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LAN ABNORMALITIES THREAT DETECTION: AN OUTLOOK 
AND APPLICABILITY ANALYSIS  

A.M.Modorskiy1, A.S.Minzov2, O.R.Baronov3, A.Y.Nevskiy4.

In this article  contemporary LAN threats are considered in scope of signatures, where a pile of polymor-
phic elements, not applicable for diverse analysis by itself are combining along with preambles, traffic strains 
and flows, as well as protocols and ports, could be reviewed to tell if there are threats detected. The point is 
to compile a standalone system, capable of scoping and triaging diversified elements on a LAN Core, giving a 
system owner an opportunity to early detect, prioritize and workaround threat that standard security sys-
tems allow by default. However, it is wrong to consider such mechanism a classic signature-based, where 
traffic dump is investigated for known issues. Conversely, the system in scope should act proactive, which 
require shaping of basic, likewise ideal, traffic flow, seeking for abnormalities in an early threat occurrence. 
For this occasion, the neural network should step in, utilizing the vector comparison for the abnormalities 
detection process being effective.  
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Introduction
A contemporary world of Data Security could 

seemingly have a whole set of defensive mecha-
nisms: depends on a current need we have firewalls, 
IDS/IPS, antiviruses, integrated security solutions 
etc. However, could we suppose this set complete? 
As Cisco CEO John Chambers recently said: «There 
are two types of companies: those that have been 
hacked and those who don’t know they have been 
hacked». Couldn’t agree with him more; despite con-
stant improvement in data security field, despite a 
bunch on new technologies, all the researches and 
product range we still suffer severe attacks and, as a 
consequence, casualties. 

Why is this topic a thing? Well, the answer is sim-
ple, yet catchy. IT world has no current systems ca-
pable of acting fully proactive. The closest to this 
we have is a signature-based defense systems. The 
point is once each signature met, the prevention 
mechanism is triggered, so a full attack is mitigated 
(or neglected) at the very beginning acting so-called 
«proactive». In fact, this is not 100% true. The signa-
ture is yet to be found, established, processed and 
spread until it became functional. Suppose we have 
no defense against not-well-known threats, making 
a zero-day and system vulnerabilities a thing we may 
only overcome once recorded and studied. In fact, if a 
hacker (intruder, attacker) is first to find a weak point, 
we may only pray our system is sufficiently protected 

on access level otherwise attack is predefined suc-
cessful.

What can we do with this state? Obviously, we 
need a system to have a fully proactive mechanism, 
meaning, if we are focusing on a network POV and 
LAN specifically, some sort of traffic flow control, 
which allowing us to detect any abnormalities, thus 
decreasing both 1st and 2nd type errors. 

Chapter 1. Abnormalities thread detection 
method overview

Leading to contemporary world techniques and 
defense systems, signature threat detection systems 
are not a newbie to a data security. The most com-
mon solution closest to considerate topic is IDS/IPS 
class systems. IDSs are devices that in promiscuous 
mode detect malicious activity within the network. 
IPS devices are capable of detecting all these se-
curity threats; however, they are also able to drop 
noncompliant packets inline. Traditionally, IDS sys-
tems have provided excellent application layer at-
tack-detection capabilities; however, they were not 
able to protect against day-zero attacks using valid 
packets. The problem is that most attacks today use 
valid packets. On the other hand, now IPS systems 
such as the Cisco IPS software Version 6.x and lat-
er offer anomaly-based capabilities that help you 
detect such attacks. This is a big advantage, since it 
makes the IPS devices less dependent on signature 
updates for protection against DDoS, worms, and 
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any day-zero threats. Just like any other anomaly 
detection systems, the sensors need to learn what 
is «normal.» In other words, they need to create a 
baseline of legitimate behavior [1].

Looks a rather close to a topic being reviewed, 
isn’t it? The basics are solid milestone: everything 
we need to protect our network undercover a con-
venient and reliable vendor. Let’s dig a little deeper 
into a underlying mechanism. Turns out, as the most 
of IDS/IPS, Cisco utilizes a monitoring mechanism – 
Netflow – as shown on Figure 1. Other vendors of-
ten rely on vendor-independent technologies, yet 

the outcome is still: monitoring sys tem is a key to 
work on anomalies. 

The figures above only gives us a stratified and 
simplified look to the technology, which is, of course, 
more complicated and advance. 

Allow us to have a look at Neflow:
Each packet that is forwarded within a router or 

switch is examined for a set of IP packet attributes. 
These attributes are the IP packet identity or finger-
print of the packet and determine if the packet is 
unique or similar to other packets, as presented on 
Figure 3.

