideal, or normal, traffic.
For this matter we may use either iperf embedded
output or Wireshark as a sniffer. To use this applica-
tion we would need to adjust and convert original
topology (Figure 6):

This application allows engineer to sniff packets
flowing through a networking interfaces while not
interrupting the flow itself [12]. Clearly, to built alike
topology we will need to have a machine with at
least 2 NW cards installed. Original user interface of
Wireshark is rather clear and straight-through, which
makes sniffing easy. Outcome of sniffing process of-

Table 2. Iperf general options

GENERAL OPTIONS

Command
line option

Description

-p, --port n The server port for the server to listen on and the client to connect to. This should be the same
in both client and server. Default is 5201.

--cport n Option to specify the client-side port. (new in iPerf 3.1)
-f,
--format [kmKM]

A letter specifying the format to print bandwidth numbers in. Supported formats are
 ‹k› = Kbits/sec ‹K› = KBytes/sec
 ‹m› = Mbits/sec ‹M› = MBytes/sec
The adaptive formats choose between kilo- and mega- as appropriate.

-i, --interval n Sets the interval time in seconds between periodic bandwidth, jitter, and loss reports. If non-
zero, a report is made every interval seconds of the bandwidth since the last report. If zero, no
periodic reports are printed. Default is zero.

-F, --file name client-side: read from the file and write to the network, instead of using random data;
server-side: read from the network and write to the file, instead of throwing the data away.

-A,
--affinity n/n,m-F

Set the CPU affinity, if possible (Linux and FreeBSD only). On both the client and server you
can set the local affinity by using the n form of this argument (where n is a CPU number). In
addition, on the client side you can override the server’s affinity for just that one test, using
the n,m form of argument. Note that when using this feature, a process will only be bound to a
single CPU (as opposed to a set containing potentialy multiple CPUs).

-B, --bind host Bind to host, one of this machine’s addresses. For the client this sets the outbound interface. For
a server this sets the incoming interface. This is only useful on multihomed hosts, which have
multiple network interfaces.

-V, --verbose give more detailed output
-J, --json output in JSON format
--logfile file send output to a log file. (new in iPerf 3.1)
--d, --debug emit debugging output. Primarily (perhaps exclusively) of use to developers.
-v, --version Show version information and quit.
-h, --help Show a help synopsis and quit.

Figure 6. Iperf realtions schema with sniffer integrated

16

Оценка защищенности информации	 УДК 004.056

Вопросы кибербезопасности №1(25) - 2018

ten presented as a combinations of packets tied by
some of crucial preambles and service markers, as
shown on Figure 7 above.

A compilation of iperf and Wireshark is a reasona-
ble way to have a payload traffic flow modeled, since
an output is a scalable model considering input data
and case-sensitive, yet not the only.

For the SOHO and middle Enterprise LAN we may
also find heuristic analysis as a suitable form of mod-
eling [13]. For example, a secure environments re-
quiring DMZ are built based on a compilation of ACLs
following a traffic audit or predictions [14].

Let’s now switch to the second stated question –
how to analyze an ideal dump for abnormalities. This
is the main point of research since there are currently
no systems capable of determining deviations from
a clean dump. The modern systems are working vise
versa, looking for known signatures on unknown
flow.

This brings us to the point where we need to de-
velop such system, yet we require it to be based on
standard solutions for the sake of stability and read-
iness to go for production. As a first step, we need
to compile and represent each packet properties to
the form appropriate for further analysis. To simplify
the input data, we may create a table of listed packet
properties, marking each property as «1» if included
or «-1» otherwise (bi-polar standard representation
[15]). This brings every packet to following view as
presented on Table 3.

Table 3. Binary algebra issued to a packet

properties index
VLAN flag 1
QoS tag -1

TCP identifier 1
UDP identifier -1

… …

The main issue following this schema is a non-bi-
nary properties such as IP addresses and alike param-
eters. It is supposed we still may formalize such cases
using a number of variables from the left pane.

How to fulfill such table? Well, the easiest way is to
combine a database table, having those variables sent
via simple procedure: a Wireshark converts variables
to .CSV format, while a script (supposing we are run-
ning WIN workstation or server) inputs it to database:

CREATE TABLE packet_prop (
 VLAN DECIMAL(10,2) NULL,
 QoS DECIMAL(10,2) NULL,
 TCP DECIMAL(10,2) NULL,
 UDP DECIMAL(10,2) NULL,
 PRIMARY KEY (id)
);
LOAD DATA INFILE ‹c:/tmp/current_packet.csv›
INTO TABLE discounts
FIELDS TERMINATED BY ‹,›
ENCLOSED BY ‹«›
LINES TERMINATED BY ‹\n›
IGNORE 1 ROWS;

Above is represented only a simplest case, while
an adequate datastore should include a variety of pa-
rameters depends on a network in scope.

