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Abstract. The rising prevalence of smart home systems in everyday life, attacks such as cyber flooding on these 
interconnected devices have become critical. The present research talks about the innovative model using adaptive 
threshold, which applies cumulative entropy analysis of time series data to detect and mitigate flood attacks more effectively 
in the smart home environment. The model sets dynamic thresholds adaptable to changes in data fluctuations in real-
time by utilizing cumulative entropy, a measure that identifies the unpredictability and variance of network traffic patterns. 
Advanced machine learning techniques will be further explored to refine the threshold process that will eventually lead to 
higher accuracy in detecting anomalies. In fact, essential factors including temporal patterns, types of protocols, and actions 
of users will be analyzed concerning their impact on objective metrics. Research aims at validating proposed adaptive 
threshold framework effectiveness in response toward significantly reducing false positives while improving responsiveness 
against emerging threats; hence contributing overall resilience of smart-home systems under flood attacks towards detected 
attacks. Anterior work shall focus on adapting algorithms and exploring scalability over diverse smart home architectures 
as an extension of this work. Research also intends to tackle questions linked with data privacy as well as system efficiency.
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1. Introduction
The increasing penetration of smart home systems 

in everyday life has brought about the enormous 
advantages of convenience and automation. 
However, this evolutional process also expose the 
shortcomings by vulnerability issues primarily focusing 
on possible cybersecurity threats, one of which is the 
Distributed Denial of Service (DDoS) attack that can 
immensely menace the operation of smart devices 
with potential risks to users’ safety and privacy. 
Therefore, it is extremely imperative to develop efficient 
countermeasures to timely detect and react upon this 
type of cyberattack [1,2]. A promising direction towards 
ameliorating smart home security is to adopt adaptive 
thresholding techniques relying on cumulative entropy 
based time series analysis. Entropy, a fundamental 
concept taken from inFormation theories, measures 
uncertain or random characteristics in given dataset. 
In network traffic analysis domain for instance, 
monitoring inherent entropy regimes facilitates 
distinguishing normal patterns from unusual behaviors 
underlying DDoS attacks. By employing cumulative 
entropy measures, researchers can develop adaptive 
methods that adjust thresholds dynamically based  
on realtimedata, thereby improving detection accuracy 
and reducing false positives [3].

2. Background on Topic
In recent years, the increasing popularity of smart 

home systems has raised serious concerns about 
cybersecurity, particularly related to distributed denial 
of service (DDoS) attacks that can severely overflow 
network resources, incapacitate smart devices, 
and pose threats to user security and privacy [4,5]. 
Therefore, defense mechanisms must be put into 
places to ensure the resiliency of smart home systems 
towards this type of attack. A promising solution can  
be perceived by adopting adaptive thresholding 
techniques based on entropy measures to analyze time-
series data that originate from network traffic [13,14]. 
Entropy is a measure that represents the uncertainty  
or randomness when characterizing a certain data-set. 
Specifically, utilizing entropy within the context of net
work traffic an alysis al lows re searchers to determine 
how different normal network requests (which are 
considered as non-malicious) are from exploitative 
counterparts illustrating DDoS traits (which are dee
med malicious)[15][17]. Researchers have consistently 
shown how cumulative entropy measures enable  
detection algorithms to become more adaptive  
and accurate due to their capability in adjusting 
dynamically with respect to current network conditions 
[18], [19].
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3. Related Works
Several works have studied thresholding techniques 

for anomaly detection innetwork traffic. For example, 
Sahoo and Arora (2004) proposed a thresholding tech
nique based on two-dimensional Renyi entropy that 
achieved a much better segmentation performance  
in image processing applications, indicating the poten
tial of entropy-based techniques to discriminate normal 
patterns from anomalies [8].

Dragos et al. (2020) investigated some entropy-
based metrics for uncertainty evaluation in Bayesian 
networks designed for cyber threat detection and con-
cluded that the entropy measurement is important 
both in performance estimation of a model and as an 
added value to decision-making under uncertainty [5].

This work paves the way for applying two-pronged 
on-line entropy based defense mechanism at DDoS at-
tack by defending attack traffic in path [7].

Recent improvements in adaptive thresholding tech-
niques show the potential of such methods in many  
domains. A machine learning-aided entropy-based 
anomaly detection framework for dynamic network  
adaptations was proposed by Timcenko and Gajin 
(2021) [6].