Figure 1-2. IDS/IPS solution based on MARS example

Figure 3. Cisco NetFlow v5 network utilization data report example [3]
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Traditionally, an IP Flow is based on a set of 5 and 
up to 7 IP packet attributes.

IP Packet attributes used by NetFlow:
• IP source address;
• IP destination address;
• Source port;
• Destination port;
• Layer 3 protocol type;
• Class of Service;
• Router or switch interface [2].
Away with the Cisco technologies, the rest of net-

work-based IDS/IPS systems are quite alike, for exam-
ple, Juniper SRX utilizes PCAP Syslog along with Juni-
per Secure Analytics (JSA) appliance, which basically 
is the same filtering solution [4].  Same may be found 
under Checkpoint, PaloAlto and other market lead-
ing vendor solutions. 

Is this really enough? Well, to find out we need 
again to dive into the underlying principle, which is 
an OSI packet flow relation and processing ability. 

Turns out that mentioned traffic flow control proto-
cols are strictly limited to routing and transport layers 
of OSI, since classic routers, as well as firewalls or gate-
ways are operating at four below OSI layers (it’s often 
misunderstood those devices are only operating at 
layers 3-4, however it’s obviously has a physical lay-
er, and those devices does have a Layer 2 operational 
units since ARP tables are exists and default routing 
contains MAC-address changes from one routing 
device to another – otherwise neighbours could not 
know each other), as shown on Figure 4 and Table 1.

As we can see, such IDS/IPS solutions are limited 
by design, since they utilize embedded, built-in rout-
ing mechanism. The advantages of these solutions are 
considerable: significant decrease of additional load 
on active net device, standard architecture and con-
figuration, optimization, topology-independency etc. 

However there is certainly the flip side of a coin. For 
the default router, as well as classic firewall, each OSI 
layer above 4th is just a payload with no considerate 

Figure 4. ARP table overview, as issued on Cisco Router Series 2900

Table 1. OSI standard representation as presented in LAN

Layer
Protocol data 

unit (PDU)
Functions

Host 
layers

7. Application

Data payload

Application internal information, often 
described as payload.

6. Presentation
Translation of data from application to 

network format and vise versa

5. Session
Session control between two endpoints 

including time sync

4. Transport
Segment (for 
TCP) or Data-

gram (for UDP)

Reliability control between endpoints, 
segmentation and fragmentation con-

trol.

Media 
layers

3. Network Packets
Routing between either endpoints or 

subnets using routing protocols

2. Datalink Frames
Switching between two or more end-

points (connected to the same switching 
infrastructure) and reliability control

1. Physical Bits Transmission of electrical signals
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indexes/preambles etc. Hence, it couldn’t be investi-
gated for further decision-making process and is not 
considerate useful for mentioned IDS/IPS solutions. 

If we need a solution to scope a whole packet 
into investigation and filtering, we obviously have to 
have a Layer 7 device, either a same called firewall or 
server, capable of running appropriate software and 
equipped with a set of required hardware/firmware. 
This is not a new solution to a market, those devices 
are called host-based IDS/IPS and they utilize a varie-
ty of advantages:

• Full 7 layer OSI coverage;
• Any IP-demanded filtering;
• Flexibility of use.
As far as we have advantages, disadvantages are 

also in place:
• Dedicated environment demand;
• Low speed of filtering;
• Network traffic is not counted for host-based 

solutions;
• Costs etc.
Those solutions are extremely protective yet ex-

pensive, hard to tune and support. Host-based IDS 
often require a small-cell diversion of LAN, since are 
only capable of carrying application traffic parame-
ters [5]. Layer 7 Firewalls (as well as Multilayer Fire-
walls) are way more advanced, yet extremely costly, 
and often work as a transparent devices (it is recom-
mended to implement transparent firewall mode on 
a network, if firewall is implemented along router [6]), 
which means they are routing-insensitive.

As a result, there is currently no end-to-end solu-
tion to cover a whole scope of LAN network security. 
Since valid packet threats are a thing we cannot only 
rely on integrated network IDS/IPS [7], while filtering 
is a target of networking devices. A complete solu-
tion is a more like a compilation of Host-based IDS, 
Network-based and a Multilayer (7th layer) Firewall. 
This is a compilation of disadvantages as well: a poor 
performance, costs and a rather challenging support. 

