
71

Security audit logging in microservice-based systems: survey of architecture patterns

DOI: 10.21681/2311-3456-2021-2-71-80

SECURITY AUDIT LOGGING IN MICROSERVICE-BASED
SYSTEMS: SURVEY OF ARCHITECTURE PATTERNS

Barabanov A. 1, Makrushin D.2

Abstract
Objective. Service-oriented architecture increases technical abilities for attacker to move laterally and maintain

multiple pivot points inside of compromised environment. Microservice-based infrastructure brings more challenges
for security architect related to internal event visibility and monitoring. Properly implemented logging and audit ap-
proach is a baseline for security operations and incident management. The aim of this study is to provide helpful
resource to application and product security architects, software and operation engineers on existing architecture
patterns to implement trustworthy logging and audit process in microservice-based environments.

Method. In this paper, we conduct information security threats modeling and a systematic review of major elec-
tronic databases and libraries, security standards and presentations at the major security conferences as well as
architecture whitepapers of industry vendors with relevant products.

Results and practical relevance. In this work based on research papers and major security conferences presenta-
tions analysis, we identified industry best practices in logging audit patterns and its applicability depending on envi-
ronment characteristic. We provided threat modeling for typical architecture pattern of logging system and identified
8 information security threats. We provided security threat mitigation and as a result of 11 high-level security require-
ments for audit logging system were identified. High-level security requirements can be used by application security
architect in order to secure their products.

Keywords: microservices, microservice architectures, security, operations, audit, logging, architecture patterns
survey.

DOI: 10.21681/2311-3456-2021-2-71-80

1  Alexander Barabanov, Ph.D, CISSP, CSSLP, Principal Security Engineer, Advanced Software Technology Laboratory, Huawei, Moscow, Russia.
E-mail: barabanov.iu8@gmail.com

2  Denis Makrushin, OSCP, Advanced Software Technology Laboratory, Head of Advanced Security Research Huawei, Moscow, Russia.
E-mail:denis@makrushin.com

1. Introduction
Logging service in microservice-based systems is aim

to meet principle of accountability and traceability and
help to detect anomalies in operations via log analysis.
Therefore, it is vital for applications security architects to
understand and properly use existing architecture pat-
terns to implement audit logging in microservices-based
systems for security operations. The goal of our research
was to identify such patterns and to do recommendations
for applications security architect and security operations
specialists on possible way to use it. This study is con-
ducted with three main questions in mind:
•	 Threat modeling: what information security threats are

exists for typical audit logging system in microservice-
based applications?

•	 Security Design: what security control can be used
while designing logging system to mitigate existing se-
curity threats?

•	 Implementation: What should application security ar-
chitect take in mind while implementing audit logging
system in microservice-based systems?
We provide threat modeling of simple logging sys-

tem architecture pattern and reviewed major electronic
databases and libraries (IEEE Xplorer, ACM Digital Li-

brary, SpringerLink, ResearchGate, arXiv) with research
papers to extract primary studies. In order to explore
these sources, we used search strings containing “log-
ging”, “audit”, “monitoring”, “log analysis”, “security
operations”, “service-oriented architecture” and “mi-
croservice” (in different spelling, like “micro-service” or
“micro service”) words. To avoid missing relevant stud-
ies, we also reviewed security standards, presentations
at the major security conferences and technical docu-
ments (whitepapaers) by industry vendors with mature
microservice-based products.

In summary, this paper makes the following contribu-
tions:
•	 threat model for typical logging system architecture

pattern (Section 2);
•	 a set of security controls and mitigations techniques as

well as non-functional requirements to the log format
and set of auditable events (Section 3);

•	 recommendations for applications security architect
on how to implement audit logging system in microser-
vice-based applications (Section 4).
This article continues a set of articles dedicated to

microservice-based system security [14].