They elevate the need for adaptivity that relies  
on threshold adjustments by real-time data analy-
sis, which is essential in combating DDoS attacks in 
smarthomes [9].

The use of cumulative entropy in time series anal-
ysis has been presented in some previous works.  
In particular, some researches have focused on using 
cumulative residual entropy as a risk measure and they 
have proven that it is a useful tool in many different 
situations. This is consistent with our research goal  
to apply cumulative entropy for adaptive thresholding 
in the analysis of time series data of DDoS attacks 
[10,11]. Zhang et al. [12] conducted a comprehen-
sive survey on network anomaly detection frameworks 
based on kinds of entropy measures such as Shannon 
and Renyi entropies and concluded that using many 
kinds of features can improve the accuracy of model  
to against various anomalies types.

4. Detailed Raw Dataset Description Used in this Research
The UCM_FibIoT2024 dataset gathers substan-

tial data to understand better Distributed Denial  
of Service (DDoS) attacks against smart home central 
control units, namely the Fibaro Home Center 3. This 
dataset records many types of DDoS assaults, such  
as TCP SYN floods, I CMP fl oods, an d HT TP floods,  
to provide light on how they influence the operation  
and availability of IoT devices [16]. Data was collected  
on a local network using the hping3 tool for SYN  

and ICMP flood attacks, and the LOIC tool for HTTP 
flood assaults. Wireshark software was used to gather  
network traffic, and the information is available in PCAP  
and CSV formats for future analysis. The collected 
data includes critical details such as timestamps, 
source and destination IP addresses, protocols, packet  
lengths, and port numbers [16]. The major purpose  
of this dataset is to make it easier to simulate and 
analyze DDoS attacks on smart home central control 
units, hence serving as a resource for cybersecurity 
and IoT device protection researchers. Researchers 
can discover attack patterns, understand the dynamics 
of various forms of DDoS attacks, and design effective  
mitigation systems by inspecting network traffic records 
and packet captures [16]. The collection is structured 
to provide comprehensive logs for each attack, such  
as start and finish timings, frame numbers, and the 
total number of assault packets. For simplicity of usa
ge, the data is sorted into folders, and the SYN flood  
attack data is further split by the ports targeted (80, 
443, and 500)[16]. The UCM_FibIoT2024 dataset 
serves as a profitable instrument for analyzing and crea
ting resistance against DDoS attacks on IoT gadgets. 
It gives a viable asset to analysts and cybersecurity  
experts to successfully reenact, analyze, and mode
rate DDoS attacks [16]. For more information about  
the dataset, refer to the UCM_FibIoT2024 dataset  
is available at https:// doi.org/10.17632/p42xjtv8pv.1. 
However, for this study, we will be only using HTTP flood 
and ICMP flood data.

Figure 1: Flow Chart of the Raw Data Structure Files capture [17]
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Table 1.
Overview of Raw CSV Dataset Columns[16]

Column Name Description
No. Frame number.
Time Date and time of capture  

(dd.mm.yyyy hh:mm:ss).
Source Source IP address of the packet.
Destination Destination IP address  

of the packet.
Protocol Protocol type identifying  

the network protocol used  
For each packet.

Length Packet length in bytes.
Source port Source port of the packet.
Destination port Destination port of the packet.

5. Research Objective
We note here that the previous authors have uti-

lized several thresholding techniques in different fields  
and datasets to research different purposes. Howev-
er, no authors have used our novel approach, that is,  
network traffic detection with time series analysis  
using the cumulative entropy method with threshol
ding, to detect such attacks most likely in DDoS  
on smart home systems and on IoT devices specifically, 
which will ultimately help future research scope growth.
6. Methodologies Used in this research

6.1 Raw Data Preprocessing
Table 1 represents column names and descriptions 

of these featured columns in raw data preprocessing 
plays a very crucial and vital role and methods for this 
research. There were many steps performed on raw 
dataset for data preprocessing. First step was data 
cleaning, in this step we identified and rectified errors, 
inconsistencies, and inaccuracies in the raw dataset. 
We found source port and destination port were having 
huge number of missing, inconsistent and inaccurate 
values. We used techniques like handling missing data 
and removing duplicates to clean the dataset. Later 
we analyzed and removed source port and destination 
port due to their high inaccuracy and irrelevancy to this 
research outcome.

