SECURITY AUDIT LOGGING IN MICROSERVICE-BASED
SYSTEMS: SURVEY OF ARCHITECTURE PATTERNS

Barabanov A. ', Makrushin D.2

Abstract

Objective. Service-oriented architecture increases technical abilities for attacker to move laterally and maintain
multiple pivot points inside of compromised environment. Microservice-based infrastructure brings more challenges
for security architect related to internal event visibility and monitoring. Properly implemented logging and audit ap-
proach is a baseline for security operations and incident management. The aim of this study is to provide helpful
resource to application and product security architects, software and operation engineers on existing architecture
patterns to implement trustworthy logging and audit process in microservice-based environments.

Method. In this paper, we conduct information security threats modeling and a systematic review of major elec-
tronic databases and libraries, security standards and presentations at the major security conferences as well as
architecture whitepapers of industry vendors with relevant products.

Results and practical relevance. In this work based on research papers and major security conferences presenta-
tions analysis, we identified industry best practices in logging audit patterns and its applicability depending on envi-
ronment characteristic. We provided threat modeling for typical architecture pattern of logging system and identified
8 information security threats. We provided security threat mitigation and as a result of 11 high-level security require-
ments for audit logging system were identified. High-level security requirements can be used by application security

architect in order to secure their products.

Keywords: microservices, microservice architectures, security, operations, audit, logging, architecture patterns

survey.

1. Introduction
Logging service in microservice-based systems is aim

to meet principle of accountability and traceability and
help to detect anomalies in operations via log analysis.
Therefore, it is vital for applications security architects to
understand and properly use existing architecture pat-
terns to implement audit logging in microservices-based
systems for security operations. The goal of our research
was to identify such patterns and to do recommendations
for applications security architect and security operations
specialists on possible way to use it. This study is con-
ducted with three main questions in mind:

* Threat modeling: what information security threats are
exists for typical audit logging system in microservice-
based applications?

* Security Design: what security control can be used
while designing logging system to mitigate existing se-
curity threats?

* Implementation: What should application security ar-
chitect take in mind while implementing audit logging
system in microservice-based systems?

We provide threat modeling of simple logging sys-
tem architecture pattern and reviewed major electronic

databases and libraries (IEEE Xplorer, ACM Digital Li-

DOI: 10.21681/2311-3456-2021-2-71-80

brary, SpringerLink, ResearchGate, arXiv) with research

papers to extract primary studies. In order to explore

these sources, we used search strings containing “log-
ging”, “audit”, “monitoring”, “log analysis”, “security

operations”, “service-oriented architecture” and “mi-

croservice” (in different spelling, like “micro-service” or

“micro service”) words. To avoid missing relevant stud-

ies, we also reviewed security standards, presentations

at the major security conferences and technical docu-
ments (whitepapaers) by industry vendors with mature
microservice-based products.

In summary, this paper makes the following contribu-
tions:

¢ threat model for typical logging system architecture
pattern (Section 2);

* aset of security controls and mitigations techniques as
well as non-functional requirements to the log format
and set of auditable events (Section 3);

¢ recommendations for applications security architect
on how to implement audit logging system in microser-
vice-based applications (Section 4).

This article continues a set of articles dedicated to

microservice-based system security [14].

1 Alexander Barabanov, Ph.D, CISSP, CSSLP, Principal Security Engineer, Advanced Software Technology Laboratory, Huawei, Moscow, Russia.

E-mail: barabanov.iu8@gmail.com

2 Denis Makrushin, OSCP, Advanced Software Technology Laboratory, Head of Advanced Security Research Huawei, Moscow, Russia.

E-mail:denis@makrushin.com

DOI: 10.21681/2311-3456-2021-2-71-80

71

UDC 004.056

2. Threat Model for Audit Logging System
We provided security design review in order to define
typical security threats and mitigation techniques. To de-

fine security threats we used STRIDE methodology [1], [3],

Network security

CAPEC [2] repository and best practices analysis. During
best practices analysis we analyzed architectural patterns
used in the wild and presented at application security

e
Microservice#1 ! Platform core services
1
Logging : Central logging

; > service
library !
:
1
Microservice#2 :
I g
| storage
Logging !
. —
library !