72 Вопросы кибербезопасности. 2021. № 2(42)

Network securityUDC 004.056

2. Threat Model for Audit Logging System
We provided security design review in order to define

typical security threats and mitigation techniques. To de-
fine security threats we used STRIDE methodology [1], [3],

CAPEC [2] repository and best practices analysis. During
best practices analysis we analyzed architectural patterns
used in the wild and presented at application security

Figure 1. Logging pattern “Microservice directly sends log message to central logging”

Table 1

ID Threat definition CAPEC reference
(if applicable)

Th#1 Service spoofing: a malicious or compromised microservice can send log
message to the logging subsystem to forge logs CAPEC-151: Identity Spoofing

Th#2 Logging/transport system spoofing: a malicious service can act as a
logging subsystem in order to get access to sensitive information CAPEC-151: Identity Spoofing

Th#3

Logging system denial-of-service (DoS): data loss due to logging service
failure in case of attack on logging service. In that case log messages
needed to be buffered on the microservice side in memory. As the
microservice buffer size is limited, an extended logging service outage
would lead to log message loss

CAPEC-125: Flooding

Th#4

An adversary modifies content (log message published by microservice
to logging subsystem via communication channel) to make it contain
something other than what the original content producer (microservice)
intended while keeping the apparent source of the content unchanged

CAPEC-594: Traffic Injection

Th#5 Adversary intercepts information transmitted between microservice and
logging subsystems to capture sensitive information

CAPEC-158: Sniffing
Network Traffic

Th#6 Legitimate microservice (due to attack) can elevate its privileges in order
to read sensitive information from logging service CAPEC-122: Privilege Abuse

Th#7

Data loss due to logging service failure in case of its flooding by legitimate
microservice (highload environment). In that case log messages needed
to be buffered on the microservice side in memory. As the microservice
buffer size is limited, an extended logging service outage would lead to log
message loss.

CAPEC-130: Excessive
Allocation

Th#8
Microservice may log private or confidential data (e.g., PII, passwords, API
keys) without masking/filtering. An attack to the logging service may lead
to sensitive information disclosure.

CAPEC-215: Fuzzing and
observing application

log data/errors for
application mapping

73

Security audit logging in microservice-based systems: survey of architecture patterns

DOI: 10.21681/2311-3456-2021-2-71-80

conferences3, 4, 5. A naive pattern of logging subsystem is
shown on the picture below (Figure 1). Microservice di-
rectly sends their log message to central logging service
via network requests using logging library (e.g., log4j for
Java-based applications).

We identify 8 threat categories against audit logging
subsystems (Table 1) for the mentioned naïve pattern of
logging subsystem. It should be mention, that our secu-
rity design review was scoped only to collection layer and
transport/streaming layer [4]. Other layers (analysis, stor-
age and access) was out of the current research scope
(e.g. security threats to log storage integrity).

3. Audit logging system security
controls and requirements

Then we analyzed identified security threats as well as
best practices [4], [6], [7], [8], [9] adopted by community
and industry vendors with mature product security pro-
gram in order to identify high-level requirement for logging
subsystem. A high-level architecture design is shown on
the picture below (Figure 2):
•	 microservice writes a log messages to local file using

standard output (via stdout, stderr);
•	 logging agent periodically pulls log messages and

sends (publish) it to message broker;
•	 central logging service subscribes on messages in

message broker, receives and process it.
Logging agent can be deployed using daemonset in

3  P. Phadnis, S.Nagmote. (2019). Massive Scale Data Processing at
Netflix using Flink. Talk presented at the Flink Forward 2019

4  K. Gade, Yu Yang. (2016). Scalable and Reliable Logging at
Pinterest. Talk presented at the DataEngConf SF16

5  M.Koes (2018). Centralized Logging Solution for Google Cloud
Platform. Talk presented at the Cloud Next ‘18

Kubernetes environment6 or sidecar pattern7.
We analyzed several research papers, books and pre-

sentations [4]8, to identify a set of events that should
be logged. Possible auditable events at microser-
vice/application level are presented in the table be-
low (Table 3).

