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Abstract

Purpose of the article: development of quantum algorithms for efficient solution of cryptanalysis problems
of asymmetric encryption schemes (RSA, ElGamal) and digital signature (DSA, ECDSA or RSA-PSS), based on
computationally difficult problems of factorization and discrete logarithm.

Research methods: Methods of quantum cryptanalysis based on the algorithms of Shor, Grover, Simon, etc.

Results: algorithms for solving problems of quantum cryptanalysis of two-key cryptography schemes in
polynomial time.

Practical relevance: consists in developing a solution for computationally difficult problems of factorization
and discrete logarithm in polynomial time, taking into account the security of the discrete algorithm (DLP) and the
discrete elliptic curve algorithm (ECDLP). The obtained scientific results formed the basis for the development of
a special Software Development Kit, SDK for cryptanalysis “Kvant-K”. The Certificate of state registration of the

computer program No. 2020665981 was received.

Keywords: quantum security threat, cryptographic attacks, quantum cryptanalysis, quantum algorithms Shor,
Grover and Simon algorithms, quantum Fourier transform, factorization, and discrete logarithm problems.

Implementation of the Shor factorization algorithm

Shor’s algorithm is a quantum algorithm for factor-
inga number N for O (logN)3) time and O (log N)
resources [1,2,8]. The algorithm exposes the RSA key (a
popular cryptographic method) to the danger of being
easily hacked if it is run on a quantum computer large
enough for this. Shor’s algorithm can do this in polyno-
mial time [22,29].

Like many of the quantum computer algorithms,
Shor’s algorithm is probabilistic: it gives the correct
answer with any predetermined probability. This is
achieved by repeatedly re-executing the algorithm.
Since the proposed solution is verifiable in polynomial
time, the algorithm can be modified to work in the ex-
pected polynomial time with zero error.

Shor’s algorithm was developed in 1994, but the
classical part was developed before J.L. Miller. Seven
years later, in 2001, Shore’s quantum algorithm was
demonstrated by a group at IBM, which carried out the
factorization of the number 15 into 3 and 5 using a
quantum computer with 7 qubits. In 2016, scientists at
the Massachusetts Institute of Technology and the Uni-
versity of Innsbruck designed a quantum computer that
implements a scalable version of the Shor algorithm
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proposed by a Russian physicist. By Alexey Kitaev [8].
This significantly reduced the number of qubits used to
perform operations.

The task to be solved was to find the integer divisor
of an Pinteger N inthe interval between land N .

Shor ‘s algorithm consists of two parts:

1) Reduction of the factorization problem to the or-
der search problem, which can be solved on a classical
computer.

2) Execution of a quantum algorithm to solve the
problem of finding the order.

The classical part of Shor ‘s algorithm looks like this:

1) We select a random number a < N .

2) We calculate GCF (a,N) (the GCF is the largest
common divisor). This can be done using Euclid’'s
algorithm.

3) If GCF(a, N ) # 1, then there is a nontrivial divisor
N , then the execution of the algorithm ends.

4) Otherwise, we use the period search routine
(below) to find the I period of the following function:
f(x)=a'mod N, ie., the smallest integer I for
which f(x+ r): f(x)

5) If I' is odd, go back to step 1.

6)Ifa”>=—-1mod N , go back to step 1.
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7) The divisors of N are GCF (az il,NJ. 2) Constructing f(x) as a quantum function and
applying it to the above state, we get:
The _quantum pa_rt of the Shor algorithm _|s a UQFT ‘X>: N Y2 ze—Znixy/N ‘y>
subroutine for searching for the period of the function: v

1) A pair of initial and output qubit registers
with 10g2 N qubits are each initialized in a state 3) This leaves us in the following state:

N2 z |x>|9> where X runs from Oto N - 1. N~ z ze_znixym |y| f (X)>;
x v
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Figure 1. Diagram of the Shore factorization algorithm

N -1 Z e—27zi><y/N
x: £ (X)= (%)

4) Let's make a measurement. We will get some
output Y in the introductory register and f(xo) in the
output register. Since f is periodic, the probability of
obtaining a certain pair during measurement of Yy and
f(xo) is given by the expression:

2

- ‘ N 2 Ze—Zni(xoﬂb)y/N

2
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5) The analysis shows that this probability becomes
higher, when yr/ N becomes closer to the whole.

6) Convert yr/ N to an irreducible fraction and find
the denominator 7 that is a candidate for I .

