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Abstract 
Purpose of the article: development of quantum algorithms for efficient solution of cryptanalysis problems 

of asymmetric encryption schemes (RSA, ElGamal) and digital signature (DSA, ECDSA or RSA-PSS), based on 
computationally difficult problems of factorization and discrete logarithm.

Research methods: Methods of quantum cryptanalysis based on the algorithms of Shor, Grover, Simon, etc. 
Results: algorithms for solving problems of quantum cryptanalysis of two-key cryptography schemes in 

polynomial time.
Practical relevance: consists in developing a solution for computationally difficult problems of factorization 

and discrete logarithm in polynomial time, taking into account the security of the discrete algorithm (DLP) and the 
discrete elliptic curve algorithm (ECDLP). The obtained scientific results formed the basis for the development of 
a special Software Development Kit, SDK for cryptanalysis “Kvant-K”. The Certificate of state registration of the 
computer program No. 2020665981 was received.
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Implementation of the Shor factorization algorithm

Shor’s algorithm is a quantum algorithm for factor-
ing a number N � for O Nlog( )( )3  time and O Nlog( )  
resources [1,2,8]. The algorithm exposes the RSA key (a 
popular cryptographic method) to the danger of being 
easily hacked if it is run on a quantum computer large 
enough for this. Shor’s algorithm can do this in polyno-
mial time [22,29]. 

Like many of the quantum computer algorithms, 
Shor’s algorithm is probabilistic: it gives the correct 
answer with any predetermined probability. This is 
achieved by repeatedly re-executing the algorithm. 
Since the proposed solution is verifiable in polynomial 
time, the algorithm can be modified to work in the ex-
pected polynomial time with zero error. 

Shor’s algorithm was developed in 1994, but the 
classical part was developed before J.L. Miller. Seven 
years later, in 2001, Shore’s quantum algorithm was 
demonstrated by a group at IBM, which carried out the 
factorization of the number 15 into 3 and 5 using a 
quantum computer with 7 qubits. In 2016, scientists at 
the Massachusetts Institute of Technology and the Uni-
versity of Innsbruck designed a quantum computer that 
implements a scalable version of the Shor algorithm 

proposed by a Russian physicist. By Alexey Kitaev [8]. 
This significantly reduced the number of qubits used to 
perform operations.

The task to be solved was to find the integer divisor 
of an p integer N in the interval between 1and N . 

Shor ‘s algorithm consists of two parts: 
1) Reduction of the factorization problem to the or-

der search problem, which can be solved on a classical 
computer. 

2) Execution of a quantum algorithm to solve the 
problem of finding the order. 

The classical part of Shor ‘s algorithm looks like this: 
1) We select a random number a N< . 
2) We calculate GCF a N,�( )  (the GCF is the largest 

common divisor). This can be done using Euclid’s 
algorithm. 

3) If GCF a N ≠ 1, then there is a nontrivial divisor 
N , then the execution of the algorithm ends. 

4) Otherwise, we use the period search routine 
(below) to find the r  period of the following function: 
f x a mod Nx( ) = � , i.e., the smallest integer r  for 

which f x r f x+( ) = ( ) . 
5) If r  is odd, go back to step 1.
6) If a mod Nr /2 1≡ − , go back to step 1.
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7) The divisors of N are GCF a N
r
2 1±







, . 

The quantum part of the Shor algorithm is a 
subroutine for searching for the period of the function: 

1) A pair of initial and output qubit registers 
with log2 N qubits are each initialized in a state 

x

− ∑1 2 θ/  where x � runs from 0 to 1. 

2) Constructing f x( )  as a quantum function and 
applying it to the above state, we get:

U x N e yQFT
y

ixy N= − −∑1 2 2/ / .π

3) This leaves us in the following state:

N e y f x
x y

ixy N− −∑∑ ( )1 2π / ;
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Figure 1. Diagram of the Shore factorization algorithm

4) Let’s make a measurement. We will get some 
output y  in the introductory register and f x0( )  in the 
output register. Since f  is periodic, the probability of 
obtaining a certain pair during measurement of y  and 
f x0( )  is given by the expression: 

N e N e
x f x f x

ixy N

b

i x rb y N−

( )= ( )

− − − +( )∑ ∑=1 2

2

2 2
2

0

0

:

/ / .π π
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5) The analysis shows that this probability becomes 
higher, when yr N/  becomes closer to the whole. 

6) Convert yr N/ � to an irreducible fraction and find 
the denominator ri that is a candidate for r . 