Figure 1. Logging pattern “Microservice directly sends log message to central logging”

Table 1

CAPEC reference

ID Threat definition (if applicable)
Service spoofing: a malicious or compromised microservice can send log . . .)
Thitl message to the logging subsystem to forge logs CAPEC-151: Identity Spoofing
Logging/transport system spoofing: a malicious service can act as a g . .)
Th##2 logging subsystem in order to get access to sensitive information CAPEC-151: Identity Spoofing
Logging system denial-of-service (DoS): data loss due to logging service
failure in case of attack on logging service. In that case log messages
Th#3 | needed to be buffered on the microservice side in memory. As the CAPEC-125: Flooding
microservice buffer size is limited, an extended logging service outage
would lead to log message loss
An adversary modifies content (log message published by microservice
to logging subsystem via communication channel) to make it contain g . o
Th##4 something other than what the original content producer (microservice) CAPEC-594: Traffic Injection
intended while keeping the apparent source of the content unchanged
Ths Adversary intercepts information transmitted between microservice and CAPEC-158: Sniffing
logging subsystems to capture sensitive information Network Traffic
Th#6 Legitimate microservice (qlue to attack} can elgvate its privileges in order CAPEC-122: Privilege Abuse
to read sensitive information from logging service
Data loss due to logging service failure in case of its flooding by legitimate
microservice (highload environment). In that case log messages needed . . .
Th#7 | to be buffered on the microservice side in memory. As the microservice CAPECAﬁggétliigﬁesswe
buffer size is limited, an extended logging service outage would lead to log
message loss.
Microservice may log private or confidential data (e.g., Pll, passwords, API CﬁEEgl:fii&aFuzﬁér;%g:d
Th#8 | keys) without masking/filtering. An attack to the logging service may lead gapp
e . - log data/errors for
to sensitive information disclosure. o)
application mapping
72

Bonpochkl kubepbesonacHoctn. 2021. Ne 2(42)

Security audit logging in microservice-based systems: survey of architecture patterns

Container#1
Microservice#1

Container#2
Microservice#2

Logging Logging
library library
L
L Container#n

Platform core services

Central logging
service

Logging agent

v

Message broker

—
Log
storage

v

HA clusters

Figure 2. Logging pattern “Logging agent”

conferences®* 5. A naive pattern of logging subsystem is
shown on the picture below (Figure 1). Microservice di-
rectly sends their log message to central logging service
via network requests using logging library (e.g., log4j for
Java-based applications).

We identify 8 threat categories against audit logging
subsystems (Table 1) for the mentioned naive pattern of
logging subsystem. It should be mention, that our secu-
rity design review was scoped only to collection layer and
transport/streaming layer [4]. Other layers (analysis, stor-
age and access) was out of the current research scope
(e.g. security threats to log storage integrity).

3. Audit logging system security
controls and requirements
Then we analyzed identified security threats as well as
best practices [4], [6], [7], [8], [9] adopted by community
and industry vendors with mature product security pro-
gram in order to identify high-level requirement for logging
subsystem. A high-level architecture design is shown on
the picture below (Figure 2):
* microservice writes a log messages to local file using
standard output (via stdout, stderr);
* logging agent periodically pulls log messages and
sends (publish) it to message broker;
e central logging service subscribes on messages in
message broker, receives and process it.
Logging agent can be deployed using daemonset in

3 P Phadnis, S.Nagmote. (2019). Massive Scale Data Processing at
Netflix using Flink. Talk presented at the Flink Forward 2019

4 K. Gade, Yu Yang. (2016). Scalable and Reliable Logging at
Pinterest. Talk presented at the DataEngConf SF16

5 M.Koes (2018). Centralized Logging Solution for Google Cloud
Platform. Talk presented at the Cloud Next ‘18

Kubernetes environment® or sidecar pattern’.

We analyzed several research papers, books and pre-
sentations [4]8, to identify a set of events that should
be logged. Possible auditable events at microser-
vice/application level are presented in the table be-
low (Table 3).

Figure 3. Access control decision log

example (Open Policy Agent)

Using structured logs format (e.g., JSON, CSV) is a widely
used pattern. It is advisable to define a structure for log
events among development teams. The following example
(Figure 4) shows log message in mozlog format [4]

Figure 4. Log example (mozlog library)
Possible log message fields are listed in the table be-
low (Table 4).

4. Recommendations for application
security architects

Based on our survey results, we came up with several
recommendations for application security architects on au-
dit logging implementation:

1) Centralized logging service allow to collect, stream,
analyze, store, and access log events. Using a centralized
logging service that aggregates logs from each service in-
stance is a widely used pattern. To mitigate typical threats
related with logging system it is advisable to use logging
agents and publish-subscribe pattern.