Figure 3. Access control decision log
example (Open Policy Agent)
Using structured logs format (e.g., JSON, CSV) is a widely
used pattern. It is advisable to define a structure for log
events among development teams. The following example
(Figure 4) shows log message in mozlog format [4]

Figure 4. Log example (mozlog library)
Possible log message fields are listed in the table be-

low (Table 4).

4. Recommendations for application
security architects

Based on our survey results, we came up with several
recommendations for application security architects on au-
dit logging implementation:

1) Centralized logging service allow to collect, stream,
analyze, store, and access log events. Using a centralized
logging service that aggregates logs from each service in-
stance is a widely used pattern. To mitigate typical threats
related with logging system it is advisable to use logging
agents and publish-subscribe pattern.

2) Audit logging solution should be infrastructure/
operations-level solution and dedicated team (e.g., Infra-

6  A Kubernetes DaemonSet is a container tool that ensures that all
nodes or a specific subset of them are running exactly one copy
of a pod

7  See information about “sidecar” pattern on https://microservices.
io/patterns/deployment/sidecar.html

8  A.Fontaine (2018). Logging in the age of Microservices and the
Cloud. Talk presented at DevOps Con 2018

	 Figure 2. Logging pattern “Logging agent”

74 Вопросы кибербезопасности. 2021. № 2(42)

Network securityUDC 004.056

Table 2

High-level requirements to logging subsystem architecture with its rationales are listed in table below

High-level requirement definition Rational

Microservice shall not send log message directly
to central logging subsystem using network
communication. Microservice shall write its log
message to a local log file.

Mitigated threats:

•	 Th#3 Data loss due to logging service failure (due to attack):
in case of logging service outage microservice will still write
log messages to the local file (without data loss), after logging
service recovery logs will be available to shipping

•	 Th#7	Data loss due to logging service failure in case of its
flooding by legitimate microservice (highload environment):
in case of logging service outage microservice will still write
log messages to the local file (without data loss), after logging
service recovery logs will be available to shipping

There shall be a dedicated component (logging
agent) decoupled from microservice. Logging
agent shall collect log data on microservice side
(read local log file) and send it to central logging
subsystem.
Due to possible network latency issues logging
agent shall be deployed on the same host (virtu-
al or physical machine) with microservice.

Mitigated threats:

•	 Th#3 Data loss due to logging service failure (due to attack):
isolate microservice from logging agent failure ‑ in case of
logging agent failure microservice still writes information to
the log file, logging agent after recovery will read file and send
information to message broker;

Due to possible DoS-attack on central logging
subsystem logging agent shall not uses
synchronous request/response pattern to send
log messages. There shall be message broker to
implement asynchronous connection between
logging agent and central logging service.

Mitigated threats:

•	 Th#7	Data loss due to logging service failure in case of its
flooding by legitimate microservice (highload environment):
using asynchronous mechanism allows to mitigate possible
DoS-attack from legitimate microservices because microser-
vice process amount of information it can that do not lead to
exhaustion of microservice resources

Logging agent and message broker shall use
mutual authentication (e.g. based on TLS) to
encrypt all transmitted (log messages) and
authenticate themselves.

Mitigated threats:

•	 Th#1 Microservice spoofing
•	 Th#2 Logging/transport system spoofing
•	 Th#4 Network traffic injection
•	 Th#5 Sniffing Network Traffic

Message broker shall enforce access control
policy in order to mitigate unauthorized access
and enforce the principle of least privileges

Mitigated threats:

•	 Th#6 Microservice elevation of privileges

Logging agent shall filter/sanitize output log
messages in order to sensitive data (e.g., PII,
passwords, API keys) will never send to the
central logging subsystem (data minimization
principle)

Mitigated threats:
•	 Th#8 Microservice may log private or confidential data without

masking/filtering

Message broker shall be deployed in high
availability mode (cluster)

Mitigated threats:
•	 Th#7	Data loss due to logging service failure in case of its

flooding by legitimate microservice (highload environment)
Microservices shall generate and pass through
microservice call chain a correlation ID which
uniquely identify every call chain and help
grouping log messages to investigate them.
Logging agent shall include correlation ID in
every log message.