7) Let’s check if f x f x r( ) = +( )′ is being 
executed. If yes, then the problem is solved. 

8) Otherwise, we get more candidates for r , using 
values close to y , or multiples of ri . If one of these 
candidates is suitable, the problem is solved. Otherwise, 
we return to step 1 of the subroutine. 

Thus, the classical Shor factorization algorithm 
consists of two parts (Figure 1). The first part of the 
algorithm reduces the factorization problem to the 
problem of detecting the period of the function and can 
be implemented classically. The second part finds the 
period of the function using the inverse quantum Fourier 
transform (it generates quantum acceleration). 

Therefore, in the first stage there are divisors by 
period. Integers that are less than N  and mutually 
prime with N  form a finite multiplication group modulo 
N , which is usually denoted by Z NZ x/( ) . By the 
end of step 3, there is an integer a in this group. Since 
the group is finite, a  must have a finite order r , the 
smallest positive integer such that a mod Nr ≡ 1� � .

Suppose there is an opportunity to find r , and 
it is even. Then a a a mod N N a ar r r r r− = −( ) +( ) ≡ ⇒ −( ) +( )1 1 1 0 1 12 2 2 2/ / / /| ,

a a a mod N N a ar r r r r− = −( ) +( ) ≡ ⇒ −( ) +( )1 1 1 0 1 12 2 2 2/ / / /| ,where r � is the 
smallest positive integer such that ar ≡ 1 , therefore
�N  is not a divisor ar /2 1− . If N � is also not a divisor 
of ar /2 1+ , then N  must have a nontrivial common 
divisor with each of a 8 ar r/ /− +( ) , which leads 
us to factorization N . If N  is the product of two primes, 
then this is the only possible factorization. 

The second part of the algorithm is devoted to finding 
the period. Here, Shor’s algorithm relies on the ability of 
a quantum computer to be in a superposition of states. 
The function is calculated at all points simultaneously 
in order to calculate the period of f  function. Quantum 
mechanics does not allow access to this information 
directly. The measurement will result in only one of all 
possible values, destroying all the others. Therefore, it 
is necessary to transform the superposition into another 
state, which will return the correct answer with a high 
probability. This is achieved by the inverse quantum Fou-
rier transformation [1-12]. 

Shore had to solve the following three 
“implementation” problems, and all of them had to 
be implemented “quickly”. This means that they can 
be implemented with a set of quantum gates that are 
polynomial in logN  [13-18, 22, 29]. So, it is necessary: 

1. Create superpositions of states. This can be done 
by applying Hadamard gates to all qubits of the input 
register. Another approach would be to use the quantum 
Fourier transformation. 

2. Apply function f as a quantum transformation.  
Shor used multiple squaring for his modular exponential 
transformation to achieve this. Note that this step is 
more difficult than the quantum Fourier transformation, 
which requires auxiliary qubits and a significantly larger 
number of gate triggers. 

3. Perform the inverse quantum Fourier 
transformation. When using controlled rotation gates, 
and Hadamard gates, Shor constructed a circuit for 
the quantum Fourier transformation, which uses only 
O Nlog( )( )2  gates. 

After all these transformations, the measurement 
will give an approximate value of the r  period. For 
simplicity, let’s assume that there exists such y  that 
yr N/ � is an integer. Then the probability to measure y  

is 1. We then notice that e ibyr N2 1π / =  for all b  integers. 
Therefore, the sum which square gives the probability to 
get when measured y  will be equal to N r/ , since b  
roughly takes values of N r/  and thus the probability 
is equal to 1 2/ r . There are such yr � that yr N/  is an 
integer, and also probabilities for f x0 , so the sum of 
probabilities is 1 [19-22].

Implementation of the Grover’s search algorithm
Consider Grover’s algorithm, a quantum algorithm 

for fast search in an unordered database [6, 23-26]. 
With the existing technical means, one of the fastest 
classical search algorithms is linear search, which 
requires O N[ ]  time. Grover’s algorithm, using the 
capabilities of quantum computers, solves the problem 
of searching in N records for the desired time O N ]  
using O Log N�[ ]  space. It is proved that it is the fastest 
quantum algorithm for searching in an unordered 
database and that there are no classical algorithms 
of the same efficiency. Grover’s algorithm provides a 
quadratic increase in speed, while some other quantum 
algorithms, for example, the Shor factorization algorithm, 
give an exponential gain compared to the corresponding 
classical algorithms. Despite this, the quadratic increase 
is significant for sufficiently large values of �N  [26-31].