7) Lets check if f(x)="f(x+r')is being
executed. If yes, then the problem is solved.

8) Otherwise, we get more candidates for I, using
values close to Y, or multiples of ' . If one of these
candidates is suitable, the problem is solved. Otherwise,
we return to step 1 of the subroutine.

Thus, the classical Shor factorization algorithm
consists of two parts (Figure 1). The first part of the
algorithm reduces the factorization problem to the
problem of detecting the period of the function and can
be implemented classically. The second part finds the
period of the function using the inverse quantum Fourier
transform (it generates quantum acceleration).

Therefore, in the first stage there are divisors by

period. Integers that are less than N and mutually
prime with N form a finite multiplication group modulo
N , which is usually denoted by (Z/NZ)X. By the
end of step 3, there is an integer ain this group. Since
the group is finite, @ must have a finite order I, the
smallest positive integer such that a” = 1mod N .

Suppose there is an opportunity to find r, and
it is even. Then a' —l—( a"? 1)(a”2 +1)
=0mod N,= N |( a"’? - )( r/2+1) where I'is the
smallest positive integer such that a” =1, therefore

N is not a divisor a”’> —1.1f N is also not a divisor

of a’? +1, then N must have a nontrivial common
divisor with each of (a"* =1 8(a”2 + 1) , which leads
us to factorization N .If N isthe product of two primes,
then this is the only possible factorization.

The second part of the algorithm is devoted to finding
the period. Here, Shor’s algorithm relies on the ability of
a quantum computer to be in a superposition of states.
The function is calculated at all points simultaneously
in order to calculate the period of f function. Quantum
mechanics does not allow access to this information
directly. The measurement will result in only one of all
possible values, destroying all the others. Therefore, it
is necessary to transform the superposition into another
state, which will return the correct answer with a high
probability. This is achieved by the inverse quantum Fou-
rier transformation [1-12].

Shore had to solve the following three
“implementation” problems, and all of them had to
be implemented “quickly”. This means that they can
be implemented with a set of quantum gates that are
polynomial in JogN [13-18, 22, 29]. So, it is necessary:

Kpunmoezpaguueckue memoodsi 3aujumei

1. Create superpositions of states. This can be done
by applying Hadamard gates to all qubits of the input
register. Another approach would be to use the quantum
Fourier transformation.

2. Apply function f as a quantum transformation.
Shor used multiple squaring for his modular exponential
transformation to achieve this. Note that this step is
more difficult than the quantum Fourier transformation,
which requires auxiliary qubits and a significantly larger
number of gate triggers.

3. Perform the inverse quantum  Fourier
transformation. When using controlled rotation gates,
and Hadamard gates, Shor constructed a circuit for
the quantum Fourier transformation, which uses only
O((log N)z) gates.

After all these transformations, the measurement
will give an approximate value of the I period. For
simplicity, let’s assume that there exists such y that
yr / N is an integer. Then the probability to measure y
is 1. We then notice that @M =1 forall b integers.
Therefore, the sum which square gives the probability to
get when measured Y will be equalto N /r,since b
roughly takes values of N /7 and thus the probability
is equal to 1/1*. There are such yr that yr/ N is an
integer, and also probabilities for f (X0 ) so the sum of
probabilities is 1 [19-22].

Implementation of the Grover’s search algorithm

Consider Grover’s algorithm, a quantum algorithm
for fast search in an unordered database [6, 23-26].
With the existing technical means, one of the fastest
classical search algorithms is linear search, which
requires O[N] time. Grover’'s algorithm, using the
capabilities of quantum computers, solves the problem
of searching in N records for the desired time O\/ﬁ]
using O[Log N] space. Itis proved that it is the fastest
quantum algorithm for searching in an unordered
database and that there are no classical algorithms
of the same efficiency. Grover’s algorithm provides a
quadratic increase in speed, while some other quantum
algorithms, for example, the Shor factorization algorithm,
give an exponential gain compared to the corresponding
classical algorithms. Despite this, the quadratic increase
is significant for sufficiently large values of N [26-31].

Although the main purpose of Grover’s algorithm
is considered to be a database search, it can be more
accurately described as a “function reversal” algorithm.
Technically speaking, having a function y = F(E) that
can be calculated using a quantum computer, Grover’s
algorithm calculates X knowing y. The search in the
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database corresponds to the call of a function that
takes a certain value if the argument x corresponds to
the desired record in the database. Grover’s algorithm
can also be used to find the median and the arithmetic
mean of a number series. In addition, it can be used to
solve NP complete problems by an exhaustive search
among a variety of possible solutions. This can lead to
a significant increase in speed compared to classical
algorithms, although it does not provide a “polynomial
solution” in general form [6,26,32-34].