Best practices [4]

Logging agent shall periodically provide health
and status data to indicate its availability or
non-availability

Best practices [4]

75

Security audit logging in microservice-based systems: survey of architecture patterns

DOI: 10.21681/2311-3456-2021-2-71-80

High-level requirement definition Rational
Logging agent shall publish log messages in
structured logs format (e.g., JSON, CSV) Best practices [4]

Logging agent shall append log messages with
context data (e.g., platform context, runtime
context)

Best practices 12 [4]

Table 3

Auditable events Notes

Authentication successes and failures
Incorrect username/password
Token (e.g., JWT) validation issues (incorrect signature, incorrect
signature method, absence of JWT)

Authorization (access control) failures

Every access control decision should be logged. Different access
control framework implement built-in logging, e.g. see example
of Open Policy Agent authorization decision log on the picture
below.

Application errors and system events
•	 syntax and runtime errors;
•	 connectivity problems;
•	 performance issues, third party service error messages;

Use of higher-risk functionality
•	 network connections (other microservice request);
•	 addition or deletion of users;
•	 changes to user privileges;

Input validation failures
•	 protocol violations
•	 unacceptable encodings
•	 invalid parameter names and values

Figure 3. Access control decision log example (Open Policy Agent)

[
 {
 “labels”: {
 “app”: “my-example-app”,
 “id”: “1780d507-aea2-45cc-ae50-fa153c8e4a5a”,
 “version”: “latest”
 },
 “decision_id”: “4ca636c1-55e4-417a-b1d8-4aceb67960d1”,
 “bundles”: {
 “authz”: {
 “revision”: “W3sibCI6InN5cy9jYXRhbG9nIiwicyI6NDA3MX1d”
 }
 },
 “path”: “http/example/authz/allow”,
 “input”: {
 “method”: “GET”,
 “path”: “/salary/bob”
 },
 “result”: “true”,
 “requested_by”: “[::1]:59943”,
 “timestamp”: “2018-01-01T00:00:00.000000Z”
 }
]

76 Вопросы кибербезопасности. 2021. № 2(42)

Network securityUDC 004.056

structure security team) must be accountable for develop-
ment and its operation as well as sharing microservice
blueprint/library/components that implement audit log-
ging among development teams. Audit logging solution
should be easy to implement for development teams and
scalable. It is preferable to ask development teams to use
standard output to write log messages.

3) Application security architect should establish a
baseline related with auditable events, log format and
log message fields and share it among development and
operations teams. Auditable events list should include:
authentication successes and failures, authorization
(access control) failures, application errors and system
events, use of higher-risk functionality, input validation

failures, application/microservice start-ups and shut-
downs, logging initialization. Using structured logs format
(e.g., JSON, CSV) is a widely used pattern.

4) Audit logging system should be based on widely
used solution, because implementing custom solution
has following cons:
•	 security or engineering team have to build and main-

tain custom solution;
•	 it is necessary to build and maintain client library SDKs

for every language used in system architecture;
•	 necessity to train every developer on custom audit API

and integration, and there’s no open source commu-
nity to source information from.

{

	 “Timestamp”: 145767775123456,

	 “Type”: “request.summary”,

	 “Logger”: “myapp”,

	 “Hostname”: “server-a123.mozilla.org”,

	 “EnvVersion”:”2.0”,

	 “Severity”: 6,

	 “Pid”: 1337,

	 “Fields”:{

		 “agent”: “curl/7.43.0”,

		 “errno”: 0,

		 “method”: “GET”,

		 “msg”: “the user wanted something.”,

		 “path”: “/something”,

		 “t”: 5,

		 “uid”: “12345”

	 }

}

Auditable events Notes

Application/microservice states changes

•	 start-ups
•	 shut-downs
•	 logging initializations
•	 logging configuration updates

Figure 4. Log example (mozlog library)

77

Security audit logging in microservice-based systems: survey of architecture patterns

DOI: 10.21681/2311-3456-2021-2-71-80

5. Related work
Security architecture patterns for microservice-based

systems has been the topic of a number of surveys and
review articles, as well as standards.