Although the main purpose of Grover’s algorithm 
is considered to be a database search, it can be more 
accurately described as a “function reversal” algorithm. 
Technically speaking, having a function y F E= ( )  that 
can be calculated using a quantum computer, Grover’s 
algorithm calculates x � knowing y. The search in the 
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database corresponds to the call of a function that 
takes a certain value if the argument x corresponds to 
the desired record in the database. Grover’s algorithm 
can also be used to find the median and the arithmetic 
mean of a number series. In addition, it can be used to 
solve NP  complete problems by an exhaustive search 
among a variety of possible solutions. This can lead to 
a significant increase in speed compared to classical 
algorithms, although it does not provide a “polynomial 
solution” in general form [6,26,32-34]. 

Like most quantum computer algorithms, Grover’s 
algorithm is probabilistic in the sense that it gives 
the correct answer with some probability (generally 
speaking, with any given in advance). The probability of 
an incorrect answer can be reduced by increasing the 
number of repetitions of the algorithm (an example of 
a deterministic quantum algorithm is the Deutsch-Joz 
algorithm [23,24], which always gives the correct answer 
with fixed confidence). As an example, let’s give Grover’s 
algorithm, which searches for a single matching record. 

Suppose there is an unordered database with N �
records. The algorithm requires a N -dimensional 
state space H � that can be generated by log2 N  
qubits. Let’s number the database entries in this way:
0 1 2 1. 

Let’s choose an observable Q  acting in H �with N  
different eigenvalues, which are all known. Each of 
the eigenstates Q  encodes one of the records in the 
database in the way described below. Let’s denote the 
eigenstates (using Dirac notation) as 0 1 as 
their corresponding eigenvalues 1 . 

Consider a unitary operator Uw  that acts as a 
subroutine comparing database records by some 
search criterion. The algorithm does not specify how 
this subroutine works, but it should be a quantum 
subroutine that works with superpositions of states. 
Further, the operator Uw  must act only on its own state 
w , which corresponds to the database record that falls 
under the search criterion. We will require that Uw  
performs the following transformation: U w ww = −  
and U v vw | = −  for every v w≠ . The goal is to identify 
the eigenstate w , or equivalently, the eigenvalue of ω, 
on which the operator acts Uw .

Grover’s algorithm (Figure ) consists of the following 
steps [6,26,33]: 

1.	 Initialize the system in the state s
N

x
x

= ∑1
. 

2.	 Perform the following “Grover iterations” r N( )
times. 

3.	 Function r N( ) is described below. 
a. Apply the Uω  operator. 
b. Apply the ss  operator. 

4.	 Let’s take a Ω  measurement. The result of the 
measurement will be λω with a probability tending 
to 1at N 1 . With λω can be obtained ω . 

Figure 2. Diagram of Grover’s quantum search algorithm

Our initial state is S
N

X
x

= ∑1
. Consider a 

plane spanned by vectors s  and w . Let wx  be a ket 
vector in this plane perpendicular to the w  vector. Since 
w  is one of the basis vectors, the overlap is equal to 

ws
N

| = 1
. In geometric interpretation, between w  
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and the s  angle is Π / 2 θ− , where w � is determined 

from cos 2 θ 1
Π

N
− =  and sin θ 1=

N
. The op-

erator Uw acts as a reflection in a hyperplane orthogo-
nal to w ; for vectors in a plane spanned by vectors s  
and w , it acts as a reflection relative to a straight line 
defined by a wx  vector. The Us  operator is a reflection 
relative to a line defined by a s  vector. Consequently, 
the state vector remains in the plane stretched over the 
vectors s  and w , after each action of the Us � operator 
and Uw  operator, and it can be directly verified that the 
U Us w  operator of each iterative step of the Grover algo-
rithm rotates the state vector by an angle 20 in the w  
direction [6,26,31-34].

It is necessary to stop when the state vector passes 
close to the w  vector; after that, the subsequent 
iterations rotate the state vector in the direction from w
, reducing the probability of getting the correct answer. 
The number of required iterations is equal to r . You 
need Π

r2
θ ,  r Π= −θ    2 to combine the 

state vector exactly with w  However, the number r  
must be an integer, so, in general, it can only be selected 
as the closest to 1 4 θ   2Π − . The angle between w  
and the final state vector is equal O θ , so the probability 
of getting an incorrect answer is equal to 

O cos si1
1
2− = ≈

−
θ θ θ , at N 1 , 

therefore r Π N→
4

. Moreover, the probability of 

getting an incorrect answer becomes O N1/( ) , and 
tends to zero for large N � [1,6,26].