2) Audit logging solution should be infrastructure/
operations-level solution and dedicated team (e.g., Infra-

6 A Kubernetes DaemonSet is a container tool that ensures that all
nodes or a specific subset of them are running exactly one copy
of a pod

7 See information about “sidecar” pattern on https://microservices.
io/patterns/deployment/sidecar.html

8 A.Fontaine (2018). Logging in the age of Microservices and the
Cloud. Talk presented at DevOps Con 2018

DOI: 10.21681/2311-3456-2021-2-71-80

73

UDC 004.056

Network security

Table 2

High-level requirements to logging subsystem architecture with its rationales are listed in table below

High-level requirement definition

Rational

Microservice shall not send log message directly
to central logging subsystem using network
communication. Microservice shall write its log
message to a local log file.

Mitigated threats:

e Th#3 Data loss due to logging service failure (due to attack):
in case of logging service outage microservice will still write
log messages to the local file (without data loss), after logging
service recovery logs will be available to shipping

e Th#7 Data loss due to logging service failure in case of its
flooding by legitimate microservice (highload environment):
in case of logging service outage microservice will still write
log messages to the local file (without data loss), after logging
service recovery logs will be available to shipping

There shall be a dedicated component (logging
agent) decoupled from microservice. Logging
agent shall collect log data on microservice side
(read local log file) and send it to central logging
subsystem.

Due to possible network latency issues logging
agent shall be deployed on the same host (virtu-
al or physical machine) with microservice.

Mitigated threats:

e Th#3 Data loss due to logging service failure (due to attack):
isolate microservice from logging agent failure - in case of
logging agent failure microservice still writes information to
the log file, logging agent after recovery will read file and send
information to message broker;

Due to possible DoS-attack on central logging
subsystem logging agent shall not uses
synchronous request/response pattern to send
log messages. There shall be message broker to
implement asynchronous connection between
logging agent and central logging service.

Mitigated threats:

* Th#7 Data loss due to logging service failure in case of its
flooding by legitimate microservice (highload environment):
using asynchronous mechanism allows to mitigate possible
DoS-attack from legitimate microservices because microser-
vice process amount of information it can that do not lead to
exhaustion of microservice resources

Logging agent and message broker shall use
mutual authentication (e.g. based on TLS) to
encrypt all transmitted (log messages) and
authenticate themselves.

Mitigated threats:

e Th#1 Microservice spoofing

* Th#2 Logging/transport system spoofing
e Th#4 Network traffic injection

Th#5 Sniffing Network Traffic

Message broker shall enforce access control
policy in order to mitigate unauthorized access
and enforce the principle of least privileges

Mitigated threats:

e Th#6 Microservice elevation of privileges

Logging agent shall filter/sanitize output log
messages in order to sensitive data (e.g., PII,
passwords, APl keys) will never send to the
central logging subsystem (data minimization
principle)

Mitigated threats:

e Th#8 Microservice may log private or confidential data without
masking/filtering

Message broker shall be deployed in high
availability mode (cluster)

Mitigated threats:
e Th#7 Data loss due to logging service failure in case of its
flooding by legitimate microservice (highload environment)

Microservices shall generate and pass through
microservice call chain a correlation ID which
uniquely identify every call chain and help
grouping log messages to investigate them.
Logging agent shall include correlation ID in
every log message.

Best practices [4]

Logging agent shall periodically provide health
and status data to indicate its availability or
non-availability

Best practices [4]

74

Bonpochkl kubepbesonacHoctn. 2021. Ne 2(42)

Security audit logging in microservice-based systems: survey of architecture patterns

High-level requirement definition Rational

Logging agent shall publish log messages in
structured logs format (e.g., JSON, CSV)

Logging agent shall append log messages with
context data (e.g., platform context, runtime | Best practices 2 [4]
context)

Best practices [4]

“labels”: {
“Yapp”: “my-example-app”,
“id”: “1780d507-aea2-45cc-ae50-fal53c8ed4aba”,
“version”: “latest”
}I
“decision id”: “4ca636cl-55e4-417a-bld8-4aceb67960d1”,
“bundles”: {
“authz”: {
“revision”: “W3sibCI6InN5cy9jYXRhbGOnIiwicyI6NDA3MX1d”
}
}I
“path”: “http/example/authz/allow”,
“input”: {
“method”: “GET”,
“path”: “/salary/bob”
}I
“result”: “true”,
“requested by”: “[::1]:59943",
“timestamp”: “2018-01-01T00:00:00.0000002"

Figure 3. Access control decision log example (Open Policy Agent)

Table 3

Auditable events Notes

Incorrect username/password
Authentication successes and failures Token (e.g., JWT) validation issues (incorrect signature, incorrect
signature method, absence of JWT)

Every access control decision should be logged. Different access
control framework implement built-in logging, e.g. see example
of Open Policy Agent authorization decision log on the picture
below.

