AUTHENTICATION AND AUTHORIZATION
IN MICROSERVICE-BASED SYSTEMS:
SURVEY OF ARCHITECTURE PATTERNS

Barabanov A.', Makrushin D.?

Abstract

Objective. Service-oriented architecture and its microservice-based approach increase an attack surface of
applications. Exposed microservices become a pivot point for advanced persistent threats and completely change
the threat landscape. Correctly implemented authentication and authorization architecture patterns are basis of any
software maturity program. The aim of this study is to provide a helpful resource to application security architect and
developers on existing architecture patterns to implement authentication and authorization in microservices-based
systems.

Method. In this paper, we conduct a systematic review of major electronic databases and libraries as well as
security standards and presentations at the major security conferences.

Results and practical relevance. In this work based on research papers and major security conferences
presentations analysis, we identified industry best practices in authentication and authorization patterns and its
applicability depending on environment characteristic. For each described patterns we reviewed its advantages and
disadvantages that could be used as decision-making criteria for application security architects during architecture

design phase.

Keywords: microservice architectures, security, authentication, authorization, architecture patterns survey.

1. Introduction

The microservice architecture is being increasingly
used for designing and implementing application systems
in both cloud-based and on-premise infrastructures, high-
scale applications and services [1]. There are many secu-
rity challenges need to be addressed in the application de-
sign and implementation phases. The fundamental secu-
rity requirements that have to be addressed during design
phase are authentication and authorization. Therefore, it
is vital for applications security architects to understand
and properly use existing architecture patterns to imple-
ment authentication and authorization in microservices-
based systems. The goal of our research was to identify
such patterns and to do recommendations for applications
security architect on possible way to use it. This study is
conducted with three main questions in mind:

- Which architecture patterns to implement authen-
tication and authorization have been reported in
microservice-based systems researches?

- What advantages and disadvantages do existing
architecture patterns have?

- What should application security architect take in
mind while selecting pattern to implement authen-
tication and authorization in microservice-based
systems?

DOI: 10.21681/2311-3456-2020-04-32-43

We reviewed major electronic databases and librar-
ies (IEEE Xplorer, ACM Digital Library, SpringerLink) with
research papers to extract primary studies. In order to
explore these databases and presentations, we used
search strings containing “authentication”, “authoriza-
tion”, “service-oriented architecture” and “microservice”
(in different spelling, like “micro-service” or “micro ser-
vice”) words. To avoid missing relevant studies, we also
reviewed security standards, presentations at the major
security conferences.

In summary, this paper makes the following contribu-
tions:

- a state of the art of the authentication and au-
thorization architecture patterns for microservice-
based systems (Section 2);

- recommendations for applications security archi-
tect on how to select an appropriated architecture
pattern (Section 3).

2. Authentication and authorization
architecture patterns

We made decomposition of authentication and autho-
rization functions based on microservice-specific charac-
teristics and identified the following list of security sub-

1 Alexander Barabanov, Ph.D., CISSP, CSSLP, Advanced Software Technology Laboratory, Huawei, Moscow, Russia. E-mail: barabanov.iu8 @gmail.com

2 Denis Makrushin, OSCP, Advanced Software Technology Laboratory, Huawei, Moscow, Russia. E-mail:denis@makrushin.com

32

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



Y/IK 004.056

functions (Figure 1): edge-level authorization, service-lev-
el authorization, external entity identity propagation and
service-to-service authentication. Then we reviewed ma-
jor electronic databases and libraries as well as security
standards and presentations at the major security confer-
ences in order to identify existing architectural patterns.

Critical Infrastructure Security

2.1. Edge-level authorization

In simple scenario, authorization can happen only at
the edge level (API gateway). The APl gateway can be lev-
eraged to centralize enforcement of authorization for all
downstream microservices, eliminating the need to pro-
vide authentication and access control for each of the

API Lo :
Gateway —E—‘—{ MS#1 MS#3
External '
entity MS#2 MS#n
Service-level Service-to-service

authorization authentication

s | )

[ External entity identity propagation ]

Inner services layer

Figure 1 Authentication and authorizationsubfunctions in microservice-based systems

individual services [2]. In such case, NIST recommends®
to implement mitigating controls such as mutual authen-
tication to prevent direct, anonymous connections to the
internal services (APl gateway bypass). It should be noted
that authorization at the edge layer has a following draw-
backs*:
pushing all authorization decisions to APl gateway
can quickly become hard to manage in complex
ecosystems with many roles and access control
rules;
API gateway may become a single-point-of-decision
that may violate “defense in depth” principle;
operation teams typically own the API gateway, so
development teams can not directly make autho-
rization changes, slowing down velocity due to the
additional communication and process overhead.
In most cases, development teams implement autho-
rization in both places - at the edge level at a coarse level
of granularity and service level®. To authenticate exter-
nal entity edge can use access tokens (referenced token
or self-contained token) transmitted via HTTP headers
(e.g. “Cookie” or “Authorization”) or use mTLS [3].

Chandramouli R. (2019) Security Strategies for Microservices-based
Application Systems. (National Institute of Standards and Technol-
ogy, Gaithersburg, MD), NIST Special Publication (SP) 800-204. DOI:
10.6028/NIST.SP.800-204

Lakshminarayanan S. (2019). Authorization in Micro Services World Ku-
bernetes, Istio and Open Policy Agent. Talk presented at the AppSecCali
2019

Stivers C., Higgins N. (2019). Deploying Open Policy Agent at Atlassian.
Talk presented at the OPA Summit 2019

2.2. Service-level authorization

For further discussion, we use terms and definitions
(Figure 2) according with NIST®. The functional compo-
nents of access control system can be classified follow-
ing way:

Policy Administration Point (PAP) provides a user
interface for creating, managing, testing, and de-
bugging access control rules;

Policy Decision Point (PDP) computes access deci-
sions by evaluating the applicable access control
policy;

Policy Enforcement Point (PEP) enforces policy de-
cisions in response to a request from a subject re-
questing access to a protected object;

Policy Information Point (PIP) serves as the retriev-
al source of attributes, or the data required for pol-
icy evaluation to provide the information needed by
the PDP to make the decisions.