Like most quantum computer algorithms, Grover’s
algorithm is probabilistic in the sense that it gives
the correct answer with some probability (generally
speaking, with any given in advance). The probability of
an incorrect answer can be reduced by increasing the
number of repetitions of the algorithm (an example of
a deterministic quantum algorithm is the Deutsch-Joz
algorithm [23,24], which always gives the correct answer
with fixed confidence). As an example, let’s give Grover’s
algorithm, which searches for a single matching record.

Suppose there is an unordered database with N
records. The algorithm requires a N -dimensional
state space H that can be generated by log, N
qubits. Let’'s number the database entries in this way:
01,2,...,N-1.

Let's choose an observable Q acting in Hwith N
different eigenvalues, which are all known. Each of
the eigenstates QQ encodes one of the records in the
database in the way described below. Let's denote the
eigenstates (using Dirac notation) as 0>,|ZI>,..., N - 1> as
their corresponding eigenvalues{fO,fl,. . ,fN—l} :

Consider a unitary operator U that acts as a
subroutine comparing database records by some
search criterion. The algorithm does not specify how
this subroutine works, but it should be a quantum
subroutine that works with superpositions of states.
Further, the operator UW must act only on its own state
W, Which corresponds to the database record that falls
under the search criterion. We will require that U,
performs the following transformation: UWW>= —|W>
andU,, | W= |—v> for every v # w . The goal is to identify
the eigenstate |W, or equivalently, the eigenvalue of w,
on which the operator acts U .

Grover’s algorithm (Figure ) consists of the following
steps [6,26,33]: 1

1. Initialize the system in the state| = W z |X>

X

2. Perform the following “Grover iterations” r(N)
times.

3. Function (N )is described below.
a. Apply the U operator.
b. Apply the U, = 2|s){s| -1 operator.

4. Let's take a € measurement. The result of the
measurement will be ),w with a probability tending
to 1at N >1.with A1 can be obtained @ .

Figure 2. Diagram of Grover’s quantum search algorithm
1

w2

plane spanned by vectors ’S> and |W> Let ‘WX> be a ket

vector in this plane perpendicular to the W vector. Since
|W> is one of the basis vectors, the overlap is equal to

1
W|S:W' In geometric interpretation, between |W

Our initial state is ’S>: |X> Consider a
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and the |9 angle is 1/2 -0, where W is determined

1 . 1
from cos (2 = 6) N and sin 0 N . The op
erator UW acts as a reflection in a hyperplane orthogo-
nal to |W); for vectors in a plane spanned by vectors |s)
andt‘W , it acts as a reflection relative to a straight line
defined by a |WX> vector. The US operator is a reflection
relative to a line defined by a |S vector. Consequently,
the state vector remains in the plane stretched over the
vectors |S and |W,aftereach action of the U, operator
and UW operator, and it can be directly verified that the
U.U, operator of each iterative step of the Grover algo-
rithm rotates the state vector by an angle 20 in the |W)
direction [6,26,31-34].

It is necessary to stop when the state vector passes
close to the |W vector; after that, the subsequent
iterations rotate the state vector in the direction from |W
, reducing the probability of getting the correct answer.
The number of required iterations is equal to I'. You
need 1 _g =20, = 1/4(n/6~2) to combine the

state vector exactly with |W> However, the number r
must be an integer, so, in general, it can only be selected
as the closest to 1/4(H/ 0-2 ) The angle between ’W>
andthefinalstatevectorisequalO(G),sothe probability
of getting an incorrect answer is equal to

O(l—cosze)=0(sin29),e zN%, at N>1,

N

therefore r%T. Moreover, the probability of
getting an incorrect answer becomes O(I/N), and
tends to zero for large N [1,6,26].

Development of an algorithm for recovering
a symmetric encryption key

Grover’s algorithm is usually described as a search
algorithm in an unordered array [26]. We modify Grover’s
algorithm into an algorithm for recovering the symmetric
encryption key from the message text and ciphertext
(Figure 3.). When using a classic computer, this will re-
quire a complete search with complexity 0(2'" ) , Where

M is the length of the key. For a quantum computer,
this complexity can be greatly reduced as follows.