Vale et al. [10] conducted a systematic mapping to
reveal adopted security mechanisms for microservice-
based systems. They focused only on security mechanisms
and examined 26 papers published from November
2018 to March 2019. Hannousse et al. [11] conducted
a similar investigation to Vale et al. [10] study. Their
study is broader in several ways: they included published
papers since 2011 and besides security mechanisms,
they also focused on identifying security threats and
the applicability of proposed solutions regarding their
execution platforms and architectural layers. Yu et al. [12]
surveyed work related to security risks for microservices-
based fog applications, and argued that security issues
arise in four system aspects: containers, data, permissions

and network security. Nehme et al. [13] discussed how
microservices can be secured at different levels and
stages considering a common software development
lifecycle.

NIST published standards9, 10 on microservice-based
system security. NIST analyzed the multiple implemen-
tation options available for each individual core security
feature (authentication and access management, ser-
vice discovery, secure communication protocols, secu-
rity monitoring, availability/resiliency improvement tech-
niques, load balancing and throttling, integrity assurance
techniques and handling of session persistence) and con-
figuration options in architectural frameworks, and devel-
oped security strategies that counter threats specific to
microservice-based systems.

Compared with the related works our study is more
narrow and concentrated on audit logging function only
in order to get deeper results. Moreover, besides research

Table 4

Category Fields/event attribute

Time

May be:

•	 consistent ISO8601 dates with nanosecond precision;
•	 number of nanoseconds since the UNIX epoch;
•	 field that complies to RFC3339

Level The level of the log: INFO, DEBUG, ERORR
Message Human readable string

HTTP context:
context about the HTTP request currently being
processed (if any)

•	 host
•	 user agent string
•	 HTTP method
•	 path
•	 remote address
•	 correlation ID
•	 user ID

Platform context:
e.g. contextual information about the Pod running on
the Kubernetes platform

•	 host
•	 pod name
•	 pod ID
•	 container name
•	 namespace name
•	 namespace ID

Runtime context:
represents the language runtime details

•	 class name
•	 file name
•	 function
•	 module name

Source context: context about the source of the log
•	 IP address
•	 PID
•	 process name
•	 user ID

Custom data Microservice can add any valuable structured data

9  Chandramouli R. (2019) Security Strategies for Microservices-based Application Systems. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204

10  Chandramouli R., Butcher Z. (2020) Building Secure Microservices-based Applications Using Service-Mesh Architecture. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-204A. https://doi.org/10.6028/NIST.SP.800-204A

78 Вопросы кибербезопасности. 2021. № 2(42)

Network securityUDC 004.056

papers analysis we also analyzed presentations at the
major security conferences.

6. Conclusion and further work
The survey enumerated several technical publications

and multiple sources and libraries to deliver a source of
insight for application security architects to build trustwor-
thy audit logging system. This document offers the benefit
of providing guidance on needed efforts and research into
how to better secure microservice-based environments.

Security operation team should actively uses logged

information to detect security threats. In order to do that
security analyst can use simple patterns based on regu-
lar expressions and statistics and threat detection based
machine learning techniques [15], [16]. The work can be
a baseline for future audit logs processing by establish-
ing an efficient hybrid approach that combines classic
techniques to detect threats in microservice-based envi-
ronment and novel approaches (e.g., machine-learning
based algorithms) to detect anomalies and adversaries in
compromised infrastructure.