Service-level authorization gives each microservice more
control to enforce access control policies. Based on review of
talks presented on lead security conferences” & ° we identi-
fied the following types of service-level authorization:

Vincent C. Hu, Ferraiolo D., Kuhn R., Schnitzer A., Sandlin K., Miller R.,
Scarfone K. (2014) Guide to Attribute Based Access Control (ABAC)
Definition and Considerations. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-162.
DOI:10.6028/NIST.SP.800-162

Lakshminarayanan S. (2019). Authorization in Micro Services World Ku-
bernetes, Istio and Open Policy Agent. Talk presented at the AppSecCali
2019

Karthik K. (2018). Microservices ldentity & Authorization. Talk presented
at the XCon 2018

Grandja J. (2019). Implementing Microservices Security Patterns & Pro-
tocols with Spring Security. Talk presented at the Spring 1/0 2019

DOI:10.21681/2311-3456-2020-04-32-43

33



Authentication and authorization in microservice-based systems: survey of architecture...

Authorization service

o]

Subject Policy Enforcement Point (PEP)

Policy Decision Point
(PDP)

i ini i I Policy Information
Policy Administration Y
Policy

Point (PAP) Point (PIP)

—
Attribute
repository

Figure 2 Access control management functional points

- decentralized pattern;

- centralized pattern with a single Policy Decision
Point (PDP);

- centralized pattern with an embedded PDP.

2.2.1. Decentralized pattern

In that pattern development team implements PDP
and PEP directly at microservice code level (Figure 3).
All the access control rules and as well as attributes that
need to implement that rule are defined and stored on the
each microservice (step 1). When microservice receives
(step 2) request along with some authorization metadata
(e.g., end-user context), microservice analyzes it (step 3)
in order to generate access control policy decision and
then enforces authorization (step 4).

©)

Microservice#1
App code + PEP

@ -
o |
I@

| PDP l

[® @

Figure 3 Decentralized pattern high-level architecture

Subject

Existing programming language frameworks allow
development teams to implement authorization at the
microservice layer. Implementing authorization at the
source code level means that the code must be updated
whenever development team want to modify authorization
logic and has following limitation® [4]:

10 Lakshminarayanan S. (2019). Authorization in Micro Services World Kuber-
netes, Istio and Open Policy Agent. Talk presented at the AppSecCali 2019

- each development team must clearly understand
security features of using programming language
framework and implement its correctly in their
microservices;

- each development team must clearly understand
access control policy and expected permissions for
a role/group that may be challenging task because
the decisions are potentially littered through one or
more large, complicated code bases;

- this pattern relies on the careful manual
configuration by the development team, which is
error-prone; besides that, due to the large scale of
modern microservice applications, it is unrealistic
forthe developmentteam to configure and maintain
access control policies for every microservice;

- source code changes require solid regression
testing for authorization bugs detection.

On the other hand implementing access control policy
in the microservice code allows developers to enforce
more fine granting access control because rules that
govern authorization are more domain specific*’.

2.2.2. Centralized pattern
with single policy decision point

In that pattern access control rules are defined, stored,
and evaluated centrally (Figure 4). Access control rules is
defined using PAP (step 1) and delivered to centralized
PDP as well as attributes that need to implement that
rules (step 2). When a subject invokes microservice
endpoint (step 3), microservice code invokes centralized
PDP via network call and PDP generates access control
policy decision by evaluating the query input against
access control rules and attributes (step 4). Based on
PDP decision microservice enforce authorization (step 5).

Microservice#1 M

® —
e

Subject App code + PEP

: S
S— -
Policy Attribute
repositor repository

Figure 4 Centralized pattern with single
PDP high-level architecture

11 Karthik K. (2018). Microservices Identity & Authorization. Talk present-

ed at the XCon 2018

34

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



Y/IK 004.056

Critical Infrastructure Security

Subject

App code + PEP

|®

Microservice#1 M

OR e
M

Attribute
repository

®

[

&)

Policy
repository

Figure 5 Centralized pattern with embedded PDP high-level architecture

Several benefits of this pattern are*® 3

- security/development team can update access
control rules without changing the source code,
it enables centralized policy management,
changes in policy may be deployed separately from
microservices using them;

- access control rule definitions can be left for
development teams to implement, but left outside
of the core business portion of source code to
make policies discoverable, moreover some access
control rules are “universal” and may be shared
within a microservices/organization;

- access control rules may be used in operations
environments to detect security anomalies, e.g.
anomaly microservice behavior based on API call,
on threat detection it is possible to dynamically
re-create and apply new access control rules to
mitigate security risk.

To define access control rules development/operation
team has to use some language or notation. An example
is Extensible Access Control Markup Language (XACML)
and Next Generation Access Control (NGAC) that is a
standard to implement policy rules description [5, 6].
However, XACML ended up failing because it required
learning a separate, complicated syntax, causing more
work for developers, and there were not many open
source integrations®®.