Chapter 2. How to perform
Clearly, the solution to original agenda should 

aggregate a whole scope of technologies to perform 

a complete investigation of traffic. Yet the most ef-
ficient way is to have an ideal dump, therefore hav-
ing the non-standard traffic analyzed separately. 
There are multiple advantages to this solution: we 
do not need to have a filtering device working 24/7, 
inspecting a whole flow of payload, but enabling 
specifically at the time anomaly detected, improving 
performance and boosting the routing; the analysis 
itself becomes more efficient due to a considerate 
decrease on a data marked to investigate. As a conse-
quence, a LAN may miss a whole set of infrastructure 
dedicated to act IDS-alike, while bearing specific de-
vice, say, a server, performing on-demand with a few 
recourses allocated at the time.

This raises a couple of reasonable questions:
1. How do we have a normal traffic dump idea?
2. How to analyze an ideal dump for abnormalities?
3. Where to have analyzing equipment installed?
The first question is basically a matter of modeling. 

Since only a LAN traffic is in scope, we are able to de-
crease the area to the data being send and received 
between local resources. Nevertheless, the problem 
of modeling this traffic flow is a thing. To solve this 
task it is better to have original traffic decomposed to 
several components easier to analyze [8-9].

Firstly, a service traffic – data, required by network 
devices to communicate between each other and 
function around dedicated mechanisms (e.g. routing, 
fail-proof, redundancy etc.) [10]. A formalizing of this 
traffic could be done by simply listing a used technol-
ogies or sniffing traffic in a «silent mode», where no 
payload is neither sent nor received. It is worth saying 
such test should be done on an isolated LAN where 
no suspicious traffic is presented, and there is only 
one way to have it done: on the network cut-over, 
when LAN is initially disconnected from unprotected 
environments such as Internet or adjacent LANs. 

Having a listed scope of service data circling on a 
network we may proceed to determining user traffic 
and at this point we may need to divide payload flow 
from servicing traffic to have a clear representation of 
ideal (or normal) dump. How can we have this done? 
Modeling is the best way to perform in this case.  

Figure 5. Iperf relations schema



15

LAN abnormalities threat detection...

Вопросы кибербезопасности  №1(25) - 2018 

First of all, we need to exclude service traffic, and 
there’s only one way to do it with 100% efficiency: 
getting rid of network device, stratifying a host-serv-
er relations. There are several techniques to do it, let’s 
consider the simplest: a traffic generator [11].

In this example we will use iperf traffic generator 
as a simple, free-based software available online. 

For the correct usage we will need to consider a fol-
lowing simple topology presented below on Figure 5:

The point is to have a both way relations required 
to establish a model which is maximum close to a 
real one, excluding any service-related flow. Syntax is 
clear and easy to use (refer to Table 2).

Having this utility settled and tune we may pro-
ceed to collecting a dump of ideal, or normal, traffic. 
For this matter we may use either iperf embedded 
output or Wireshark as a sniffer. To use this applica-
tion we would need to adjust and convert original 
topology (Figure 6):

This application allows engineer to sniff packets 
flowing through a networking interfaces while not 
interrupting the flow itself [12]. Clearly, to built alike 
topology we will need to have a machine with at 
least 2 NW cards installed. Original user interface of 
Wireshark is rather clear and straight-through, which 
makes sniffing easy. Outcome of sniffing process of-

Table 2. Iperf general options

GENERAL OPTIONS

Command  
line option

Description

-p, --port n The server port for the server to listen on and the client to connect to. This should be the same 
in both client and server. Default is 5201.

--cport n Option to specify the client-side port. (new in iPerf 3.1)
-f, 
--format [kmKM]

A letter specifying the format to print bandwidth numbers in. Supported formats are 
    ‹k› = Kbits/sec           ‹K› = KBytes/sec
    ‹m› = Mbits/sec           ‹M› = MBytes/sec
The adaptive formats choose between kilo- and mega- as appropriate.

-i, --interval n Sets the interval time in seconds between periodic bandwidth, jitter, and loss reports. If non-
zero, a report is made every interval seconds of the bandwidth since the last report. If zero, no 
periodic reports are printed. Default is zero.

-F, --file name client-side: read from the file and write to the network, instead of using random data; 
server-side: read from the network and write to the file, instead of throwing the data away.

-A, 
--affinity n/n,m-F

Set the CPU affinity, if possible (Linux and FreeBSD only). On both the client and server you 
can set the local affinity by using the n form of this argument (where n is a CPU number). In 
addition, on the client side you can override the server’s affinity for just that one test, using 
the n,m form of argument. Note that when using this feature, a process will only be bound to a 
single CPU (as opposed to a set containing potentialy multiple CPUs).

-B, --bind host Bind to host, one of this machine’s addresses. For the client this sets the outbound interface. For 
a server this sets the incoming interface. This is only useful on multihomed hosts, which have 
multiple network interfaces.