Authorization (access control) failures

e syntax and runtime errors;
e connectivity problems;
* performance issues, third party service error messages;

Application errors and system events

. i i) * network connections (other microservice request);
Use of higher-risk functionality « addition or deletion of users;

* changes to user privileges;

A . * protocol violations
Input validation failures « unacceptable encodings
e invalid parameter names and values

DOI: 10.21681/2311-3456-2021-2-71-80 75

UDC 004.056

Network security

Auditable events

Notes

Application/microservice states changes

e start-ups

e shut-downs

¢ |ogging initializations

¢ logging configuration updates

“Type" .

“Logger”:

“Timestamp”:

“request.summary”,

145767775123456,

\\myapp ” ,

“Hostname”:
“EnvVersion”:”72.0",
“Severity”: 6,
“pid”: 1337,
“Fields”:{
“agent”:

“errno”: O,

“server-al23.mozilla.org”,

“curl/7.43.07,

“the user wanted

“/something”,

“method”: “GET”,
“msg”:

“path”:

“t7: 5,

“uid”: “12345”

something.”,

Figure 4. Log example (mozlog library)

structure security team) must be accountable for develop-
ment and its operation as well as sharing microservice
blueprint/library/components that implement audit log-
ging among development teams. Audit logging solution
should be easy to implement for development teams and
scalable. It is preferable to ask development teams to use
standard output to write log messages.

3) Application security architect should establish a
baseline related with auditable events, log format and
log message fields and share it among development and
operations teams. Auditable events list should include:
authentication successes and failures, authorization
(access control) failures, application errors and system
events, use of higher-risk functionality, input validation

failures, application/microservice start-ups and shut-
downs, logging initialization. Using structured logs format
(e.g., JSON, CSV) is a widely used pattern.

4) Audit logging system should be based on widely
used solution, because implementing custom solution
has following cons:

e security or engineering team have to build and main-
tain custom solution;

¢ itis necessary to build and maintain client library SDKs
for every language used in system architecture;

* necessity to train every developer on custom audit API
and integration, and there’s no open source commu-
nity to source information from.

76

Bonpochkl kubepbesonacHoctn. 2021. Ne 2(42)

Security audit logging in microservice-based systems: survey of architecture patterns

5. Related work

Security architecture patterns for microservice-based
systems has been the topic of a number of surveys and
review articles, as well as standards.

Vale et al. [10] conducted a systematic mapping to
reveal adopted security mechanisms for microservice-
based systems. They focused only on security mechanisms
and examined 26 papers published from November
2018 to March 2019. Hannousse et al. [11] conducted
a similar investigation to Vale et al. [10] study. Their
study is broader in several ways: they included published
papers since 2011 and besides security mechanisms,
they also focused on identifying security threats and
the applicability of proposed solutions regarding their
execution platforms and architectural layers. Yu et al. [12]
surveyed work related to security risks for microservices-
based fog applications, and argued that security issues
arise in four system aspects: containers, data, permissions

and network security. Nehme et al. [13] discussed how
microservices can be secured at different levels and
stages considering a common software development
lifecycle.

NIST published standards® *° on microservice-based
system security. NIST analyzed the multiple implemen-
tation options available for each individual core security
feature (authentication and access management, ser-
vice discovery, secure communication protocols, secu-
rity monitoring, availability/resiliency improvement tech-
niques, load balancing and throttling, integrity assurance
techniques and handling of session persistence) and con-
figuration options in architectural frameworks, and devel-
oped security strategies that counter threats specific to
microservice-based systems.