Development of an algorithm for recovering 
a symmetric encryption key

Grover’s algorithm is usually described as a search 
algorithm in an unordered array [26]. We modify Grover’s 
algorithm into an algorithm for recovering the symmetric 
encryption key from the message text and ciphertext 
(Figure 3.). When using a classic computer, this will re-
quire a complete search with complexity O m2( ) , where 
� �m is the length of the key. For a quantum computer, 
this complexity can be greatly reduced as follows. 

Consider the function y f k x= ( ), . This function 
encrypts the message x  on the key k � where Z n, ∈

2  . 
Let the message-ciphertext pair be known: x x1 2,

Consider the function:

f k
ifA k x y
if A k x y

( ) =
( ) =
( ) ≠





1 1
0 2

1

1

, ,

Find the value of the argument at which this function 
is equal to 1.

We propose the following quantum algorithm for 
solving the problem.

Grover’s algorithm implemented on a quantum circuit
Step 1. Let’s start the algorithm by bringing the 

quantum register to the state:

1
2 0

2 1

m
t

m

t
=

−

∑ .

Step 2. Calculating the function f � from this register: 

1
2 0

2 1

m
t

m

t
=

−

∑ ( ).

Step 3. Repetition πΠ m

4
2  times of the procedure 

of increasing the amplitude of all ti � for which
f ti( ) = 1� � (the description of the procedure is given 

below).
Step 4. Measurement of the state of the register. The 

result will be equal to the desired key with probability 
2−n.

Step 5. Checking the result. In case of unreliability, 
the algorithm is executed again. The end of the algorithm.

The procedure for increasing the amplitude consists 
of two stages.

1.	 The change in amplitude from a j � to is� � �−a j  for 
all ti � � such that f ti( )=1. This operation is a 
transformation Z � � over the last quantum bit of 
the register.

2.	 Inversion relative to the mean. This 
transformation can be written as follows:

i
i

i
ср i ia t t2

where aср is the average amplitude.
The inversion relative to the mean can be written as 

a matrix:

D =

−

−

2 1 2

2 2 1

2
2

2 2

N
N

N
N

L N

N N

/ .

2 1−

























106

Basic Algorithms Quantum Cryptanalysis

Вопросы кибербезопасности. 2022. № 1(53) 

L. Grover showed [26] that this transformation can 
be efficiently implemented on a quantum computer, and 
the complexity of the corresponding O n2 2/  algorithm. 
Thus, the advent of quantum computers will reduce 
the effective key length by half. This suggests that 
symmetric ciphers with a key length of at least 256 bits 
should already be used.

In addition, a similar algorithm can be used to crack 
hash functions, and therefore hash functions with a 
block length of at least 256 bits should be used.

Development of an algorithm for cryptanalysis 
of the RSA asymmetric encryption system 

The stability of the RSA asymmetric encryption 
system is based on the superpolynomial computational 
complexity of factorization of natural numbers. However, 
there is a quantum algorithm which complexity is 
polynomial.

Let’s set the problem as follows: for a natural N  
number having exactly two prime divisors, find these 
divisors. Note that for some a � number, its order modulo 

Figure 3. Quantum algorithm for symmetric encryption key recovery  based on the message 
 text and ciphertext has been developed
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N , is such that it is a mod Nr = −1� � � even. Then we will 
write the expression in the following form:

a a mod Nr r/ /2 2 0−( ) + =
Thus, knowing �r , we can efficiently find the divisors 

of a number N . Note that the order r  is actually the 
period of the function � � �a mod Nx .

There is the following quantum algorithm (Figure ) 
to find the period of the function. Consider the periodic 
function f x( ) . The domain of definition and the do-

main of values of this function are sets of integers, with 
0 2 1≤ ≤ −x n  and 0 2 1≤ ( ) ≤ −f x m . A quantum 
register consisting of n m+  quantum bits is required 
to find the period of this function. Let ‘s bring it to the 
following state:

1
2

0
0

2 1

n
x

n

x
=

−

∑ , .