Consider the function y = f(k,x). This function
encrypts the message X on the key K where x VYV E Zzn.
Let the message-ciphertext pair be known: X1, X2

Consider the function:

Kpunmoezpaguueckue memoodsi 3aujumei

1,ifA(k, x1) = y,
fk)= {O,if Ak, x2)# Y,

Find the value of the argument at which this function
is equal to 1.

We propose the following quantum algorithm for
solving the problem.

Grover’s algorithm implemented on a quantum circuit
Step 1. Let’s start the algorithm by bringing the
quantum register to the state:
1 2m-1
v
7 &
Step 2. Calculating the function f from this register:
1 2m-1

N 2 10 (th

Step 3. Repetition E 2™ times of the procedure

of increasing the amplitude of all #, for which
f(ti):l (the description of the procedure is given
below).

Step 4. Measurement of the state of the register. The
result will be equal to the desired key with probability
27"

Step 5. Checking the result. In case of unreliability,
the algorithm is executed again. The end of the algorithm.

The procedure for increasing the amplitude consists
of two stages.

1. The change in amplitude from a; to is—aj for

all ‘i such that f (ti)zl. This operation is a
transformation Z over the last quantum bit of
the register.

2. Inversion relative to the mean.

transformation can be written as follows:

Y= 2a, -atft

where @ is the average amplitude.
The inversion relative to the mean can be written as
a matrix:

This

2
L 2/N P
o =| 2in 21 L 2N
N
L L L L
2/N  2/N L 2/N-1
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Beginning of the
algorithm

v

> Obtaining ciphertext

v

Selecting the analyzed
part of the ciphertext

v

Formation of a
numeric series

v

Checking obtained
data

v

The data is incorrect s e dkia

The data is correct

correct ?

Ask the user to l
repeat the data entry @

Figure 3. Quantum algorithm for symmetric encryption key recovery based on the message
text and ciphertext has been developed

L. Grover showed [26] that this transformation can
be efficiently implemented on a quantum computer, and
the complexity of the corresponding O (2 ”/2) algorithm.
Thus, the advent of quantum computers will reduce
the effective key length by half. This suggests that
symmetric ciphers with a key length of at least 256 bits
should already be used.

In addition, a similar algorithm can be used to crack
hash functions, and therefore hash functions with a
block length of at least 256 bits should be used.

Development of an algorithm for cryptanalysis
of the RSA asymmetric encryption system

The stability of the RSA asymmetric encryption
system is based on the superpolynomial computational
complexity of factorization of natural numbers. However,
there is a quantum algorithm which complexity is
polynomial.

Let’s set the problem as follows: for a natural N
number having exactly two prime divisors, find these
divisors. Note that for some a number, its order modulo
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N ,issuch thatitis a” = 1mod N — even. Then we will
write the expression in the following form:

(a”2 —l)(a”‘" +1)=0mod N

Thus, knowing I, we can efficiently find the divisors
of a number N . Note that the order I is actually the
period of the function a* mod N .

There is the following quantum algorithm (Figure )
to find the period of the function. Consider the periodic
function f(x) The domain of definition and the do-

Kpunmoezpaguueckue memoodsi 3aujumei

main of values of this function are sets of integers, with
0<x<2"-1 and 0< f(x)<2”"-1. A quantum
register consisting of n+m quantum bits is required
to find the period of this function. Let ‘s bring it to the
following state:

1

2"-1
7z &0

Now we calculate the function f so that we get the
state:

DO0I1:10.21681/2311-3456-2023-1-100-115
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Figure 4. Quantum algorithm for cryptanalysis of the RSA asymmetric encryption system

1 % X, U).
\/Z_n ;‘X’ f (X)> x:f%=u| >
Let’s carry out the quantum Fourier transformation
Let’'s measure the last m quantum bits, i.e., the (the algorithm is given below), as a result we get the
quantum bits related to f(E) Then the quantum state:
register will switch to the state:
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2"
ZC]‘ JT>

where c, are equal to zero for all j non-multiples of
2" . If the r period does not divide 2™, the transfor-
mation is performed inaccurately, with a large amplitude
concentrated near integer multiples of /[2"].

Let ‘s measure the resulting state and get a V
number.

If thglz period is equal to the power of two, then
v= j2—' Since in most cases are mutually simple, the

r
reduction of the Y fraction will give a fraction, the
27!
denominator of which is the period.

In general, either we will have to run the entire
algorithm several times until we get the correct value
of the period (the maximum amplitude corresponds to
it, and, consequently, the maximum probability), or use
the infinite fraction decomposition known from number
theory [1,5,7, 21-34].