References
1.	 Adam Shostack. Threat Modeling: Designing for Security. 624 p. Wiley; 1 edition (February 17, 2014)
2.	 I. Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security evaluation,” 2015 IEEE 8th Interna-

tional Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw,
2015, pp. 436-441. DOI: 10.1109/IDAACS.2015.7340774

3.	 V. Mavroeidis and S. Bromander, “Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, 2017, pp. 91-98.
DOI: 10.1109/EISIC.2017.20

4.	 Securing DevOps. Security in the Cloud, Julien Vehent. 2018, Manning
5.	 D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,”

2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38. DOI: 10.1109/
EuroSPW.2019.00010

6.	 M. Cinque, R. Della Corte and A. Pecchia, “Microservices Monitoring with Event Logs and Black Box Execution Tracing,” in IEEE Transac-
tions on Services Computing. DOI: 10.1109/TSC.2019.2940009

7.	 S. Amir-Mohammadian, C. Kari, “Correct Audit Logging in Concurrent Systems”, in “Electronic Notes in Theoretical Computer Science”,
Volume 351, 2020, pp. 115-141. DOI: https://doi.org/10.1016/j.entcs.2020.08.007

8.	 Shahar E. (2019) Advanced Logging, Monitoring, and Alerting. In: Project Reliability Engineering. Apress, Berkeley, CA. DOI: 10.1007/978-
1-4842-5019-8_8

9.	 Chaitanya K. Rudrabhatla. Security Design Patterns in Distributed Microservice Architecture. URL: https://arxiv.org/abs/2008.03395
10.	 A. Pereira-Vale, G. Márquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A Sys-

tematic Mapping,” 2019 XLV Latin American Computing Conference (CLEI), Panama, Panama, 2019, pp. 01-10. DOI: 10.1109/
CLEI47609.2019.235060

11.	 Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

12.	 Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.

13.	 A. Nehme, V. Jesus, K. Mahbub and A. Abdallah, “Securing Microservices,” in IT Professional, vol. 21, no. 1, pp. 42-49, Jan.-Feb. 2019.
DOI: 10.1109/MITP.2018.2876987

14.	 Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems: survey of architecture patterns, Voprosy
kiberbezopasnosti, №4 (38), 2020. pp 32-43. DOI: 10.21681/2311-3456-2020-04-32-43

15.	 Sheluhin O.I., Ryabinin V.S., Farmakovskiy M.А., Anomaly detection in computer system by intellectictual analysis of system journals,
Voprosy kiberbezopasnosti, №2(26), 2018. pp 36-41. (in Russ.) DOI: 10.21681/2311-3456-2018-2-33-43

16.	 Butusov I.V., Romanov A.A., Prevention of information security incidents in automated information system, Voprosy kiberbezopasnosti,
№5(39), 2020. pp 45-51. (in Russ.) DOI: 10.21681/2311-3456-2020-05-45-51

79

Security audit logging in microservice-based systems: survey of architecture patterns

DOI: 10.21681/2311-3456-2021-2-71-80

АУДИТ СОБЫТИЙ БЕЗОПАСНОСТИ
В МИКРОСЕРВИСНЫХ ПРИЛОЖЕНИЯХ: ОБЗОР

АРХИТЕКТУРНЫХ ПОДХОДОВ

Барабанов А.11, Макрушин Д.12

Аннотация
Цель статьи. Использование сервис-ориентированной архитектуры при проектировании программного

обеспечения открывает новые возможности для нарушителей, которые используют новые методы закрепления
и перемещения внутри скомпрометированной инфраструктуры.Микросервисы приносят новые задачи для
архитекторов безопасности, связанные с повышением уровня мониторинга событий внутри защищаемой
среды. Целью данного исследования является создание базы типовых архитектурных решений, которые могут
быть использованы разработчиками и архитекторами информационной безопасности при проектировании и
реализации функций сбора и аудита событий внутри инфраструктуры, основанной на микросервисах.

Метод исследования заключается в моделировании угроз и системном анализе научных публикаций и
выступлений на ведущих научно-технических конференциях по теме защиты информации в микросервисных
приложениях, обобщении и систематизации полученных результатов.