Compared with the related works our study is more
narrow and concentrated on audit logging function only
in order to get deeper results. Moreover, besides research

Table 4
Category Fields/event attribute
May be:

Time * consistent ISO8601 dates with nanosecond precision;
¢ number of nanoseconds since the UNIX epoch;
 field that complies to RFC3339

Level The level of the log: INFO, DEBUG, ERORR

Message Human readable string
* host
e user agent string

HTTP context: o HTTP method

context about the HTTP request currently being | path

processed (if any) * remote address
e correlation ID
e user D
* host

Platform context: e pod name

e.g. contextual information about the Pod running on | * pod ID

the Kubernetes platform e container name
* namespace name
* namespace ID

. ¢ class name

Runtime context: _ _ « file name

represents the language runtime details « function
¢ module name
e |P address

Source context: context about the source of the log * PID
* process name
e userID

Custom data Microservice can add any valuable structured data

9 Chandramouli R. (2019) Security Strategies for Microservices-based Application Systems. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204

10 Chandramouli R., Butcher Z. (2020) Building Secure Microservices-based Applications Using Service-Mesh Architecture. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-204A. https://doi.org/10.6028/NIST.SP.800-204A

DOI: 10.21681/2311-3456-2021-2-71-80

77

UDC 004.056

papers analysis we also analyzed presentations at the
major security conferences.

6. Conclusion and further work

The survey enumerated several technical publications
and multiple sources and libraries to deliver a source of
insight for application security architects to build trustwor-
thy audit logging system. This document offers the benefit
of providing guidance on needed efforts and research into
how to better secure microservice-based environments.

Security operation team should actively uses logged

Network security

information to detect security threats. In order to do that
security analyst can use simple patterns based on regu-
lar expressions and statistics and threat detection based
machine learning techniques [15], [16]. The work can be
a baseline for future audit logs processing by establish-
ing an efficient hybrid approach that combines classic
techniques to detect threats in microservice-based envi-
ronment and novel approaches (e.g., machine-learning
based algorithms) to detect anomalies and adversaries in
compromised infrastructure.

References

1. Adam Shostack. Threat Modeling: Designing for Security. 624 p. Wiley; 1 edition (February 17, 2014)

2. | Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security evaluation,” 2015 IEEE 8th Interna-
tional Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw,
2015, pp. 436-441. DOI: 10.1109/IDAACS.2015.7340774

3. V. Mavroeidis and S. Bromander, “Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, 2017, pp. 91-98.
DOI: 10.1109/EISIC.2017.20

4. Securing DevOps. Security in the Cloud, Julien Vehent. 2018, Manning

5. D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,”
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38. DOI: 10.1109/
EuroSPW.2019.00010

6. M. Cinque, R. Della Corte and A. Pecchia, “Microservices Monitoring with Event Logs and Black Box Execution Tracing,” in IEEE Transac-
tions on Services Computing. DOI: 10.1109/TSC.2019.2940009

7. S. Amir-Mohammadian, C. Kari, “Correct Audit Logging in Concurrent Systems”, in “Electronic Notes in Theoretical Computer Science”,
Volume 351, 2020, pp. 115-1441. DOI: https://doi.org/10.1016/j.entcs.2020.08.007

8. ShaharE.(2019) Advanced Logging, Monitoring, and Alerting. In: Project Reliability Engineering. Apress, Berkeley, CA. DOI: 10.1007/978-
1-4842-5019-8_8

9. Chaitanya K. Rudrabhatla. Security Design Patterns in Distributed Microservice Architecture. URL: https://arxiv.org/abs/2008.03395

10. A. Pereira-Vale, G. Marquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A Sys-
tematic Mapping,” 2019 XLV Latin American Computing Conference (CLEIl), Panama, Panama, 2019, pp. 01-10. DOI: 10.1109/
CLEI47609.2019.235060

11. Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

12. Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.

13. A.Nehme, V. Jesus, K. Mahbub and A. Abdallah, “Securing Microservices,” in IT Professional, vol. 21, no. 1, pp. 42-49, Jan.-Feb. 2019.
DOI: 10.1109/MITP.2018.2876987

14. Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems: survey of architecture patterns, Voprosy
kiberbezopasnosti, Ne4 (38), 2020. pp 32-43. DOI: 10.21681/2311-3456-2020-04-32-43

15. Sheluhin O.l., Ryabinin V.S., Farmakovskiy M.A., Anomaly detection in computer system by intellectictual analysis of system journals,
Voprosy kiberbezopasnosti, Ne2(26), 2018. pp 36-41. (in Russ.) DOI: 10.21681/2311-3456-2018-2-33-43