6.2 Exploratory Data Analysis
In this section, we will demonstrate the exploratory 

data analysis performed by us to analyze dataset more 
deeply. Firstly, we applied many data analysis codes 
and functions, we checked the dataset size, the data-
set description in terms of counts, min and max values, 
and different percentiles of the dataset in each column. 
There are two types of attack files used, one is HTTP 
flood, a type of attack that targets web servers by over-
whelming them with high HTTP requests. Another file 

is ICMP Flood, an attack that sends a large number 
of ICMPv6 packets (often ping requests, but in this  
research, data hping was used for a more aggressive  
attack) to a target, consuming bandwidth and resour
ces. In Table 2, we found that HTTP flood has a higher 
number of packet counts but the lowest frequency, 
whereas ICMPv6 flood has a higher frequency in com-
parison to HTTP flood. These findings results in ICMPv6 
floods having a higher effect in the consumption  
of storage and bandwidth uses, which can result in  
a DDoS attack in IoT devices and smart home systems.

In Table 3, we analyzed and found that IP address 
10.0.1.22 has the highest number of traffic as an  
IP source. HTTP floods have 132 unique values where-
as, ICMPv6 have the highest number of uniqueness  
in the traffic. As a finding, higher uniqueness in traffic 
are to have unknown distributed sources which is to re
sult into a DDoS attack (Distributed Denial of service 
attack) in the network.

Table 2. 
Summary of HTTP and ICMPv6 Flood Protocol Features

Feature HTTP Flood ICMPv6 Flood
Count 22,780,665 11,203,031
Unique 121 26
Top Protocol TCP ICMPv6
Frequency 8,060,484 11,172,532

Table 3.
Overview of HTTP and ICMPv6 Flood Source Features

Feature HTTP Flood ICMPv6 Flood
Count 10,799,707 11,203,031
Unique 132 11,214,481
Top Source 10.0.1.22 10.0.1.22
Frequency 4,859,392 6,602

In table 4, we analyzed and found the destination  
IP address request traffic. Also we found that the count 
of packet traffic had the same count. We discovered 
ICMPv6 requests, indicating a slightly higher volume 
compared to HTTP floods, with much higher frequen-
cy than source IP requests. Finally higher percentage 
of requests indicates more aggressive and sustained 
attack on target.

Table 4.
Overview of HTTP and ICMPv6 Flood Destination Features

Feature HTTP Flood ICMPv6 Flood
Count 10,799,707 11,203,031
Unique 127 1,747
Top Destination 10.0.1.22 10.0.1.22
Frequency 5,911,972 11,174,499
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7. Feature Engineering
We did feature engineering task to enrich the fea-

tures and applied stratified sampling technique on 
HTTP flood dataset and ICMPv6 flood dataset, stratified 
sampling, which involves dividing the population into 
subpopulations (strata) based on one or more common 
attributes; strata membership is determined by some 
factor(s) that are hypothesized to be related to the 
process being measured, such as class labels- to re-
duce business and increase the performance of model 
learning and testing.

The UCM_FibIoT2024 dataset records are enor-
mous (millions of records), processing whole CSV file 
at once requires more time-consuming and compu-
tation resources. Therefore, we applied stratified ran-
dom sampling to HTTP flood and ICMPv6 flood CSV fles 
for our experiment. We have considered the sample  
of frac = 0.02 for each file. In algorithm 1, we have 
demonstrated pseudo code representation to our code 
and method used on stratified sampling of high volume 
dataset. We have also used the time-based feature en-
gineering method to extract each feature from the time 
column in separate columns (year, month day, hour, 
minutes, seconds, microseconds).