Having a main table fulfilled with first packet we
may switch over to analysis. Obviously, as valid traffic
attacks are already mentioned, we would need more
than one sample to compile a full ideal traffic dump.
Its size may vary depending on an environment and
audit performed. At this moment, we need to decide
what component may we use to analyze the dump
while comparing it to suspicious traffic.

Let’s get input parameters together: having an
ideal traffic dump in place we would need to com-
pare any traffic marked as «unusual» to the gold
probe, hence desired analyzing tool should have an
embedded mechanism to compare every each of
current traffic dump to a packet (or a group of pack-
ets) from the original dump. There we can use a neu-

Figure 7. Example of Wireshark sniffer output

17

LAN abnormalities threat detection...

Вопросы кибербезопасности №1(25) - 2018

ral network adhesive to original issue. Basically we
need quite the same mechanism applied on ATM to
check whether a cash bill is recognized correctly and
available to use within certain environment. This is
a Hopfield neural network, or, to be more specific, a
Little’s neural network as a derivative to original one.

The point of using such method is having a com-
plete set of input parameters as it is: a database table
described earlier could compile a summary of ideal
probes required for Hopfield network to properly
function, as present ed at (1-3):

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

; (1)

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

; (2)

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

; (3)

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

; (4)

Where

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

 – packets being originally cap-
tured at the modeling stage, and

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

 represents a
packet (a group of packets) under consideration.

Now we may compile a matrix using standard Lit-
tle’s network principle:

Having a main table fulfilled with first packet we may switch over to analysis.
Obviously, as valid traffic attacks are already mentioned, we would need more than one
sample to compile a full ideal traffic dump. Its size may vary depending on an
environment and audit performed. At this moment, we need to decide what component
may we use to analyze the dump while comparing it to suspicious traffic.

Let’s get input parameters together: having an ideal traffic dump in place we
would need to compare any traffic marked as “unusual” to the gold probe, hence desired
analyzing tool should have an embedded mechanism to compare every each of current
traffic dump to a packet (or a group of packets) from the original dump. There we can
use a neural network adhesive to original issue. Basically we need quite the same
mechanism applied on ATM to check whether a cash bill is recognized correctly and
available to use within certain environment. This is a Hopfield neural network, or, to be
more specific, a Little’s neural network as a derivative to original one.

The point of using such method is having a complete set of input parameters as it
is: a database table described earlier could compile a summary of ideal probes required
for Hopfield network to properly function, as presented at (1-3):

x1���⃑ = [x1, x2, …, xn]; (1)
x2���⃑ = [y1, y2, …, yn]; (2)
x3���⃑ = [z1, z2, …, zn]; (3)
𝑠𝑠 = [s1, s2, …, sn]; (4)

Where x1���⃑ , x2���⃑ , x3���⃑ – packets being originally captured at the modeling stage, and 𝑠𝑠

represents a packet (a group of packets) under consideration.
Now we may compile a matrix using standard Little’s network principle:
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥�� s⃑����) ; (5)
Where W is the matrix and ‘k’ is a counter for current vector being used. For the

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to
compare each parameter with its own baseline.

A comparison happens as each vector marked suspicious is multiplied repeatedly
with a whole set of baseline vectors, which outputs as either inverted packet original
packet (from ideal scope, depends on which packet’s variation being considered by
neural network) or a complete unknown vector, which may point out an anomaly.

The suggested solution is a new direction to Data Security, yet it has some
lookalikes when compared to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than
assuming some point where traffic is clean while comparing it to any given moment.
This allows system administrator to collate a suspicious object to an ideal data stamp,
not specific state of LAN traffic flow defined formerly. It is also concentrates on a
network components rather than standard server-client infrastructure.

Conclusion. Implementation and future development.

Having established an environment and a set of instrumentals we, however, does

not getting a complete product. To make it usable and user-friendly we still strive to
have a GUI, sufficient modeling constructor, plug-and-play database and so on.

; (5)

Where W is the matrix and ‘k’ is a counter for cur-
rent vector being used. For the vector it is easier to
use it to avoid original idea’s violation, since, in fact,
we need to compare each parameter with its own
baseline.

A comparison happens as each vector marked
suspicious is multiplied repeatedly with a whole set
of baseline vectors, which outputs as either inverted
packet original packet (from ideal scope, depends on
which packet’s variation being considered by neural
network) or a complete unknown vector, which may
point out an anomaly.

The suggested solution is a new direction to Data
Security, yet it has some lookalikes when compared
to CM systems. However, it does differ starting from
underlying concept: unlike CM, it works with a specif-
ic modeled ideal dump rather than assuming some

point where traffic is clean while comparing it to any
given moment. This allows system administrator to
collate a suspicious object to an ideal data stamp, not
specific state of LAN traffic flow defined formerly. It is
also concentrates on a network components rather
than standard server-client infrastructure.

Conclusion. Implementation and future devel-
opment.

Having established an environment and a set of
instrumentals we, however, does not getting a com-
plete product. To make it usable and user-friendly
we still strive to have a GUI, sufficient modeling con-
structor, plug-and-play database and so on.