This pattern badly affects latency due additional
network calls of the remote PDP endpoint, but it can
be mitigated by caching authorization policy decisions
at microservice level [3]. It should be mentioned that
PDP must be operated in high-availability mode due to
resilience and availability issues. Application security
architects should combine it with other patterns (e.g.,

12 Lakshminarayanan S. (2019). Authorization in Micro Services World Ku-
bernetes, Istio and Open Policy Agent. Talk presented at the AppSecCali
2019

13 Eknert A. (2019). Securing APIs with Open Policy Agent. Talk presented
at the 2019 Platform Summit

14 Lakshminarayanan S. (2019). Authorization in Micro Services World Kuber-
netes, Istio and Open Policy Agent. Talk presented at the AppSecCali 2019

authorization on API gateway level) in order to avoid
“single-point-of-decision” and enforce “defense in depth”
principle.

2.2.3. Centralized pattern with
embedded policy decision point

In that pattern access control rules are defined
centrally but stored and evaluated at microservice level
(Figure 5). Access control rules is defined using PAP (step
1) and delivered to embedded PDP as well as attributes
that need to implement that rules (step 2). When a subject
invokes microservice endpoint (step 3), microservice code
invokes PDP and PDP generates access control policy
decision by evaluating the query input against access
control rules and attributes (step 4). Based on PDP
decision microservice enforce authorization (step 5) [7].

PDP code in that case can be implemented as
microservice built-in library or sidecar in service mesh
architecture!® 16 17 18 19 20: 21, 22 pye to possible
network/host failures and network latency it is advisable
to implement embedded PDP as microservice library or

15 Sorens M. (2019). Open Policy Agent in Practice: From Angular to OPA
in Chef Automate.
Talk presented at the OPA Summit 2019

16 Ray J. (2019). Open Policy Agent for Policy-enabled Kubernetes and
ClI/CD.
Talk presented at the OPA Summit 2019

17 Massa L. (2019). TripAdvisor: Building a Testing Framework for Inte-
grating Open Policy Agent into Kubernetes. Talk presented at the OPA
Summit 2019

18 Huang Z. (2019). Deep Dive: Kubernetes Policy WG. Talk presented at
the OPA Summit 2019

19 TaolL.(2019). How We Use Istio and OPA for Authorization.
Talk presented at the KubeCon + CloudNativeCon 2019

20 KrachJ., FuW. (2019). Open Policy Agent at Scale: How Pinterest Man-
ages Policy Distribution.
Talk presented at the OPA Summit 2019

21 Chandramouli R., Butcher Z. (2020) Building Secure Microservices-
based Applications Using Service-Mesh Architecture. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publica-
tion (SP) 800-204A. DOI:10.6028/NIST.SP.800-204A

22 Rushgrove G.(2019). Applying Policy Throughout the Application Life-
cycle with Open Policy Agent.
Talk presented at the KubeCon + CloudNativeCon 2019

DOI:10.21681/2311-3456-2020-04-32-43

35



Authentication and authorization in microservice-based systems: survey of architecture...

sidecar on the same host with microservice. Embedded
PDP usually store authorization policy and policy-related
data in-memory to minimize external dependencies
during authorization enforcement and get low latency?3.
Main difference from “Centralized pattern with single
policy decision point” with caching approach is that
authorization decisions do not store on the microservice
side, up to date authorization policy are stored on
microservice side instead. It should be mentioned that
caching authorization decisions may lead to applying
outdated authorization rules and access control
violations.

M.Mehta and T. Sandall presented®® a real case of
using “Centralized pattern with embedded PDP” pattern
to implement authorization on the microservices level
(Figure 6):

Policy
repository

Policy portal

Microservice M

PDP (library)
Distributor

App code + PEP

may be error-prone - security testing and verifica-
tion practices should be implemented to avoid in-
secure configuration vulnerabilities;

- application security architects should combine it
with other patterns (e.g., authorization on the edge
level) in order to avoid “single-point-of-decision”
and enforce “defense in depth” principle;

- it may be the case that some business-specific ac-
cess control rules cannot be implemented in that
way - application security architects should com-
bine that pattern with “Decentralized pattern”;

- application security architects should choose an
approach of how to get authorization policy up-
dates from the centralized PAP (e.g., PAP polling or
publish-subscribe mechanism [3]):

- development team has to securely use 3“-party

Attribute
repository

Aggregator

________________________________________________

Figure 6 Centralized pattern with embedded PDP (example)

- Policy portal and Policy repository is Ul-based
system for creating, managing and versioning
access control rules;

- Aggregator fetches data used in access control rules
from all external sources and keeps it up to date;

- Distributor pulls access control rules (from Policy
repository) and data used in access control rules
(from Aggregators) to distribute it among PDPs;

- PDP (library) asynchronically pulls access control
rules and data and keeps it up to date to enforce
authorization by PEP component.

Benefits of this patterns are the same as for “Centralized
pattern with single PDP” plus pattern does not badly affect
latency due to embedding PDP on the microservice level.

There are several challenges that have to be taken
into account while applying this pattern:

- this pattern relies on the manual or semi-manual
access policy rules designed by security team that

23 Mehta M., Sandall T. (2018). The distributed authorization system: A
Netflix case study.
Talk presented at the Velocity Conference - San Jose, CA 2018

24 Mehta M., Sandall T. (2017). How Netflix Is Solving Authorization Across
Their Cloud.
Talk presented at the KubeCon + CloudNativeCon 2017

authorization components and describe access
control policy using some formal language that in
some cases may be overhead - “Decentralized
pattern” may be enough to implement some simple
access control policy.