Algorithm 1 Sampling from Dataset by Protocol
1:
2:
3: 

4: 
5: 
6:
7:
8:
9: 

10:

BEGIN
	 DATASET ← Load dataset
	 GROUPED_DATASET ← GROUP DATASET BY 	
	 ’Protocol’
	 SAMPLED_DATA ← []
	 For each GROUP in GROUPED_DATASET DO
	 	 SAMPLE ← SAMPLE 20% FROM GROUP
	 	 SAMPLED_DATA.APPEND(SAMPLE)
	 END For
	 FINAL_SAMPLED_DATA ← Convert 
	 SAMPLED_DATA TO 	 DataFrame
END

7.1 Cyclical Time Encoding
Further we used Cyclical Encoding technique to cre-

ate more features on time. To handle the cyclical nature 
of time (e.g., hours in a day, days in a week), we have 
converted time into a circular representation using sine 
and cosine functions. Let hour be the hour of the day 
(in 24-hour format). The angle can be calculated as:

	 angle = 

hour

24



 × 2π 	 (1)

The sine and cosine transFormations are defined  
as follows:

	 X = sin(angle) = sin 




hour

24



 × 2π



	 (2)

	 Y = cos(angle) = cos





hour

24



 × 2π



	 (3)

These transformations allow the model to capture 
the cyclical nature of time, effectively treating 23 : 00 
and 00 : 00 as close to each other. 

7.2 Seconds Since Epoch
The term seconds since the epoch represents 

the representation of time by counting the aggregate 
number of seconds elapsed, from a particular starting 
point in time, is called the epoch. Seconds since epoch  
are prominently used to detect and analyze Distributed 
Denial of Service (DDoS) attacks. Here, we highlight its 
usage concerning time-stamping and network traffic 
monitoring. In DDoS detection systems, every packet  
of network traffic can be timestamped in seconds since 
epoch format to keep the record of exactly when it was 
received. Accurate timestamps can be used to track 
trends, such as a traffic spike over an extended period 
of time indicating a possible DDoS attack. Using the 
timestamps from incoming packets detection systems 
can measure the number of packets or amount of traf-
fic within a given (40 seconds) window, if too many 
packets arrive within that time span. Systems can 
compare the number of packets received in an epoch  
to a threshold value and then generate an alert if the 
packet total is above a pre-determined threshold base-
line, indicative of DDoS. So, we created new feature 
called seconds since epoch. To do this we have created 
a mathematical formulae calculation to calculate sec-
onds since epoch on each packet traffic. Let T repre-
sent the timestamp from the data sample, and let T0 
denote the epoch time defined as:

	 T0 = Timestamp(2024, 1, 1, 0, 0, 0). 	 (4)

The Seconds Since Epoch can be calculated as fol-
lows:

	 SecondsSinceEpoch = (T − T0) ÷ 1 second. 	 (5)

Where:
• 	 T = [’Time’] (the dataset timestamp features);
• 	 T0 = Timestamp representing the epoch;
• 	 The division by 1 second effectively converts  

the time difference from a Timedelta object into  
an integer representing seconds.
The formula presented provides a clear method  

to calculating Seconds Since Epoch, which is funda-
mental in various applications involving time series 
analysis and event logging.

8. Mathematical Formulations For calculating entropy  
and detecting anomalies in packet data

8.1 Entropy Calculation
The Shannon entropy H (X) for a discrete random 

variable X is defined as:

	 H (X) = −
n

∑
i=1

 pi log2(pi)	 (6)
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Where:
• 	 pi is the probability of occurrence of the i -th out-

come.
• 	 n is the total number of distinct outcomes.

In this context, the entropy is calculated for packet 
lengths over a rolling window of size 10:

	 H (Lengthwindow) = −
m

∑
j=1

 pj log2(pj)	 (7)

Where:
• 	 m is the number of distinct packet lengths in the 

current window.
8.2 Cumulative Entropy Calculation
The cumulative entropy at time t can be expressed as:

	 C(t) =−
t

∑
i=1

 H (Lengthi). 	 (8)

Where:
• 	 C(t) is the cumulative entropy up to time index t.
• 	 H (Lengthi) is the entropy calculated For packet 

lengths at time index i.
8.3 Anomaly Detection
Anomaly detection is performed using a simple 

thresholding method. The threshold T is defined as:

	 T = μ + 3σ. 	 (9)
Where:

•	 μ is the mean of the cumulative entropy values.
• 	 σ is the standard deviation of the cumulative entro-

py values.
An anomaly occurs when:

	 A(t) = 



 1 	 if C(t) > T,
0 	 otherwise.

	 (10)

Where:
• 	 A(t) indicates whether an anomaly is detected  

at time index t.