As a result to this research we offered a new solu-
tion, which, if correctly compiled and implement-
ed, may considerably increase overall LAN security
while sharing existing infrastructure and cutting the
costs. A solution offered combines both Network-
and Host-based IDS/IPS principles, while having a
case-sensitive reaction system at the same time. The
key advantages to issued solution may vary depend-
ing on a LAN infra, scoping data processing speed,
self-learning mechanism, simplicity, and, at the end,
this is a brand new solution completely unknown to
modern hacking community.

However there are still some blind spots to this
topic: the system is incomplete and for this moment
is database-dependent. This means a neural network
should be used based on a DB table, using a built-
in multiplication, transpose and summation meth-
ods. Those factors may impact performance and
self-learning abilities, decreasing the LAN through-
put if attached to Core layer.

It is predictably more efficient to use program-
ming languages for neural network platform while
having a joint with DB, so future development al-
ready has some areas to evolve. Nevertheless, main
components should seat still: a neural network, sniff-
er, modeling tool and database have to be installed
for proper functioning. The rest may vary depending
on a certain cases and preferences.

Reviewer: V.L. Tsirlov, Ph.D., Associate Professor, Information Security Department, Bauman Moscow State
Technical University, Moscow, Russia. E-mail: v.tsirlov@bmstu.ru

References

1. 	 End-to-End Network Security: Defense-in-Depth By Omar Santos. Published Aug 24, 2007 by Cisco Press, pp. 19-22
2. 	 Introduction to Cisco IOS NetFlow - A Technical Overview, Cisco White papers, issued May 29, 2012. [https://www.cisco.com/c/en/

us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html]
3. 	 NetFlow gives Network Managers a Detailed View of Application Flows on the Network, Cisco® IT Case Study/Cisco Network

Management/NetFlow, Case study, issued © 2004 Cisco Systems, Inc,[http://www.cisco.com/en/US/prod/collateral/iosswrel/
ps6537/ps6555/ps6601/prod_case_study0900aecd80311fc2.pdf], p. 4.

mailto:v.tsirlov@bmstu.ru

18

Оценка защищенности информации	 УДК 004.056

Вопросы кибербезопасности №1(25) - 2018

4. 	 Junos® OS IDP Series Appliance to SRX Series Services Gateway Migration Guide. Copyright © 2017 Juniper Networks, Inc, pp. 3-7.
5. 	 Host-based vs Network-base Intrusion detection systems, SANS institute article, [https://cyber-defense.sans.org/resources/

papers/gsec/host-vs-network-based-intrusion-detection-systems-102574], 2005, pp.3-5
6. 	 CLI Book 1: Cisco ASA Series General Operations CLI Configuration Guide, 9.4, Cisco inc. Issued Dec 4, 2017.
7. 	 K. Scarfone, P. Mell, Special Publication 800-94: Guide to Intrusion Detection and Prevention Systems (IDPS), National Institute of

Standards and Technology (NIST) (2007), pp 4-6.
8. 	 Two-layer modeling for local area networks Authors: M. Murata, Comput. Center, Osaka Univ.,Japan, H. Takagi, pp 1-10
9. 	 Modeling and Analysis of Wireless LAN Traffic, JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1783-1801 (20090,

DASHDORJ YAMKHIN AND YOUJIP WON+, Hanyang University, Seoul, 133-791 Korea
10. 	 Enhancing LAN Performance, Gilbert Held, Fourth Edition, CRC Press, 18 March, 2004 , pp 130-140 ISBN 978-0-203-49605-3
11. 	 A Network Traffic Generator Model for Fast Network-on-Chip Simulation, IEEE Article, Shankar Mahadevan, Federico Angiolini,

Michael Storgaard, Rasmus Grøndahl, Olsen Jens Sparsø, Jan Madsen, Informatics and Mathematical Modelling (IMM), Technical
University of Denmark (DTU), Richard Petersens Plads, 2800 Lyngby, Denmark - Dipartimento di Elettronica, Informatica e
Sistemistica (DEIS), University of Bologna, Viale Risorgimento, 2 40136 Bologna, Italy. Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition (DATE’05), 1530-1591/05 IEEE, pp 1-6.

12. 	 Wireshark - The best open source network packet analyzer(Part I), Himanshuz.chd | Sep 23 2012, IBM DeveloperWorks
Electronic Archive.

13. 	 Traffic inspection for visibility, control and new business opportunities, Ericsson White papers, 284 23-3112 Uen Rev B | September
2010, pp 2-12.

14. 	 The Science DMZ: A Network Design Pattern for Data-Intensive Science, Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester Jason
Zurawski, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.
The U.S. SC13 November 17-21, 2013, Denver, CO, USA Copyright 2013 ACM 978-1-4503-2378-9/13/11, page 5

15. 	 Mathematical morphology on bipolar fuzzy sets: general algebraic framework, IsabelleBloch Télécom ParisTech, CNRS LTCI, Paris,
France, May, 2012, pp 2-3