2.3. External entity identity propagation

To make fine-granted authorization decision at the
microservice level microservice has to understand caller
context (e.g. user ID, user roles/groups). In order to al-
low internal service layer to enforce authorization edge
layer has to propagate authenticated external entity iden-
tity (e.g., end-user context) along with a request to down-
stream microservices. One of the simplest way to propa-
gate external entity identity is to re-use the access token
received by the edge and pass it to internal microservices.
It should be mentioned that approach is highly insecure
due to possible external access token leakage and may
decrease an attack surface because the communication
relies on proprietary token-based system implementation
and internal microservices have to understand external
access token. This pattern also is not external access to-
ken agnostic, i.e. internal services have to support a wide
range of authentication techniques to extract identity

36

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



Y/IK 004.056

Critical Infrastructure Security

i AP Lo : i

. | Gateway [ | | MS#1 _. MS#3 i

External : . E ' i
entity ! o MS#2 a MS#n :

i Edge layer i E Inner services layer i

A Access token

. End-user context

Figure 7 Pattern “Send the user context as a clear or self-signed data structures”

from different types of external tokens (e.g. JWT, cookie,
OpenID Connect token).
There are two patterns to pass the external entity iden-
tity from one microservice to another [3, 8]:
- send the external entity identity as a clear or self-
signed data structures;
- send the external entity identity as a data struc-
tures signed by the trusted issuer.

2.3.1. Send the external entity identity as
a clear or self-signed data structures

In that approach calling microservice extracts external
entity identity from incoming request (e.g. via parsing in-
coming access token), creates data structure (e.g. JSON
or self-signed JWT) with context and passes that on to an
internal microservices [9] (Figure 7).

In this scenario recipient microservice has to trust the
calling microservice - if the calling microservice want to
violate access control rules, it can do so by setting any
user/client ID or user roles it wants as the HTTP header
[3]. That approach is applicable in a highly trusted environ-
ment in which every microservice is developed by trusted
development team according with secure software devel-
opment practices [10, 20].

2.3.2. Using a data structures
signed by a trusted issuer

In this pattern after the external request is authen-
ticated by authentication service at the edge layer, a
data structure representing external entity identity (e.g.,
contained user ID, user roles/groups or permissions) is
generated, signed or encrypted by the trusted issuer and

propagated?® to internal microservices [3, 8]. S. Thadesh-
war?® presented a real case of using that pattern: struc-
ture called “Passport” that contains user ID and its attri-
butes and HMAC protected is created at the edge level for
each incoming request, propagated to internal microser-
vices and never exposes outside (Figure 8):

1. Edge authentication service (EAS) obtains secret
key from the Key Management System.

2. EAS receives an access token (may be e.g. in a
cookie, JWT, OAuth2 token) from incoming re-
quest.

3. EAS decrypts the access token, resolves the ex-
ternal entity identity and sends it to the internal
services in the signed “Passport” structure.

4. Internal services can extract user identity in order
to enforce authorization (e.g. to implement identi-
ty-based authorization) using wrappers.

5. If necessary, internal service can propagate
“Passport” structure to downstream services in
the call chain.

It should be mentioned that pattern is external access

token agnostic and allows to decouple external entity and
its internal representation.

25 Ideskog J. (2016). Decoupling user identities from API design.
Talk presented at the Nordic APIs Stack Event 2016.

26 Thadeshwar S. (2019) User & Device Identity for Microservices @ Netf-
lix Scale. Talk presented at the QCon 2019

DOI:10.21681/2311-3456-2020-04-32-43

37



Authentication and authorization in microservice-based systems: survey of architecture...

AP| Gateway

External
entity

Key Management

System

Cookie
service

JWT
service

Edge
authentication
services

S RN

Inner services layer

. “Passport” structure
A Access token

Figure 8 Using a data structures signed by a trusted issuer (example)

2.4. Service-to-service authentication

There are two common ways to implement service-to-
service authentication [3]:

- mutual transport layer security (mTLS);

- token based, e.g. JSON Web Tokens (JWT).

In mTLS approach each microservice can legitimately
identify who it talks to, in addition to achieving confidenti-
ality and integrity of the transmitted data. Each microser-
vice in the deployment has to carry a public/private key
pair and uses that key pair to authenticate to the recipi-
ent microservices via mTLS. mTLS usually is implement-
ed with a self-hosted Public Key Infrastructure [3, 8]. The
main challenges using mTLS are: key provisioning and
trust bootstrap, certificate revocation and key rotation.

Token based approach works at the application layer.
Token is a container and may contain caller ID (microser-
vice ID) and its permissions (scopes). Caller microservice
can obtain token by invoking special security token service
using its own service ID and password and then attaches it
to every outgoing requests e.g., via HTTP headers. In most
cases, token-based authentication works over TLS that pro-
vides confidentiality and integrity of data in transit [3].

According to [3, 8, 13] and several talks at the lead
security conferences?’?8, mTLS is the most popular option
to authenticate microservices.

Network segmentation or firewalling pattern imple-
ments “trust-the-network” approach in which no security

27 B. Payne. (2016). PKI at scale using short-lived certificates. Talk pre-
sented at the USENIX Enigma, 2016

28 Behrens S., Kanekar E. (2019). A Pragmatic Approach for Internal Se-
curity Partnerships.
Talk presented at the AppSecCali 2019

is enforced in service-to-service communication and cur-
rently not widely used by community as primary security
mechanism [3, 11].

3. Recommendations for application
security architects

Based on our survey results, we came up with several
recommendations for application security architects on
authentication and authorization implementation.

Summary on authorization implementation is present-
ed in the table below (Table 1).

Recommendation on how to implement authorization
are the following.

1. To achieve scalability it is not advisable to hard-
code authorization policy in source code (decen-
tralized pattern), but use special language to ex-
press policy instead. The goal is to externalize/
decouple authorization from code, and not just
with a gateway/proxy that acts as a checkpoint.
Recommended pattern for service-level authoriza-
tion is “Centralized pattern with embedded PDP”
due to its resilience and wide adoption.