9. Experiments
We extracted time components from time fea-

ture. We have written our own code for date-time fea-
ture with (Year, Month, Day, Hour, Minutes, Seconds,  
Microseconds). We used python prebuilt library called 
DATETIME. In algorithm 2 Label of the algorithm  
is "Extract Time Components from Date-time which 
tells us that this algorithm is responsible for extrac
ting specific-time-related features from date-time.  
In the beginning of the algorithm there is a comment 
saying that: dataset is a data-structure (like table  
or Data Frame) that has a column called Time which 
contains date-time values. A separate loop goes throw 
all rows in dataset one by one and extract time column 
value and stores it into new created separate column 
named (Year, Month, Day, Hour, Minutes, Seconds,  
Microseconds). The algorithm is finished with an «END» 
statement then. In general, this algorithm is designed 
to extract all the possible individual time components 

including year, month, day, hour, minute, second and 
microsecond of a date-time object separately in order 
to analyze or process them individually. It can be very 
helpful for data analysis purposes when we may want 
to analyze/visualize some patterns at year/month/day/
hour/minute/second/microsecond level or want to fil-
ter/group by these individual time components etc. 
while performing some machine learning tasks over 
timeseries like feature engineering.

We have used mathematical formulae for sine and 
cosine calculations for hour, for each row, it retrieves 
the value of hour and assigns it to hour value. Then  
it fetches the value of hour and stores it in an hour  
variable. It subsequently calculates sine and cosine  
of this hour value using above mentioned Formulas 1, 
2 and 3 as before. By doing these calculations, it maps  
the respective hour into a form of cyclic representation 
which helps to present time-concept to the models. Sine 
and cosine calculations for month, similarly, it fetches  
the value of month and stores it in a month variable. 
Then, it calculates sine and cosine for month value  
with formulae similar to hours but divided by 12. The 
algorithm ends with an «END» statement representing  
that all calculations have been made here. This algo-
rithm essentially performs conversion of cyclical time 
data (hours & months) into simple sine-cosine way. 
This whole code is classically inspired from https://en. 
wikipedia.org/wiki/Besselpublication by Don E. Knuth 
which approximates values of sin() & cos().

In algorithm 3, the algorithm name is «Calculate 
Seconds Since Epoch». The algorithm defines the con-
stant EPOCH_TIMESTAMP as a string, representing this 
epoch: «2024-01-01 00:00:00». It loops through each 
data row assuming that there is a column with date-
times Time in the dataset. For each row, it assigns the 
current timestamp from column Time to CURRENT_
TIMESTAMP. It calculates the difference CURRENT_
TIMESTAMP minus EPOCH_TIMESTAMP as TIME_DIF-
FERENCE. This difference represents how much time 
passed between the epoch and that timestamp.  
The algorithm converts this value then into seconds 
by dividing it by one second (which might be implicit 
for many programming languages if you handle simply 
date objects). The resulting number of seconds since 
the epoch SECONDS_SINCE_EPOCH, it saves in an ad-
ditional column named SecondsSinceEpoch, defined  
in memory for the dataset data_sample at correspon
ding row. Finally, there is an «END» after which we know 
that all these operations end. The main aim of conver
ting date-time values into such a standardized nume
ric Format (seconds since epoch) is facilitating their  
usage for various operations and especially mathemati
cal analyses during which we want to help computer 
somehow understand how timestamps are big/small  
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or older/newer than other timestamps. For example 
when comparing them during some model learning.

Algorithm 2 Extract Time Components from Datetime
1:
2:

3: 
4: 
5: 
6:
7:
8:
9: 
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

30:
31:

BEGIN
// Assume data_sample is a data structure  
(like a table or DataFrame) with a column ’Time’ 
of datetime type
// Extract year from the ’Time’ column
for each row in data_sample do
	 row[’Year’] ← EXTRACT_YEAR(row[’Time’])
end for
// Extract month from the ’Time’ column
for each row in data_sample do
	 row[’Month’] ← EXTRACT_MONTH(row[’Time’])
end for
// Extract day from the ’Time’ column
for each row in data_sample do
	 row[’Day’] ← EXTRACT_DAY(row[’Time’])
end for
// Extract hour from the ’Time’ column
for each row in data_sample do
	 row[’Hour’] ← EXTRACT_HOUR(row[’Time’])
end for
// Extract minute from the ’Time’ column
for each row in data_sample do
	 row[’Minute’] ← EXTRACT_MINUTE(row[’Time’])
end for
// Extract second from the ’Time’ column
for each row in data_sample do
	 row[’Second’] ← EXTRACT_SECOND
	 (row[’Time’])
end for
// Extract microsecond from the ’Time’ column
for each row in data_sample do
	 row[’Microsecond’] ← EXTRACT_MICRO- 
	 SECOND(row[’Time’])
end for
END