The quantum Fourier transformation is defined as:

2M_1 2micx

UQFT( ) \/272 >

P. Shor [29] showed that such a transformation can
be constructed using only two types of quantum gates
m (m + 1) /2. One of them is a Hadamard transforma-
tion applied to ] the quantum bit (let's denote it to
Hj ). Another gate implements a two-bit transformation
of the form:

0 0 0
0 1 0 0
S,=[0 0 1 o0

0 0 0 e2

Atthe sametime, the quantum Fourier transformation
can be set as follows:

H,S,,KS,, H,KH, .S H

m=2

H =

m—1

—3,m— ZS

m=3,m-1

S

m— m—2,m-1

—HH Ts..
k=0 t=k+1

After this conversion, the bit order should be
reversed. This can be done either by an appropriate

Kpunmoezpaguueckue memoodsi 3aujumei

The considered quantum factorization algorithm
has O(ns) complexity. At the same time, the best
classical factorization algorithm — the number field
sieve algorithm [32] has complexity:

o (exp c(log n)l/3 (loglogn)" )) ,
4

Where C=,/— . In other words, Shor’s algorithm
has polynomial complexity, and the best classical
algorithm has superpolynomial complexity [1,2,4-
11,29].

Development of an algorithm
for cryptanalysis of the El Gamal system

El-Gamal system is based on the difficulty of
calculating a discrete logarithm, i.e., if g is the forming
element of a finite G — group, then, knowing that a € G,
it is necessary to find » € G such that a= gi. Most
often this system is used for a group Zp and for a group
of points of an elliptic curve.

There is a quantum Shor algorithm [29] for
calculating the discrete logarithm (Figure ). Here is its
original version, which is intended for the group Zp
(where p--simple).

First, we will find (- the power of two, such that
p<g<2p . Let ‘s bring the quantum register to the
state:

p 2p-2

;‘aqu (mod p):

Applying the Fourier transformation to the first and
second parts of the register, we obtain the state of the
register:

1 g-29-2 2—Hi(ac+bd)
g

q(p-l);;

*x”" (mod p)).

Let’'s measure the state of the quantum register. As
a result, with a probability of at least 1/ 480, we will get
Aandd such that:

_1_d [c(p=D)-fe(p-Diq,
29 q

(P-1)q
In order to get a candidate for I', it is necessary to
round d / ¢ to the nearest multiple1/ p —1, then divide

] 2 —(mod1).

quantum scheme, or, if a measurement takes place —{C( —l)}
immediately after the quantum Fourier transformation, modulo p -1 on P g The
in a classical way. q
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Figure 5. Quantum cryptanalysis algorithm of El Gamal system
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complexity of this algorithm is estimated as O(ns).
Note that the complexity of the best classical algorithm
for a discrete logarithm is estimated as superpolynomial.

Note that there is a variant of Shor’s algorithm for a
group of points of an elliptic curve over a field GP (p)
that has O(n3) complexity, and it is also hypothesized
that a similar algorithm exists for elliptic curves over
other fields [1-29, 31-34].

Thus, the appearance of existing samples of quantum
computers will lead to the fact that many cryptosystems,
primarily asymmetric, will become unstable, which
will lead to the impossibility of using asymmetric
cryptosystems and, consequently, to the impossibility
of secure data transmission in dual-use and military
systems. Electronic signatures and key distribution
schemes will also cease to be secure. It means that it
is already necessary to develop new asymmetric crypto
algorithms. At the same time, symmetric encryption
algorithms will remain stable, but the effective key length
of such algorithms will decrease by half [1,2,29,31-34].

Conclusions

The stability analysis of the discrete algorithm (DLP)
and the discrete algorithm with an elliptic curve (ECDLP)
on the example of a number of applications improved
the implementation of the original quantum Shor
factorization algorithm. The algorithm is polynomial
and is different from the known fundamental ability
of software and hardware implementation in a hybrid
computing environment (quantum computer [|BM
Q (16,20 and 100 cubits), and/or Super-computer
5-generation IBM BladeCenter (2020), PBC on FPGA
Virtex UltraScale (2020), VS RFNC-VNIIEF (2021) and
SKIF P-0.5 (2018).

In the course of the work, a variant of the Grover
quantum search algorithm was developed, the analysis
of the limiting possibilities of which helped to establish
that the overkill problem does not receive exponential
quantum acceleration. However, it becomes possible to
reduce the effective key length of symmetric encryption
systems by exactly two times.