2. Authorization solution should be platform-level
solution; dedicated team (e.g., Platform security
team) must be accountable for development and
operation of authorization solution as well as
sharing microservice blueprint/library/compo-
nents that implement authorization among devel-
opment teams.

3. Authorization solution should be based on widely
used solution, because implementing custom so-
lution has following cons:

38

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



Y/IK 004.056

Critical Infrastructure Security

Table 1
3"-party Reconfiguration
Pattern name Scalability Latency components on-the-fly
dependencies

Decentralized pattern Low Low not in use Not supported
Centralized pattern with . . .
single policy decision point High High inuse Supported
Centralized pattern
with embedded policy High Low in use Supported
decision point

security or engineering team have to build and
maintain custom solution;
it is necessary to build and maintain client library
SDKs for every language used in system architec-
ture;
necessity to train every developer on custom au-
thorization service APl and integration, and there’s
no open source community to source information
from.
There is a probability that not all access control
policy can be enforced by gateways/proxies and
shared authorization library/components, so
some specific access control rules still have to be
implemented on microservice buisnes code level.
In order to do that it is advisiable to have and use
by microservice development teams simple ques-
tionary/check-list to uncover such security requri-
ments and handle its properly during microservice
development.
It is advisable to implement “defense in depth”
principle - enforce authorization on:
gateways and proxies level at a coarse level of
granularity;
microservice level using shared authorization li-
brary/components to enforce fine-granted deci-
sions;
microservice business code level to implement
business-specific access control rules.

1.

Access control policy formal procedures like devel-
opment, approvement, rolling-out must be imple-
mented.

Summary on external entity identity propagation is
presented in the table below (Table 2).

Recommendation on how to propagate external entity
identity among microservices are the following.

1.

In order to implement external access token ag-
nostic and extendable system decouple access
tokens issued for external entity from its internal
representation. Use single data structure to repre-
sent and propagate external entity identity among
microservices. Edge-level service has to verify in-
coming external access token, issue internal en-
tity representation structure and propagate it to
downstream services.

Using an internal entity representation structure
signed (symmetric or asymmetric encryption) by a
trusted issuer is recommended pattern adopted
by community.

Internal entity representation structure should be
extensible to enable add more claims that may
lead to low latency.

Internal entity representation structure must not
be exposed outside (e.g., to browser or external
device).

Recommendations on how to proper implement authen-

tication in microservice-based systems the following are.

Table 2
Applied 3-party components External Ability
Pattern name environment dependencies access token | to centralize
agnostic

Send the external entity

identity as a clear or self- Trusted not in use non-agnostic -
signed data structures
Using a data structures Untrusted In use agnostic +

signed by an trusted issuer

DOI:10.21681/2311-3456-2020-04-32-43

39



Authentication and authorization in microservice-based systems: survey of architecture...

1. mTLS is widely used and recommended pattern to
implement service-to-service authentication.

2. mTLS solution should be platform-level solution
based on widely used solution, because imple-
menting proprietary solution has following cons:

a. in-house development must be highly experienced in
cryptography in order to implement it in a right way;

b. in-house development team will have to build, main-
tain it and fix vulnerabilities;

c. itis necessary to train every developer on custom au-
thentication service APl and integration, and there’s no
open source community to source information from.

1. dedicated team (e.g., Platform security team)
must be accountable for development and opera-
tion of mTLS solution as well as sharing among
development teams microservice blueprint/li-
brary/components that implement it.

2. It is advisable to implement “defense in depth”
principle, e.g. enforce authentication using net-
work segmentation or firewalling as a secondary
security control.

4. Related work

Security architecture patterns for microservice-based
systems has been the topic of a number of surveys and
review articles, as well as standards.

Vale et al. [14] conducted a systematic mapping to re-
veal adopted security mechanisms for microservice-based
systems. They focused only on security mechanisms and
examined 26 papers published from November 2018 to
March 2019.

Hannousse et al. [15] conducted a similar investiga-
tion to Vale et al. [14] study. Their study is broader in sev-
eral ways: they included published papers since 2011 and
besides security mechanisms, they also focused on iden-
tifying security threats and the applicability of proposed
solutions regarding their execution platforms and archi-
tectural layers.

Yu et al. [16] surveyed work related to security risks
for microservices-based fog applications, and argued that
security issues arise in four system aspects: containers,
data, permissions and network security.

NIST published standards?® 3° on microservice-based
system security. NIST analyzed the multiple implemen-
tation options available for each individual core security
feature (authentication and access management, service
discovery, secure communication protocols, security mon-
itoring, availability/resiliency improvement techniques,
load balancing and throttling, integrity assurance tech-
niques and handling of session persistence) and con-
figuration options in architectural frameworks, and devel-

oped security strategies that counter threats specific to
microservice-based systems.

Several research papers propose authorization
schemes and policies related to microservice-based sys-
tems. Fu et al. [17] by studying the traditional access con-
trol technologies derived its limitations and shortcomings
in the microservice environment, and proposed an access
control optimization model based on role-based access
control (RBAC). Triartono et al. [18] proposed a model to
implement RBAC on OAuth 2.0 using Laravel framework.
Liu et al. [19] introduced security boundary of basic plat-
form, business system and system function in the intel-
ligent campus, defined a hybrid access control strategy
based on group-based access control, RBAC and hierar-
chical policy-based access control models. Those works
mainly focus on access control policy formal design and
verification and do not pay much attention to design/ar-
chitecture issues.

Compared with the related works our study is more
narrow and concentrated on authentication and authori-
zation only in order to get deeper results. Moreover, be-
sides research papers analysis we also analyzed presen-
tations at the major security conferences.