Now we calculate the function f � so that we get the 
state:



108

Basic Algorithms Quantum Cryptanalysis

Вопросы кибербезопасности. 2022. № 1(53) 

1
2 0

2 1

, .
n

x

n

x f x
=

−

∑ ( )

Let’s measure the last m � quantum bits, i.e., the 
quantum bits related to f E( ) . Then the quantum 
register will switch to the state:

x f x u

x u
:

, .
( )=
∑

Let’s carry out the quantum Fourier transformation 
(the algorithm is given below), as a result we get the 
state:

Figure 4. Quantum algorithm for cryptanalysis of the RSA asymmetric encryption system
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j
j

n

c j
r∑ .2

where c j  are equal to zero for all � j  non-multiples of 
2�nr . If the r  period does not divide 2nn , the transfor-
mation is performed inaccurately, with a large amplitude 
concentrated near integer multiples of /[2n:r].

Let ‘s measure the resulting state and get a v  
number.

If the period is equal to the power of two, then 

v j
r

n

= 2 . Since in most cases are mutually simple, the 

reduction of the v
n2

 fraction will give a fraction, the 

denominator of which is the period. 
In general, either we will have to run the entire 

algorithm several times until we get the correct value 
of the period (the maximum amplitude corresponds to 
it, and, consequently, the maximum probability), or use 
the infinite fraction decomposition known from number 
theory [1,5,7, 21-34]. 

The quantum Fourier transformation is defined as:

U x e cQFT m
t

Πicxm

m( ) =
=

−

∑1
2 0

2 1 2
2 .

P. Shor [29] showed that such a transformation can 
be constructed using only two types of quantum gates 
m m +( )1 2/ . One of them is a Hadamard transforma-
tion  applied to j  the quantum bit (let’s denote it to 
H j  ). Another gate implements a two-bit transformation 
of the form:

S

e

j k

i Π
k j

, =









 −

0
0

0
0

2











At the same time, the quantum Fourier transformation 
can be set as follows:
H S KS H KH S S H S Hm m m m m m m m m m0 0 1 0 1 1 3 3 2 3 1 2 2 1 1, , , , ,− − − − − − − − − − =

=
=

=

= +

=

∏ ∏
k

m

k
t k

m

k tH S
0

1

1

1

, .

After this conversion, the bit order should be 
reversed. This can be done either by an appropriate 
quantum scheme, or, if a measurement takes place 
immediately after the quantum Fourier transformation, 
in a classical way.

The considered quantum factorization algorithm 
has O n3( )  complexity. At the same time, the best 
classical factorization algorithm — the number field 
sieve algorithm [32] has complexity:

O exp c n nlog log log/ /( ) ( )( )( )1 3 1 3
,

Where c = 64
9

. In other words, Shor’s algorithm 

has polynomial complexity, and the best classical 
algorithm has superpolynomial complexity [1,2,4-
11,29].

Development of an algorithm  
for cryptanalysis of the El Gamal system

El-Gamal system is based on the difficulty of 
calculating a discrete logarithm, i.e., if g  is the forming 
element of a finite G — group, then, knowing that a G∈  , 
it is necessary to find r G∈ � such that a gi�= . Most 
often this system is used for a group Zp and for a group 
of points of an elliptic curve.

There is a quantum Shor algorithm [29] for 
calculating the discrete logarithm (Figure ). Here is its 
original version, which is intended for the group Zp
(where р- - simple).

First, we will find q - the power of two, such that 
р p2 . Let ‘s bring the quantum register to the 
state:

1
1 0

2

0

2

p
a b q x mod p

a

p

b

p
a b

−
( )

=

−

=

−
−∑∑ , ,

Applying the Fourier transformation to the first and 
second parts of the register, we obtain the state of the 
register:

1
1 0

2

0

2 2

q p
e c d q x mod p

c

q

d

q Πi
q

ac bd
a b

−( ) ( )
=

−

=

− +( )
−∑∑ , ,

Let’s measure the state of the quantum register. As 
a result, with a probability of at least 1 480/ , we will get 
A dd  such that:

− ≤ +
−( ) − −( ){ }

−( )








 ≤ ( )1

2
1 1

1
1
2

1
q

d
q

r
c p c p q

p q q
modq

In order to get a candidate for r , it is necessary to 
round d q/  to the nearest multiple p − , then divide 

modulo p −1 on 
c p c p q

q
−( ) − −( ){ }1 1

. The 
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Figure 5. Quantum cryptanalysis algorithm of El Gamal system
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complexity of this algorithm is estimated as O n3( ) . 
Note that the complexity of the best classical algorithm 
for a discrete logarithm is estimated as superpolynomial.

Note that there is a variant of Shor’s algorithm for a 
group of points of an elliptic curve over a field GP p( )
that has O n3( ) complexity, and it is also hypothesized 
that a similar algorithm exists for elliptic curves over 
other fields [1-29, 31-34].