-V, --verbose give more detailed output
-J, --json output in JSON format
--logfile file send output to a log file. (new in iPerf 3.1)
--d, --debug emit debugging output. Primarily (perhaps exclusively) of use to developers.
-v, --version Show version information and quit.
-h, --help Show a help synopsis and quit.

Figure 6. Iperf realtions schema with sniffer integrated
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ten presented as a combinations of packets tied by 
some of crucial preambles and service markers, as 
shown on Figure 7 above.

A compilation of iperf and Wireshark is a reasona-
ble way to have a payload traffic flow modeled, since 
an output is a scalable model considering input data 
and case-sensitive, yet not the only. 

For the SOHO and middle Enterprise LAN we may 
also find heuristic analysis as a suitable form of mod-
eling [13]. For example, a secure environments re-
quiring DMZ are built based on a compilation of ACLs 
following a traffic audit or predictions [14]. 

Let’s now switch to the second stated question – 
how to analyze an ideal dump for abnormalities. This 
is the main point of research since there are currently 
no systems capable of determining deviations from 
a clean dump. The modern systems are working vise 
versa, looking for known signatures on unknown 
flow.

This brings us to the point where we need to de-
velop such system, yet we require it to be based on 
standard solutions for the sake of stability and read-
iness to go for production. As a first step, we need 
to compile and represent each packet properties to 
the form appropriate for further analysis. To simplify 
the input data, we may create a table of listed packet 
properties, marking each property as «1» if included 
or «-1» otherwise (bi-polar standard representation 
[15]). This brings every packet to following view as 
presented on Table 3.

Table 3. Binary algebra issued to a packet

properties index
VLAN flag 1
QoS tag -1

TCP identifier 1
UDP identifier -1

… …

The main issue following this schema is a non-bi-
nary properties such as IP addresses and alike param-
eters. It is supposed we still may formalize such cases 
using a number of variables from the left pane.

How to fulfill such table? Well, the easiest way is to 
combine a database table, having those variables sent 
via simple procedure: a Wireshark converts variables 
to .CSV format, while a script (supposing we are run-
ning WIN workstation or server) inputs it to database:

CREATE TABLE packet_prop (
  VLAN DECIMAL(10,2) NULL,
  QoS DECIMAL(10,2) NULL,
  TCP DECIMAL(10,2) NULL,
  UDP DECIMAL(10,2) NULL,
  PRIMARY KEY (id)
);
LOAD DATA INFILE ‹c:/tmp/current_packet.csv› 
INTO TABLE discounts 
FIELDS TERMINATED BY ‹,› 
ENCLOSED BY ‹«›
LINES TERMINATED BY ‹\n›
IGNORE 1 ROWS;

Above is represented only a simplest case, while 
an adequate datastore should include a variety of pa-
rameters depends on a network in scope.

Having a main table fulfilled with first packet we 
may switch over to analysis. Obviously, as valid traffic 
attacks are already mentioned, we would need more 
than one sample to compile a full ideal traffic dump. 
Its size may vary depending on an environment and 
audit performed. At this moment, we need to decide 
what component may we use to analyze the dump 
while comparing it to suspicious traffic.

Let’s get input parameters together: having an 
ideal traffic dump in place we would need to com-
pare any traffic marked as «unusual» to the gold 
probe, hence desired analyzing tool should have an 
embedded mechanism to compare every each of 
current traffic dump to a packet (or a group of pack-
ets) from the original dump. There we can use a neu-

Figure 7. Example of Wireshark sniffer output 
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ral network adhesive to original issue. Basically we 
need quite the same mechanism applied on ATM to 
check whether a cash bill is recognized correctly and 
available to use within certain environment. This is 
a Hopfield neural network, or, to be more specific, a 
Little’s neural network as a derivative to original one. 

The point of using such method is having a com-
plete set of input parameters as it is: a database table 
described earlier could compile a summary of ideal 
probes required for Hopfield network to properly 
function, as present ed at (1-3):

  

Having a main table fulfilled with first packet we may switch over to analysis. 
Obviously, as valid traffic attacks are already mentioned, we would need more than one 
sample to compile a full ideal traffic dump. Its size may vary depending on an 
environment and audit performed. At this moment, we need to decide what component 
may we use to analyze the dump while comparing it to suspicious traffic. 

Let’s get input parameters together: having an ideal traffic dump in place we 
would need to compare any traffic marked as “unusual” to the gold probe, hence desired 
analyzing tool should have an embedded mechanism to compare every each of current 
traffic dump to a packet (or a group of packets) from the original dump. There we can 
use a neural network adhesive to original issue. Basically we need quite the same 
mechanism applied on ATM to check whether a cash bill is recognized correctly and 
available to use within certain environment. This is a Hopfield neural network, or, to be 
more specific, a Little’s neural network as a derivative to original one.  