5. Conclusion and further work

Correctly implemented authentication and authoriza-
tion functions are the basis for further step of microser-
vice-based infrastructure hardening and software ma-
turity program improvement. In the survey, we identified
industry best practices in authentication and authoriza-
tion architecture patterns, its advantages and disadvan-
tages and its applicability depending on environment
characteristic. For each described patterns we reviewed
its advantages and disadvantages that could be used as
decision-making criteria for security architects, consider-
ing authentication and authorization implementation in
service-oriented environment.

Microservices creates new security challenges:

- increase attack surface of modern applications;

- decrease effectiveness of traditional logging sys-
tems that relies on centric-based log-aggregation
architecture;

- blur of development lifecycle across multiple com-
ponents of application instead on monolithic appli-
cation;

- increase traffic level due to growing number of
communications between microservices.

The challenges requires novel methods of monitoring
and threat detection even based machine learning tech-
niques [21, 22] that take into account the specificity of
microservice operations.

29 Chandramouli R. (2019) Security Strategies for Microservices-based Application Systems. (National Institute of Standards and Technology, Gaithers-

burg, MD), NIST Special Publication (SP) 800-204.
DOI:10.6028/NIST.SP.800-204

30 Chandramouli R., Butcher Z. (2020) Building Secure Microservices-based Applications Using Service-Mesh Architecture. (National Institute of Stan-
dards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-204A. DOI:10.6028/NIST.SP.800-204A

40

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



YK 004.056 Critical Infrastructure Security

References

1. A.Boubendir, E. Bertin and N. Simoni, “A VNF-as-a-service design through micro-services disassembling the IMS,” 2017 20th Conference
on Innovations in Clouds, Internet and Networks (ICIN), Paris, 2017, pp. 203-210. DOI: 10.1109/ICIN.2017.7899412

2. D. Lu, D. Huang, A. Walenstein and D. Medhi, “A Secure Microservice Framework for 10T,” 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE), San Francisco, CA, 2017, pp. 9-18. DOI: 10.1109/SOSE.2017.27

3. Microservices Security in Action, Prabath Siriwardena and Nuwan Dias, 2020, Manning.

4. Li, Xing & Chen, Yan & Lin, Zhigiang. (2019). Towards Automated Inter-Service Authorization for Microservice Applications. SIGCOMM
Postersand Demos ‘19: Proceedings of the ACM SIGCOMM 2019 Conference Postersand Demos. 3-5.DOI: 10.1145/3342280.3342288

5. Nehme, Antonio & Jesus, Vitor & Mahbub, Khaled & Abdallah, Ali. (2019). Fine-Grained Access Control for Microservices.
DOI: 10.1007/978-3-030-18419-3_19

6. David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu. 2016. Extensible Access Control Markup Language (XACML)
and Next Generation Access Control (NGAC). In Proceedings of the 2016 ACM International Workshop on Attribute Based Access
Control (ABAC '16). Association for Computing Machinery, New York, NY, USA, 13-24. DOI: 10.1145/2875491.2875496

7. D. Preuveneers and W. Joosen, «Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,»
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38. DOI:
10.1109/EuroSPW.2019.00010

8. T. Yarygina and A. H. Bagge, «Overcoming Security Challenges in Microservice Architectures,» 2018 IEEE Symposium on Service-
Oriented System Engineering (SOSE), Bamberg, 2018, pp. 11-20.

9. A. Banati, E. Kail, K. Karoczkai and M. Kozlovszky, “Authentication and authorization orchestrator for microservice-based software
architectures,” 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, 2018, pp. 1180-1184. DOI: 10.23919/MIPR0.2018.8400214

10. Alexander Barabanov, Alexey Markov, Andrey Fadin, Valentin Tsirlov, and Igor Shakhalov. 2015. Synthesis of secure software
development controls. In Proceedings of the 8th International Conference on Security of Information and Networks (SIN '15). Association
for Computing Machinery, New York, NY, USA, 93-97. DOI: 10.1145/2799979.2799998

11. M. Pahl and L. Donini, “Securing loT microservices with certificates,” NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, Taipei, 2018, pp. 1-5. DOI: 10.1109/NOMS.2018.8406189

12. Siriwardena P. (2020) Securing APIs with Transport Layer Security (TLS). In: Advanced API Security. Apress, Berkeley, CA.

13. Yung-Kao Hsu and S. P. Seymour, “An intranet security framework based on short-lived certificates”, in IEEE Internet Computing, vol. 2,
no. 2, pp. 73-79, March-April 1998. DOI: 10.1109/4236.670687

14. A. Pereira-Vale, G. Marquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A
Systematic Mapping,” 2019 XLV Latin American Computing Conference (CLEl), Panama, Panama, 2019, pp. 01-10. DOI: 10.1109/
CLEI47609.2019.235060

15. Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

16. Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019.
e4436 cpe.4436.

17. G. Fu, J. Sun and J. Zhao, “An optimized control access mechanism based on micro-service architecture,” 2018 2nd IEEE Conference
on Energy Internet and Energy System Integration (EI2), Beijing, 2018, pp. 1-5. DOI: 10.1109/EI2.2018.8582628

18. Z.Triartono, R. M. Negara and Sussi, “Implementation of Role-Based Access Control on OAuth 2.0 as Authentication and Authorization
System,” 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia,
2019, pp. 259-263. DOI: 10.23919/EECSI48112.2019.8977061

19. B. Liu, Y. Yang and Z. Zhou, “Research on Hybrid Access Control Strategy for Smart Campus Platform,” 2018 IEEE 3rd Advanced
Information Technology, Electronic and Automation Control Conference (IAEAC), Chongging, 2018, pp. 342-346. DOI: 10.1109/
IAEAC.2018.8577828