16. Butusov L.V., Romanov A.A., Prevention of information security incidents in automated information system, Voprosy kiberbezopasnosti,
Ne5(39), 2020. pp 45-51. (in Russ.) DOI: 10.21681/2311-3456-2020-05-45-51

78

Bonpochkl kubepbesonacHoctn. 2021. Ne 2(42)

AYIIUT COBbITUA BE3OMNACHOCTH
B MUKPOCEPBMCHbIX MPUNO)KEHUAX: 0630P
APXUTEKTYPHbIX NMOAX0/10B

BbapabaHos A.'', MakpywuH 4.2

AHHoOTauusa

Lleanb ctatbu. MICrOAb30BaHME CEPBUC-OPUEHTUPOBAHHON apXMUTEKTYPbl MPWU MPOEKTUPOBAaHMK MPOrPaMMHOro
obecrneyeHuss OTKPbIBAET HOBbIE BO3MOXHOCTU AAS HAPYLLIUTEAEH, KOTOPbIE MCMOAL3YIOT HOBbIE METOAbI 3aKPENAeHMs
W nepemelleHuss BHyTOM CKOMITPOMETUPOBAHHOM MHGPAaCTPyKTypbl.MUKPOCEPBUCHI MPUHOCAT HOBbIE 3aAayu AAS
apxuTekTopoB 6e30MacHOCTH, CBSI3aHHbIE C MOBbILIEHUEM YPOBHS MOHMUTOPWHIa COObITUI BHYTPM 3allmllaeMom
cpeabl. LieAbto AaHHOrO MCCAEAOBaHMS ABASIETCS CO3AaHMe 6asbl TUMOBbIX apPXMTEKTYPHbIX PELLEHUH, KOTOPbIE MOTYT
ObITb MCMOAL30BaHbl pa3paboTynkaMm mu apxmTeKTopaMmm MHPOPMaLMOHHON 6e301acHOCTH MPU MPOEKTUPOBAHUMN 1
pearnsaummn QyHKUmMI cbopa v ayanTa CobbITUI BHYTPH MHPPACTPYKTYPbl, OCHOBAHHOM Ha MUKPOCEPBMUCAX.

MeToa MccneAOBaHUA 3aKAOHYAETCS B MOAEAMPOBAHUM Yrp03 M CUCTEMHOM aHaAM3e HayuyHbIX nyoAukaumi u
BBICTYIAEHUI Ha BEAYLLUMX HAYYHO-TEXHUUECKUX KOHGPEPEHLMSX N0 TeMe 3allumnTbl UHPOPMaLMM B MHUKPOCEPBUCHbIX
MPUAOXKEHUSIX, 0O0OLLIEHNN M CUCTEMATHU3ALIMU MTOAYUEHHbIX PE3YALTATOB.

IMonyueHHble pe3yAbTaTbl U NPaKTUYeCcKasi 3HaYMMOCTb. B pabote npeacTaBAeH cUCTeMaTU3UPOBAaHHbIN NepevyeHb
APXMTEKTYPHbIX MOAXOAOB, KOTOPbIE MOrYT bbITb MCMOAL30BaHbI AN peam3aLmm cucteMbl cbopa u ayanTa cobbITUM
B MUKPOCEPCUBHBIX MPUAOKEHMUSIX. [TpeacTaBAEHbl pe3yAbTaTbl MOAEAUPOBAHMS yrpo3 6e30n1acHOCTHM MHpopMaLmm
(MAEHTUGMUMPOBAHO 8 yrpo3), BbIMOAHEHHOIO B OTHOLUEHMM TWUMIOBOIO0 apXUTEKTYPHOro LabAoHa peaAu3aumm
cuctemMbl cbopa M ayauta cobbiTvi. [lo pe3yAbTataM aHaAM3a HWAEHTUPULMPOBaHHbLIX Yrpo3 6e30rnacHoCTH
nHpopmaumn paspabotaHbl 11 TpeboBaHmii K obecrieyeHnto 6e30nacHOCTU cuctem cbopa m ayauTa cOobbITUI B
MUWKPOCEPBUCHBIX MPUAOXEHUSIX. Pa3paboTaHHble TpeboBaHMs MOryT ObiTb MCIOAb30BaHbl aPXMTEKTOPAMM
MHPOPMaLIMOHHOM 6E30MacHOCTH MPU MPOEKTUPOBAHMN WU PeaAn3aLIMi MUKPOCEPBUCHbIX MPUAOKEHMI

KAaroueBble cAoBa: MHUKPOCEPBIUC, PerucTpaLms cobbiTnii, apXMTEKTYPHbIE MOAXOAbI, 3aLLUUTa MHGOPMALIMU

AutepaTtypa

1. Adam Shostack. Threat Modeling: Designing for Security. 624 p. Wiley; 1 edition (February 17, 2014)

2. |. Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security evaluation,” 2015 IEEE 8th Interna-
tional Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw,
2015, pp. 436-441, doi: 10.1109/IDAACS.2015.7340774.