Полученные результаты и практическая значимость. В работе представлен систематизированный перечень
архитектурных подходов, которые могут быть использованы для реализации системы сбора и аудита событий
в микросерсивных приложениях. Представлены результаты моделирования угроз безопасности информации
(идентифицировано 8 угроз), выполненного в отношении типового архитектурного шаблона реализации
системы сбора и аудита событий. По результатам анализа идентифицированных угроз безопасности
информации разработаны 11 требований к обеспечению безопасности систем сбора и аудита событий в
микросервисных приложениях. Разработанные требования могут быть использованы архитекторами
информационной безопасности при проектировании и реализации микросервисных приложений.

Ключевые слова: микросервис, регистрация событий, архитектурные подходы, защита информации

Литература

1. Adam Shostack. Threat Modeling: Designing for Security. 624 p. Wiley; 1 edition (February 17, 2014)
2. I. Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security evaluation,” 2015 IEEE 8th Interna-

tional Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw,
2015, pp. 436-441, doi: 10.1109/IDAACS.2015.7340774.

3. V. Mavroeidis and S. Bromander, “Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, 2017, pp. 91-98,
doi: 10.1109/EISIC.2017.20.

4. Securing DevOps. Security in the Cloud, Julien Vehent. 2018, Manning
5. D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,”

2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38, doi: 10.1109/
EuroSPW.2019.00010.

6. M. Cinque, R. Della Corte and A. Pecchia, “Microservices Monitoring with Event Logs and Black Box Execution Tracing,” in IEEE Transac-
tions on Services Computing, doi: 10.1109/TSC.2019.2940009.

7. S. Amir-Mohammadian, C. Kari, “Correct Audit Logging in Concurrent Systems”, in “Electronic Notes in Theoretical Computer Science”,
Volume 351, 2020, pp. 115-141, doi: https://doi.org/10.1016/j.entcs.2020.08.007.

8. Shahar E. (2019) Advanced Logging, Monitoring, and Alerting. In: Project Reliability Engineering. Apress, Berkeley, CA. https://doi.
org/10.1007/978-1-4842-5019-8_8

9. Chaitanya K. Rudrabhatla. Security Design Patterns in Distributed Microservice Architecture. URL: https://arxiv.org/abs/2008.03395
10. A. Pereira-Vale, G. Márquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A Sys-

tematic Mapping,” 2019 XLV Latin American Computing Conference (CLEI), Panama, Panama, 2019, pp. 01-10, doi: 10.1109/
CLEI47609.2019.235060.

11. Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL:
https://arxiv.org/abs/2003.07262

11  Александр Барабанов, канд.техн.наук, CISSP, CSSLP, Лаборатория передовых программных технологий, ведущий научный сотрудник,
компания Huawei, Москва, Россия. E-mail: barabanov.iu8@gmail.com

12  Денис Макрушин, OSCP, Лаборатория передовых программных технологий, руководитель направления перспективных исследований
безопасности, компания Huawei, Москва, Россия. E-mail:denis@makrushin.com

80 Вопросы кибербезопасности. 2021. № 2(42)

Network securityUDC 004.056

12.	 Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.

13.	 A. Nehme, V. Jesus, K. Mahbub and A. Abdallah, “Securing Microservices,” in IT Professional, vol. 21, no. 1, pp. 42-49, Jan.-Feb. 2019,
doi: 10.1109/MITP.2018.2876987.

14.	 Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems: survey of architecture patterns, Voprosy
kiberbezopasnosti, №4 (38), 2020. pp 32-43. DOI: DOI: 10.21681/2311-3456-2020-04-32-43

15.	 Шелухин О.И., Рябинин В.С., Фармаковский М.А. Обнаружение аномальных состояний компьютерных систем средствами
интеллектуального анализа данных системных журналов. Вопросы кибербезопасности. 2018. № 2(26). С. 36-41. DOI:
10.21681/2311-3456-2018-2-33-43

16.	 Бутусов И.В, Романов А.А. Предупреждение инцидентов информационной безопасности в автоматизированных информационных
системах. Вопросы кибербезопасности. 2020. №5(39). С. 45-51. DOI: 10.21681/2311-3456-2020-05-45-51