20. A.Barabanov, A. Markov and V. Tsirlov, “Procedure for substantiated development of measures to design secure software for automated
process control systems,” 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-4.
DOI: 10.1109/SIBCON.2016.7491660

21. Gaifulina D.A., Kotenko I.V. Application of deep learning methods in cybersecurity tasks. Voprosy Kiberbezopasnosti. Ne3(37), 2020. p.
76-86. (in Russ.) DOI: 10.21681/2311-3456-2020-03-76-86

22. Sheluhin O.l., Ryabinin V.S., Farmakovskiy M.A., Anomaly detection in computer system by intellectictual analysis of system journals,

Voprosy kiberbezopasnosti, Ne2(26), 2018. p 36-41. (in Russ.) DOI: 10.21681/2311-3456-2018-2-33-43

DOI:10.21681/2311-3456-2020-04-32-43 41



Authentication and authorization in microservice-based systems: survey of architecture...

AYTEHTUDUKALUA U ABTOPU3ALIAA
B MUKPOCEPBUCHLIX MPWIOXEHWAX:
0630P APXWUTEKTYPHbIX NOAX0A0B

BbapabaHos A.%, MakpywuH [.%°

AHHOTauus

LleAb cTatbu. Vicrnonb3oBaHUe CepPBUC-OPUEHTUPOBAHHOM apXMTEKTYDbI M MUKPOCEPBUCHOIO MOAXOAA MPU MPOEKTU-
pOBaHWM NPOrpamMmMHOro obecrneyeHus: yBeAMYnMBaeT MOBEPXHOCTb aTakn M BEPOSITHOCTb YCMELLIHON peaAn3aLimm yrpo3
6e30nacHOCTU MHPopMaLmMn. MuKpocepBHUChI, AOCTYMHbIE U3-3a nepumMmeTpa 6e30MacHOCTH, CTaHOBSITCS OCHOBHOM Lie-
AbHO KOMIMbHOTEPHbIX aTak, BbINMOAHSAEMbIX Ha MHPOPMALIMOHHbIE cUCTEMbI. [TpaBHAbHO BbiOpaHHbIE M UCMOAL30BaHHbIE
npu paspaboTke nporpaMMHOro 06ecneyeH1sr apxXMTEKTYPHbIE PELLEHUS] AAST peaAn3aLinm aBTopu3aLmnm u ayTeHTUdu-
Kalunu MOryT no3BOAUTb CHU3WUTb PUCKKU MHPOPMAaLIMOHHON 6€30MacHOCTHU, CBA3aHHbIE C KOMIMbIOTEPHbLIMU atakamu.
LleAbto AGHHOIO MCCAEAOBaHMWSA BASETCS Co3AaHUe 6asbl TUMOBbIX apPXUTEKTYPHbIX PELLEHUM, KOTOpbIe MOryT ObiThb MC-
MoAb30BaHbI pa3paboTynkamm n apxMTekTopamMmu MHGOPMaLIMOHHOM 6e30MacHOCTU Mpr MPOEKTUPOBAHMN U pearn3a-
Unmn QYHKLIMKM aBTOPU3ALIMU U ayTEHTUGUKALIMU B MUKPOCEPBUCHbIX MPUAOXKEHMSIX.

MeToa uccaea0BaHUA 3aKAHOUAETCS B CUCTEMHOM aHaAm3e HayyYHbIX nyOAMKaLMIA U BbICTYNAEHUIH Ha BEAYLLMX Ha-
YYHO-TEXHUYECKMX KOHPEPEHLMAX MO TeMe 3allmTbl MHPOPMaLMKU B MUKPOCEPCUBHBIX MPUAOXKEHMSAX, 000OLLEHUN 1
cuctemMaTmsaumm noAyYEHHbIX PE3YALTATOB.

lMoAyyeHHbIe pe3yAbTaTbl U NPaKTUYECKasa 3HaYMMOCTb. B pabote npeacTaBAeH CUCTEMATHU3NPOBAHHbIN NepeyeHb
aPXUTEKTYPHbIX MOAXOAOB, KOTOPbIE MOrYT ObiTb MCMNOAL30BaHbI AN PEaAMU3aLMN ayTEHTUPUKALIMK U aBTOpU3aLIMN B
MUKPOCEPCUBHBIX MPUAOKEHUSX. AN KAXKAOIO U3 MOAXOAOB COOPMYANPOBaHbLI BO3MOXHbIE YCAOBUSI €r0 MPUMEHEHMUS,
AOCTOMHCTBaA M HEAOCTATKU, KOTOPbIE MOrYT ObITb MCMOAb30BaHbI apXUTEKTOPaMM MHGOPMaLIMOHHOKM 6€30MacHOCTU AAS
MPUHATUS PELLIEHUS O MPUMEHEHUU TOFO UAM UHOIO MOAXOAA MPU NMPOEKTUPOBAHWM KOHKPETHOIO NporpamMmMHOro obe-
CreyeHus.

KnroueBble cAOBa: MUKPOCEPBUC, ayTEHTUGUKaLIMS, aBTOPU3ALIMS, apPXUTEKTYPHbIE NOAXOAbI, 3alLunTa MHGOPMaLMH.