The point of using such method is having a complete set of input parameters as it 
is: a database table described earlier could compile a summary of ideal probes required 
for Hopfield network to properly function, as presented at (1-3): 

x1���⃑ = [x1, x2, …, xn];                                                                                            (1) 
x2���⃑ = [y1, y2, …, yn];                                                                                            (2) 
x3���⃑ = [z1, z2, …, zn];                                                                                             (3) 
𝑠𝑠 = [s1, s2, …, sn];                                                                                               (4) 
 
Where x1���⃑ , x2���⃑ , x3���⃑  – packets being originally captured at the modeling stage, and 𝑠𝑠 

represents a packet (a group of packets) under consideration.   
Now we may compile a matrix using standard Little’s network principle: 
𝑊𝑊 𝑊 ∑ (𝑥⃑𝑥��  s⃑���� ) ;                                                                                                (5) 
Where W is the matrix and ‘k’ is a counter for current vector being used. For the 

vector it is easier to use it to avoid original idea’s violation, since, in fact, we need to 
compare each parameter with its own baseline.  

A comparison happens as each vector marked suspicious is multiplied repeatedly 
with a whole set of baseline vectors, which outputs as either inverted packet original 
packet (from ideal scope, depends on which packet’s variation being considered by 
neural network) or a complete unknown vector, which may point out an anomaly.  

The suggested solution is a new direction to Data Security, yet it has some 
lookalikes when compared to CM systems. However, it does differ starting from 
underlying concept: unlike CM, it works with a specific modeled ideal dump rather than 
assuming some point where traffic is clean while comparing it to any given moment. 
This allows system administrator to collate a suspicious object to an ideal data stamp, 
not specific state of LAN traffic flow defined formerly. It is also concentrates on a 
network components rather than standard server-client infrastructure.  
 

Conclusion. Implementation and future development.  
 
Having established an environment and a set of instrumentals we, however, does 

not getting a complete product. To make it usable and user-friendly we still strive to 
have a GUI, sufficient modeling constructor, plug-and-play database and so on.  
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Where W is the matrix and ‘k’ is a counter for cur-
rent vector being used. For the vector it is easier to 
use it to avoid original idea’s violation, since, in fact, 
we need to compare each parameter with its own 
baseline. 

A comparison happens as each vector marked 
suspicious is multiplied repeatedly with a whole set 
of baseline vectors, which outputs as either inverted 
packet original packet (from ideal scope, depends on 
which packet’s variation being considered by neural 
network) or a complete unknown vector, which may 
point out an anomaly. 

The suggested solution is a new direction to Data 
Security, yet it has some lookalikes when compared 
to CM systems. However, it does differ starting from 
underlying concept: unlike CM, it works with a specif-
ic modeled ideal dump rather than assuming some 

point where traffic is clean while comparing it to any 
given moment. This allows system administrator to 
collate a suspicious object to an ideal data stamp, not 
specific state of LAN traffic flow defined formerly. It is 
also concentrates on a network components rather 
than standard server-client infrastructure. 

Conclusion. Implementation and future devel-
opment. 

Having established an environment and a set of 
instrumentals we, however, does not getting a com-
plete product. To make it usable and user-friendly 
we still strive to have a GUI, sufficient modeling con-
structor, plug-and-play database and so on. 

As a result to this research we offered a new solu-
tion, which, if correctly compiled and implement-
ed, may considerably increase overall LAN security 
while sharing existing infrastructure and cutting the 
costs. A solution offered combines both Network- 
and Host-based IDS/IPS principles, while having a 
case-sensitive reaction system at the same time. The 
key advantages to issued solution may vary depend-
ing on a LAN infra, scoping data processing speed, 
self-learning mechanism, simplicity, and, at the end, 
this is a brand new solution completely unknown to 
modern hacking community.  

However there are still some blind spots to this 
topic: the system is incomplete and for this moment 
is database-dependent. This means a neural network 
should be used based on a DB table, using a built-
in multiplication, transpose and summation meth-
ods. Those factors may impact performance and 
self-learning abilities, decreasing the LAN through-
put if attached to Core layer.

It is predictably more efficient to use program-
ming languages for neural network platform while 
having a joint with DB, so future development al-
ready has some areas to evolve. Nevertheless, main 
components should seat still: a neural network, sniff-
er, modeling tool and database have to be installed 
for proper functioning. The rest may vary depending 
on a certain cases and preferences.
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