3. V. Mavroeidis and S. Bromander, “Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, 2017, pp. 91-98,
doi: 10.1109/EISIC.2017.20.

4. Securing DevOps. Security in the Cloud, Julien Vehent. 2018, Manning

5. D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,”
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38, doi: 10.1109/
EuroSPW.2019.00010.

6. M. Cinque, R. Della Corte and A. Pecchia, “Microservices Monitoring with Event Logs and Black Box Execution Tracing,” in IEEE Transac-
tions on Services Computing, doi: 10.1109/TSC.2019.2940009.

7. S. Amir-Mohammadian, C. Kari, “Correct Audit Logging in Concurrent Systems”, in “Electronic Notes in Theoretical Computer Science”,
Volume 351, 2020, pp. 115-141, doi: https://doi.org/10.1016/j.entcs.2020.08.007.

8. Shahar E. (2019) Advanced Logging, Monitoring, and Alerting. In: Project Reliability Engineering. Apress, Berkeley, CA. https://doi.
org/10.1007/978-1-4842-5019-8_8

9. Chaitanya K. Rudrabhatla. Security Design Patterns in Distributed Microservice Architecture. URL: https://arxiv.org/abs/2008.03395

10. A. Pereira-Vale, G. Marquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A Sys-
tematic Mapping,” 2019 XLV Latin American Computing Conference (CLEIl), Panama, Panama, 2019, pp. 01-10, doi: 10.1109/
CLEI47609.2019.235060.

11. Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

11 Anexcanpap BapabaHos, kaHa.TexH.Hayk, CISSP, CSSLP, JlTabopaTopusi nepefoBbIX MPOrpaMMHbIX TEXHOSIOTUIA, BEAYLLMIA HAYYHbIA COTPYAHMK,
komnaHus Huawei, Mocksa, Poccus. E-mail: barabanov.iu8@gmail.com

12 Oexunc MakpylumH, OSCP, JTabopaTtopus nepeaoBbiX MporpaMmMHbIX TEXHOJIOTMIA, PYKOBOAUTE b HANPaBieHNs NePCNEKTUBHbIX UCCIea0BaHui
6e3onacHocTu, komnaHnms Huawei, Mocksa, Poccus. E-mail:denis@makrushin.com

DOI: 10.21681/2311-3456-2021-2-71-80 79

UDC 004.056 Network security

12. Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.

13. A.Nehme, V. Jesus, K. Mahbub and A. Abdallah, “Securing Microservices,” in IT Professional, vol. 21, no. 1, pp. 42-49, Jan.-Feb. 2019,
doi: 10.1109/MITP.2018.2876987.

14. Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems: survey of architecture patterns, Voprosy
kiberbezopasnosti, Ne4 (38), 2020. pp 32-43. DOI: DOI: 10.21681/2311-3456-2020-04-32-43

15. WenayxuH O.U., PabunuH B.C., ®dapmakoBckuii M.A. O6HapyXeHMe aHOMaAbHbIX COCTOSIHUIA KOMIMbIOTEPHbIX CUCTEM CPEACTBAMM
MHTEANEKTYaAbHOTO aHaAM3a AaHHbIX CUCTEMHbIX XypHanoB. Bonpocbl kubepbesonacHoctv. 2018. Ne 2(26). C. 36-41. DOI:
10.21681/2311-3456-2018-2-33-43

16. bytycoB WU.B, PomaHoB A.A. MpeaynpexaeHne MHUMAEHTOB MHbOPMaLMOHHOM 6e30MacHOCTU B aBTOMAaTU3UPOBaHHbIX MHGOPMALIMOHHbIX
cucteMax. Bonpocsl knbepbesonacHoctu. 2020. Ne5(39). C. 45-51. DOI: 10.21681/2311-3456-2020-05-45-51

”””JA¥ —_

80 Bonpockl knbepbesonacHocth. 2021. Ne 2(42)