Thus, the appearance of existing samples of quantum 
computers will lead to the fact that many cryptosystems, 
primarily asymmetric, will become unstable, which 
will lead to the impossibility of using asymmetric 
cryptosystems and, consequently, to the impossibility 
of secure data transmission in dual-use and military 
systems. Electronic signatures and key distribution 
schemes will also cease to be secure. It means that it 
is already necessary to develop new asymmetric crypto 
algorithms. At the same time, symmetric encryption 
algorithms will remain stable, but the effective key length 
of such algorithms will decrease by half [1,2,29,31-34]. 

Conclusions 
The stability analysis of the discrete algorithm (DLP) 

and the discrete algorithm with an elliptic curve (ECDLP) 
on the example of a number of applications improved 
the implementation of the original quantum Shor 
factorization algorithm. The algorithm is polynomial 
and is different from the known fundamental ability 
of software and hardware implementation in a hybrid 
computing environment (quantum computer IBM 
Q (16,20 and 100 cubits), and/or Super-computer 
5-generation IBM BladeCenter (2020), PBC on FPGA 
Virtex UltraScale (2020), VS RFNC-VNIIEF (2021) and 
SKIF P-0.5 (2018).

In the course of the work, a variant of the Grover 
quantum search algorithm was developed, the analysis 
of the limiting possibilities of which helped to establish 
that the overkill problem does not receive exponential 
quantum acceleration. However, it becomes possible to 
reduce the effective key length of symmetric encryption 
systems by exactly two times. 

Modification of the Grover search algorithm for 
solving problems of cryptanalysis of symmetric 
encryption schemes developed an original quantum 
algorithm for restoring the symmetric encryption key 
from the message text and ciphertext. The proposed 
algorithm solves the mentioned cryptanalysis problems 
with acceptable complexity and labor intensity. 

Analysis of the durability of RSA asymmetric 
encryption schemes based on the computational 
complexity of the integer factorization problem (DLP) 
allowed us to develop a polynomial quantum algorithm 
for cryptanalysis of the RSA asymmetric encryption 
system. The algorithm is polynomial and is different 
from the known fundamental ability of software and 
hardware implementation in a hybrid computing 
environment (quantum computerIBM Q (16,20 and 
100 cubits), and/or Super-computer 5-generation IBM 
BladeCenter (2020), PBC on FPGA Virtex UltraScale 
(2020), VS RFNC-VNIIEF (2021) and SKIF P-0.5 (2018).

Analysis of the strength of asymmetric encryption 
schemes, based on the computational complexity of 
the discrete logarithm problem (ECDLP), developed a 
polynomial quantum algorithm for cryptanalysis of the 
El-Gamal system. This made it possible to determine the 
requirements for the length of quantum registers (from 
several hundred qubits), sufficient to solve cryptanalysis 
problems in practice.

The article was prepared based on the results of research carried out with the support of the RFBR grant 
(No. 20-04-60080).
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Основные алгоритмы квантового 
криптоанализа

Петренко А.С.3, Петренко С.А.4

Цель работы: разработка квантовых алгоритмов для результативного решения задач криптоанализа схем 
асимметричного шифрования (RSA, Эль-Гамаля) и цифровой подписи (DSA, ECDSA или RSA-PSS), базирую-
щихся на вычислительно трудных задачах факторизации и дискретного логарифмирования.

Методы исследования: Методы квантового криптоанализа на основе алгоритмов Шора, Гровера, Саймона 
и др.

Результаты исследования: алгоритмы решения задач квантового криптоанализа схем двухключевой крип-
тографии за полиномиальное время.

Научная и практическая значимость результатов статьи состоит в выработке решения для вычислительно 
трудных задач факторизации и дискретного логарифмирования за полиномиальное время с учетом стойкости 
дискретного алгоритма (DLP) и дискретного алгоритма с эллиптической кривой (ECDLP). Полученные научные 
результаты легли в основу разработки специального Комплекта для разработки программного обеспечения, 
SDK криптоанализа «Квант-К». Получено Свидетельство о государственной регистрации программы для ЭВМ 
№2020665981.

Ключевые слова: квантовая угроза безопасности, криптографические атаки, квантовый криптоанализ, 
квантовые алгоритмы, алгоритмы Шора, Гровера и Саймона, квантовое преобразование Фурье, задачи фак-
торизации и дискретного логарифмирования.
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