Algorithm 3 Calculate Seconds Since Epoch
1:
2:
3: 
4: 

5: 

6:

7:

8:
9: 

BEGIN
EPOCH_TIMESTAMP ← "2024-01-01 00:00:00"
	 For each row in data_sample DO
	 CURRENT_TIMESTAMP ← data_sample 
[’Time’] [row]
	 	 TIME_DIFFERENCE ← CURRENT_
TIMESTAMP -
	 	 EPOCH_TIMESTAMP SECONDS_SINCE_
EPOCH ← TIME_DIFFERENCE // 1 second
	 	 data_sample[’SecondsSinceEpoch’][row] 
← SECONDS_SINCE_EPOCH
	 END For
END

9.1 Anomaly Detection Using Threshold and Cu­
mulative Entropy

In algorithm 4, we experimented on sample data  
using cumulative entropy and different threshold  
values. The algorithm takes sample data as a Data-
frame having several columns as input, displays  
the cumulative entropy and which packets are conside
red an anomaly. A list of required column names (re-
quired columns) is created, it consists of the attributes, 
for example, Length, Year, Month etc to ensure that  
the dataset contains all the necessary information  
For analysis. Then it checks if all provided columns exist  
in sample data if any of required column is missing 
from dataset, then raise Value Error with suitable mes-
sage. A function calculate_entropy(data) is created  
to compute Shannon’s entropy of given data it calcu-
lates normalized value counts of unique values in the 
data. It returns the entropy using the Formula men-
tioned in 6, 7, 8, 9, and 10 earlier in sections of this pa-
per. A new column, PacketLengthEntropy, is created in 
sample data. This column stores the rolling entropy cal-
culated over the last 10 entries of the Length column, 
using the previously defined f unction. The cumulative 
sum of the PacketLengthEntropy column is calculated 
and stored in a new column CumulativeEntropy. This 
serves as the cumulative entropy over time. Any NaN 
value in the CumulativeEntropy column is replaced  
with 0, such that subsequent calculations do not fail. 
The threshold to determine anomalies is computed 
as mean(CumulativeEntropy) + 3 * standard_devia-
tion(CumulativeEntropy), where an anomaly represents 
an entry being seen after which its cumulative entropy 
becomes larger than this threshold. Also, another new 
column Anomaly among the sample dataset construc
ted by replicate indicating if each packet’s cumulative 
entropy exceeds the determined threshold (TRUE for 
anomaly; FALSE otherwise). Finally, we print columns 
year, month, day, hour, minute, second, Cumulative_
Entropy and Anomaly from our sample datasets.

Algorithm 4 Anomaly Detection in Packet Data
1:
2:

3: 

4: 
5: 

6:

7:

BEGIN
// Input: sample_data (DataFrame containing 
packet data with required columns)
// Output: Display of cumulative entropy  
and detected anomalies
// Step 1: Define required columns
required_columns ← [Length, Year, Month, 
Day, Hour, Minute, Second, Microsecond, 
Protocols...]
// Step 2: Check if all required columns are 
present NOT ALL(col ∈ sample_data.columns 
For col in required_columns)
RAISE ValueError("Missing required columns in 
the dataset.")
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8:

9: 
10:

11:

12:
13:

14:

15:
16:

17:

18:

19:

20:

21:
22:

23:
24:

25:

// Step 3: Define function calculate_entropy 
(data)
Function calculate_entropy(data)
	 // Calculate value counts of data normalized 
to probabilities
	 value_counts ← COUNT(occurrences  
of each unique value in data)
	 RETURN − ∑(pi ∗ log2(pi + ϵ)) where ϵ = 1e − 9
// Step 4: Create new column PacketLength 
Entropy
sample_data[′PacketLengthEntropy′] ← APPLY 
calculate_entropy ON ROLLING WINDOW OF 
SIZE 10 OVER icmp_sample_data[′Length′]
WITH min_periods = 1
// Step 5: Calculate cumulative entropy
sample_data[′CumulativeEntropy′] 
← CUMULATIVE SUM OF sample_
data[′PacketLengthEntropy′]
// Step 6: Fill NaN values in Cumulative Entropy 
with zero
18: FILL NaN VALUES IN sample_data 
[′CumulativeEntropy′] WITH 0
// Step 7: Define threshold for anomaly 
detection
threshold ← MEAN(sample_data 
[′CumulativeEntropy′]) + 3 ∗STD 
(sample_data[′CumulativeEntropy′])
 // Step 8: Create new column Anomaly
sample_data[′Anomaly′] ←TRUE IF icmp_
sample_data[′CumulativeEntropy′] >
threshold ELSE FALSE
// Step 9: Display results
PRINT SELECTED COLUMNS (Year,Month,Day, 
Hour,Minute,Second,CumulativeEntropy, 
Anomaly)
END

10. Results and Findings
10.1 Time series analysis research findings on data­

set comparing HTTP flood a ttacks and ICMP flood 
attacks

In this research, we have created a graph for both 
HTTP flood attack and ICMP flood attack IOT datasets. 
We used the most important length and time features 
indicated in the dataset. Then we compared these two 
graphs and we discovered that ICMP traffic was much 
higher in the ICMP flood dataset. In Fig. 2, we also 
found that in the HTTP flood dataset, the other protocol 
traffic was higher and stable, which indicates a much 
lower risk. In Fig. 3, however, in the ICMP flood data-
set, the other protocol traffic was less and unstable, 
which indicates a much higher risk. In this time series 
analysis, we have also found that having higher ICMP 
traffic in ICMP floods would have resulted in disrupting 
other protocol traffic in the system, creating a traffic  

congestion in IOT devices and smart home systems.  
We also discovered a very important understanding  
with this research analysis that, if both ICMP flood  
attack and HTTP flood attack have been initiated simul
taneously, if both ICMP and HTTP traffic increase simul-
taneously, this may suggest a multi-vector attack stra
tegy and would have and in future can have much more 
higher risk of traffic congestion and will result in more 
successful DDoS attack.

Figure 2. Time series analysis on HTTP Flooded attack traffic

Figure 3: Time series analysis on ICMP Flooded attack traffic

10.2 Anomaly Detection using Cumulative Entro­
py and Thresholding Comparison

In both graphs, you will find a common chart, «Ano
maly Detection Threshold». It is generally obtained  
by statistically calculating (taking average and stan-
dard deviation of cumulative entropy values) from  
the historical data. Now when your cumulative entropy 
exceeds that threshold, then there is an indication that 
an anomaly has been detected, i.e. some malicious  
activity (here DDoS attack) might be going on. Then,  
in both graphs, you can see a few explicit points marked 
where anomalies were detected throughout the time 
frame for which the analysis was done. So those peaks 
in Cumulative Entropy give an idea of which explicit 
timings during that period traffic was abnormal with re-
spect to other timing instances.

In fig. 4, we have found that there was an unstable 
traffic anomaly detected after the threshold mentioned 
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in the ICMP flooded attack IoT dataset. We have also 
discovered, that there was a sudden, unstable traffic 
change, and an anomaly was detected after a certain 
point of threshold calculated. In fig. 5, however, we have 
investigated the HTTP flooded attack IoT dataset with 
the same threshold algorithm and we found no anoma-
ly detection of any unstable traffic in comparison to the 
ICMP flooded attack.  We have also discovered that the 
traffic was not able to even touch the threshold mark at 
any point. Hence, after all the investigation and analy-
sis of both the graphs, we have concluded that, ICMP 
flooded attack poses much higher risk in IoT devices 
and smart systems than the HTTP flooded attack.