PeueHseHT: MapkoB Anekceri CepreeBud, AOKTODP TEXHMYECKMX HayK, npopeccop kadeapbl «MHOopmaLmoHHas
6e3onacHoctb» MITY um. H.3. baymaHa MockBa, Poccus. E mail: a.markov@npo-echelon.ru

Autepartypa

1. A.Boubendir, E. Bertin and N. Simoni, <A VNF-as-a-service design through micro-services disassembling the IMS,» 2017 20th Conference
on Innovations in Clouds, Internet and Networks (ICIN), Paris, 2017, pp. 203-210. DOI: 10.1109/ICIN.2017.7899412

2. D. Lu, D. Huang, A. Walenstein and D. Medhi, «A Secure Microservice Framework for loT,» 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE), San Francisco, CA, 2017, pp. 9-18. DOI: 10.1109/SOSE.2017.27

3. Microservices Security in Action, Prabath Siriwardena and Nuwan Dias, 2020, Manning.

4. Li, Xing & Chen, Yan & Lin, Zhigiang. (2019). Towards Automated Inter-Service Authorization for Microservice Applications. SIGCOMM
Postersand Demos ‘19: Proceedings of the ACM SIGCOMM 2019 Conference Postersand Demos. 3-5. DOI: 10.1145/3342280.3342288

5. Nehme, Antonio & Jesus, Vitor & Mahbub, Khaled & Abdallah, Ali. (2019). Fine-Grained Access Control for Microservices.
DOI: 10.1007/978-3-030-18419-3_19

6. David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu. 2016. Extensible Access Control Markup Language (XACML)
and Next Generation Access Control (NGAC). In Proceedings of the 2016 ACM International Workshop on Attribute Based Access
Control (ABAC "16). Association for Computing Machinery, New York, NY, USA, 13-24. DOI: 10.1145/2875491.2875496

7. D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,”
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38. DOI:
10.1109/EuroSPW.2019.00010

8. T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Microservice Architectures,” 2018 IEEE Symposium on Service-
Oriented System Engineering (SOSE), Bamberg, 2018, pp. 11-20.

29 AnekcaHap bapabaHoB, kaHOMOAT TexHU4Yecknx Hayk, CISSP, CSSLP, JTaGopaTopusi nepeaoBbIX NPOrpamMMHbIX TEXHOJIOr WA, koMmnaHusa Huawei, Mocksa,
Poccus. E-mail: barabanov.iu8 @gmail.com

30 JeHuc MakpywmH, OSCP, JTabopaTopusi nepefoBbix MPOrpaMMHbIX TEXHONOrMiA, komnanus Huawei, Mocksa, Poccusi. E-mail:denis@makrushin.com

42

Bonpochl knbepbesonacHocth. 2020. Ne 4(38)



YK 004.056 Critical Infrastructure Security

9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Banati, E. Kail, K. Karoczkai and M. Kozlovszky, “Authentication and authorization orchestrator for microservice-based software
architectures,” 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, 2018, pp. 1180-1184. DOI: 10.23919/MIPR0.2018.8400214

Alexander Barabanov, Alexey Markov, Andrey Fadin, Valentin Tsirlov, and Igor Shakhalov. 2015. Synthesis of secure software
development controls. In Proceedings of the 8th International Conference on Security of Information and Networks (SIN '15). Association
for Computing Machinery, New York, NY, USA, 93-97. DOI: 10.1145/2799979.2799998

M. Pahl and L. Donini, “Securing loT microservices with certificates,” NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, Taipei, 2018, pp. 1-5. DOI: 10.1109/NOMS.2018.8406189

Siriwardena P. (2020) Securing APIs with Transport Layer Security (TLS). In: Advanced API Security. Apress, Berkeley, CA.

Yung-Kao Hsu and S. P. Seymour, “An intranet security framework based on short-lived certificates”, in IEEE Internet Computing, vol. 2,
no. 2, pp. 73-79, March-April 1998. DOI: 10.1109/4236.670687

A. Pereira-Vale, G. Marquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A
Systematic Mapping,” 2019 XLV Latin American Computing Conference (CLEl), Panama, Panama, 2019, pp. 01-10. DOI: 10.1109/
CLEI47609.2019.235060

Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.

G. Fu, J. Sun and J. Zhao, “An optimized control access mechanism based on micro-service architecture,” 2018 2nd IEEE Conference
on Energy Internet and Energy System Integration (EI2), Beijing, 2018, pp. 1-5. DOI: 10.1109/EI2.2018.8582628

Z. Triartono, R. M. Negara and Sussi, “Implementation of Role-Based Access Control on OAuth 2.0 as Authentication and Authorization
System,” 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia,
2019, pp. 259-263. DOI: 10.23919/EECSI48112.2019.8977061

B. Liu, Y. Yang and Z. Zhou, “Research on Hybrid Access Control Strategy for Smart Campus Platform,” 2018 IEEE 3rd Advanced
Information Technology, Electronic and Automation Control Conference (IAEAC), Chongging, 2018, pp. 342-346. DOI: 10.1109/
IAEAC.2018.8577828

A. Barabanov, A. Markov and V. Tsirlov, “Procedure for substantiated development of measures to design secure software for automated
process control systems,” 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-4.
DOI: 10.1109/SIBCON.2016.7491660

fanpyamHa A.A., KoteHko W.B. MpumeHeHMe meTopoB TAyOokoro obyueHusa B 3apadax kKubepbesonacHocTu. 4actb 1. Bonpocbl
knbepbesonacHoct. 2020. Ne 3(37). C. 36-41. DOI: 10.21681/2311-3456-2020-03-76-86

LWenyxuH O.W., PsbuHuH B.C., ®apmakoBckuit M.A. O6HapyxeHWe aHOMaAbHbIX COCTOSIHWIA KOMIMbIOTEPHbIX CUCTEM CPEACTBaMM
MHTEANEKTYAaAbHOTO aHaAM3a AaHHbIX CUCTEMHbIX XypHanoB. Bomnpocbl kubepbesonacHoctv. 2018. Ne 2(26). C. 36-41. DOI:
10.21681/2311-3456-2018-2-33-43

”””JA¥ —_

DOI:10.21681/2311-3456-2020-04-32-43 43