Modification of the Grover search algorithm for
solving problems of cryptanalysis of symmetric
encryption schemes developed an original quantum
algorithm for restoring the symmetric encryption key
from the message text and ciphertext. The proposed
algorithm solves the mentioned cryptanalysis problems
with acceptable complexity and labor intensity.

Analysis of the durability of RSA asymmetric
encryption schemes based on the computational
complexity of the integer factorization problem (DLP)
allowed us to develop a polynomial quantum algorithm
for cryptanalysis of the RSA asymmetric encryption
system. The algorithm is polynomial and is different
from the known fundamental ability of software and
hardware implementation in a hybrid computing
environment (quantum computerIBM Q (16,20 and
100 cubits), and/or Super-computer 5-generation IBM
BladeCenter (2020), PBC on FPGA Virtex UltraScale
(2020), VS RFNC-VNIIEF (2021) and SKIF P-0.5 (2018).

Analysis of the strength of asymmetric encryption
schemes, based on the computational complexity of
the discrete logarithm problem (ECDLP), developed a
polynomial quantum algorithm for cryptanalysis of the
El-Gamal system. This made it possible to determine the
requirements for the length of quantum registers (from
several hundred qubits), sufficient to solve cryptanalysis
problems in practice.

The article was prepared based on the results of research carried out with the support of the RFBR grant

(No. 20-04-60080,).
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OCHOBHBIE AJITOPUTMbI KBAHTOBOI'0
KPUNTOAHAJIU3A

Merperko A.C.3 MetpeHko C.A.*

Lienb pabotbi: pa3paboTka KBaHTOBbIX aArOPMTMOB AAS PE3YALTATUBHOIO PELLEHMS 3aAad KPUMToaHaAM3a CXem
acuMMeETpuUYHOro LwnppoBaHus (RSA, dab-lfamansi) u umgpposor noanvcu (DSA, ECDSA van RSA-PSS), 6a3upyro-
LMXCA Ha BbIYMCAUTEABHO TPYAHbIX 3aAadax ¢pakTopusaumm U AMCKPETHOIO AOraprupMUpoBaHUA.

MeToabl nccaeaoBaHuA: MeToabl KBAHTOBOIO KpMnToaHaAu3a Ha OCHOBE aaropuTMoB LLlopa, [poBepa, CariMoHa
u Ap.

Pe3yAbTaTbl UCCAEAOBAHUA: aATOPUTMbI PELLIEHNWS 3aAay KBAHTOBOIO KpUMToaHaAu3a CXem ABYXKAKOUEBOM KpUri-
Torpagum 3a NOAMHOMMUAAbHOE BPEMS.

HayuHas u npakTMueckas 3HaUUMOCTb PE3YALTATOB CTaTbi COCTOUT B BbipabOTKe peLLlEHUS] AAS] BbIYMCAUTEABHO
TOYAHbIX 3aAa4 GpakTopusaLmmu n AUCKPDETHOIO AOrapupmMupoBaHus 3a NOAMHOMMAAbLHOE BPEMS C YY4ETOM CTOMKOCTH
AUCKpeTHOro anroputma (DLP) n AUCKPETHOIro aAropuTMa ¢ IMUNTUYeckon KpuBor (ECDLP). MoAyyeHHbIe Hay4YHble
pe3yAbTatbl A€IAM B OCHOBY pa3paboTki crieLnarbHoOro KoMnaekTa ansi pa3paboTtku nporpaMmMHOro obecrneyeHus,
SDK kpuntoaHaansa «KBaHT-K». [TonyyeHO CBMAETEALCTBO O rOCyAapPCTBEHHOM peructpaumm nporpamMmbl A IBM
Ne2020665981.

KnroueBble cAoBa: KBaHTOBas yrposa 6e30MacHOCTHU, KpUNTorpapuyeckme ataku, KBaHTOBbINA KPUNTOaHaAM3,
KBaHTOBbIE aArOpUTMbI, aAropmtMbl LLlopa, [poBepa n CarivMoHa, KBaHTOBOE rpeobpa3oBaHue Oypbe, 3apaumn pakx-
TopuU3aLumm u AMCKPETHOIo AOrapupmMupoBaHus.

Cratbsi MOArOTOBAEHa M0 pe3yAbTataM MCCAEAOBaHMH, BbIMOAHEHHbIX MPU NMOAAEPXKE rpaHTa POOU
(Ne 20-04-60080,).
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