Figure 4: Anomaly Detection in ICMP Flooded attack dataset

Figure 5: Anomaly Detection in HTTP Flooded attack dataset

11. Conclusion
The research findings reported in this article rovide 

substantial information on the impact of DDoS attacks, 
with an emphasis on ICMP and HTTP flood attacks in 
IoT contexts. We created comparison graphs of network 
traffic flow during different assault scenarios by ana
lyzing time series data. Our results indicated that the  
level of ICMP traffic was significantly higher than HTTP  
in the ICMP flood dataset with the highest risk among 
other threats as reflected in our dataset. However, 
HTTP at its constant and highest rate used much traffic 
of other protocols within the HTTP flood dataset. There-
fore, the risks associated with these types of attacks 
are less in general because they do not strictly use  
a specific protocol. By investigating cumulative entro-
py graphs, we noted the presence of peak sections  

or varying windows where anomalies occur along time 
signatures which function as reliable indicators to iden-
tify a potential malicious behavior and provide required 
knowledge on duration; how long and how network can 
be exposed to DDoS attacks harm. Notably, we discov-
ered that simultaneous surges in both ICMP and HTTP 
traffic might indicate a multi-vector assault approach. 
This scenario increases the likelihood of network con-
gestion and may lead to more effective DDoS attacks 
on IoT devices and smart home systems. In conclusion, 
our findings clearly show that ICMP flood attacks of-
fer a far higher danger to IoT devices and smart home 
systems than HTTP flood assaults. The findings of this 
study will help to design effective countermeasures 
for strengthening the security of smart home systems 
against growing DDoS attacks. Further research is re-
quired to develop anomaly detection tools and study 
adaptive responses for increasing resilience to these 
sorts of intrusions.

12. Future Work and Ideas
In the future, we will use the same datasets, UCM_

fiblo for hybrid model training on IoT devices and smart 
home systems datasets. This can be made possible by 
exploiting more powerful machine learning methods 
like deep learning models to improve anomaly detec-
tion accuracy in different kinds of network domains. 
Also, the combination with real-time big data analytics 
and edge computing aids in immediate threat intelli-
gence-driven response and minimizes the latency. It 
is worth collaborating with IoT device manufacturers 
where adaptive security functionalities should be di-
rectly deployed in devices so that smart homes will have 
the capabilities of proactive defense against emerging 
DDoS attack vectors. In addition, multiple field experi-
ments on real-world smart home deployment should be 
more intense, as these deployments provide a wealth 
of practical data that can facilitate rapid iteration on 
performance optimizations based on both user feed-
back and scientific measurements.
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АДАПТИВНЫЙ ПОРОГ КУМУЛЯТИВНОЙ ЭНТРОПИИ: 
НОВЫЙ ПОДХОД К ОБНАРУЖЕНИЮ DDOS-АТАК  

В УСТРОЙСТВАХ ИНТЕРНЕТА ВЕЩЕЙ  
И СИСТЕМАХ УМНЫХ ДОМОВ

Амит Кумар Джайсвал
Цель исследования: предложить инновационную модель с использованием адаптивного порога, которая приме-

няет кумулятивный энтропийный анализ временных рядов данных для более эффективного обнаружения и смягчения 
атак флудинга в среде «умного дома.

Метод: системный анализ, математические модели. Результат: с ростом популярности систем «умного дома»  
в повседневной жизни, атаки типа кибер-флудинга на эти взаимосвязанные устройства стали критически важными.  
В настоящем исследовании предложена инновационная модель с использованием адаптивного порога, которая  
применяет кумулятивный энтропийный анализ временных рядов данных для более эффективного обнаружения и смяг-
чения атак флудинга в среде «умного дома». Модель устанавливает динамические пороги, адаптируемые к изменениям 
колебаний данных в режиме реального времени, используя кумулятивную энтропию – показатель, который определяет 
непредсказуемость и дисперсию моделей сетевого трафика. Изучены передовые методы машинного обучения для 
уточнения процесса установления пороговых значений, что в итоге приведет к более высокой точности обнаружения 
аномалий. Фактически будут проанализированы такие важные факторы, как временные паттерны, типы протоколов  
и действия пользователей, с точки зрения их влияния на показатели целей.

Научная новизна: подтверждена эффективность предлагаемых адаптивных пороговых рамок в ответ на значитель-
ное сокращение ложных срабатываний при одновременном улучшении реагирования на возникающие угрозы, что  
в целом повышает устойчивость систем умного дома к обнаруженным атакам типа «флуд».

Ключевые слова: анализ временных рядов, смягчение последствий атак типа «флуд», безопасность умного дома, 
обнаружение аномалий, анализ сетевого трафика, временные паттерны данных.
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