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Abstract. The rising prevalence of smart home systems in everyday life, attacks such as cyber flooding on these
interconnected devices have become critical. The present research talks about the innovative model using adaptive
threshold, which applies cumulative entropy analysis of time series data to detect and mitigate flood attacks more effectively
in the smart home environment. The model sets dynamic thresholds adaptable to changes in data fluctuations in real-
time by utilizing cumulative entropy, a measure that identifies the unpredictability and variance of network traffic patterns.
Advanced machine learning techniques will be further explored to refine the threshold process that will eventually lead to
higher accuracy in detecting anomalies. In fact, essential factors including temporal patterns, types of protocols, and actions
of users will be analyzed concerning their impact on objective metrics. Research aims at validating proposed adaptive
threshold framework effectiveness in response toward significantly reducing false positives while improving responsiveness
against emerging threats; hence contributing overall resilience of smart-home systems under flood attacks towards detected
attacks. Anterior work shall focus on adapting algorithms and exploring scalability over diverse smart home architectures
as an extension of this work. Research also intends to tackle questions linked with data privacy as well as system efficiency.

Keywords: Adaptive Threshold, Cumulative Entropy, Time Series Analysis, Flood Attack Mitigation, Smart Home Security,
Anomaly Detection, Network Traffic An al ysis, Temporal Data Patterns.

1. Introduction

The increasing penetration of smart home systems
in everyday life has brought about the enormous
advantages of convenience and automation.
However, this evolutional process also expose the
shortcomings by vulnerability issues primarily focusing
on possible cybersecurity threats, one of which is the
Distributed Denial of Service (DDoS) attack that can
immensely menace the operation of smart devices
with potential risks to users’ safety and privacy.
Therefore, it is extremely imperative to develop efficient
countermeasures to timely detect and react upon this
type of cyberattack [1,2]. A promising direction towards
ameliorating smart home security is to adopt adaptive
thresholding techniques relying on cumulative entropy
based time series analysis. Entropy, a fundamental
concept taken from inFormation theories, measures
uncertain or random characteristics in given dataset.
In network traffic analysis domain for instance,
monitoring inherent entropy regimes facilitates
distinguishing normal patterns from unusual behaviors
underlying DDoS attacks. By employing cumulative
entropy measures, researchers can develop adaptive
methods that adjust thresholds dynamically based
on realtimedata, thereby improving detection accuracy
and reducing false positives [3].

2. Background on Topic

In recent years, the increasing popularity of smart
home systems has raised serious concerns about
cybersecurity, particularly related to distributed denial
of service (DDoS) attacks that can severely overflow
network resources, incapacitate smart devices,
and pose threats to user security and privacy [4,5].
Therefore, defense mechanisms must be put into
places to ensure the resiliency of smart home systems
towards this type of attack. A promising solution can
be perceived by adopting adaptive thresholding
techniques based on entropy measures to analyze time-
series data that originate from network traffic [13,14].
Entropy is a measure that represents the uncertainty
or randomness when characterizing a certain data-set.
Specifically, utilizing entropy within the context of net-
work traffic an alysis al lows re searchers to determine
how different normal network requests (which are
considered as non-malicious) are from exploitative
counterparts illustrating DDoS traits (which are dee-
med malicious)[15][17]. Researchers have consistently
shown how cumulative entropy measures enable
detection algorithms to become more adaptive
and accurate due to their capability in adjusting
dynamically with respect to current network conditions
[18], [19].
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3. Related Works

Several works have studied thresholding techniques
for anomaly detection innetwork traffic. For example,
Sahoo and Arora (2004) proposed a thresholding tech-
nigue based on two-dimensional Renyi entropy that
achieved a much better segmentation performance
in image processing applications, indicating the poten-
tial of entropy-based techniques to discriminate normal
patterns from anomalies [8].

Dragos et al. (2020) investigated some entropy-
based metrics for uncertainty evaluation in Bayesian
networks designed for cyber threat detection and con-
cluded that the entropy measurement is important
both in performance estimation of a model and as an
added value to decision-making under uncertainty [5].

This work paves the way for applying two-pronged
on-line entropy based defense mechanism at DDoS at-
tack by defending attack traffic in path [7].

Recentimprovements in adaptive thresholding tech-
niques show the potential of such methods in many
domains. A machine learning-aided entropy-based
anomaly detection framework for dynamic network
adaptations was proposed by Timcenko and Gajin
(2021) [6].

They elevate the need for adaptivity that relies
on threshold adjustments by real-time data analy-
sis, which is essential in combating DDoS attacks in
smarthomes [9].

The use of cumulative entropy in time series anal-
ysis has been presented in some previous works.
In particular, some researches have focused on using
cumulative residual entropy as a risk measure and they
have proven that it is a useful tool in many different
situations. This is consistent with our research goal
to apply cumulative entropy for adaptive thresholding
in the analysis of time series data of DDoS attacks
[10,11]. Zhang et al. [12] conducted a comprehen-
sive survey on network anomaly detection frameworks
based on kinds of entropy measures such as Shannon
and Renyi entropies and concluded that using many
kinds of features can improve the accuracy of model
to against various anomalies types.

4. Detailed Raw Dataset Description Used in this Research

The UCM_FibloT2024 dataset gathers substan-
tial data to understand better Distributed Denial
of Service (DDoS) attacks against smart home central
control units, namely the Fibaro Home Center 3. This
dataset records many types of DDoS assaults, such
as TCP SYN floods, | CMP fl oods, an d HT TP floods,
to provide light on how they influence the operation
and availability of loT devices [16]. Data was collected
on a local network using the hping3 tool for SYN
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and ICMP flood attacks, and the LOIC tool for HTTP
flood assaults. Wireshark software was used to gather
network traffic, and the information is available in PCAP
and CSV formats for future analysis. The collected
data includes critical details such as timestamps,
source and destination IP addresses, protocols, packet
lengths, and port numbers [16]. The major purpose
of this dataset is to make it easier to simulate and
analyze DDoS attacks on smart home central control
units, hence serving as a resource for cybersecurity
and loT device protection researchers. Researchers
can discover attack patterns, understand the dynamics
of various forms of DDoS attacks, and design effective
mitigation systems by inspecting network traffic records
and packet captures [16]. The collection is structured
to provide comprehensive logs for each attack, such
as start and finish timings, frame numbers, and the
total number of assault packets. For simplicity of usa-
ge, the data is sorted into folders, and the SYN flood
attack data is further split by the ports targeted (80,
443, and 500)[16]. The UCM_FibloT2024 dataset
serves as a profitable instrument for analyzing and crea-
ting resistance against DDoS attacks on loT gadgets.
It gives a viable asset to analysts and cybersecurity
experts to successfully reenact, analyze, and mode-
rate DDoS attacks [16]. For more information about
the dataset, refer to the UCM_FibloT2024 dataset
is available at https:// doi.org/10.17632/p42xjtv8pv.1.
However, for this study, we will be only using HTTP flood
and ICMP flood data.
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Figure 1: Flow Chart of the Raw Data Structure Files capture [17]
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Table 1.
Overview of Raw CSV Dataset Columns[16]

Column Name | Description
No. Frame number.
Time Date and time of capture
(dd.mm.yyyy hh:mm:ss).
Source Source IP address of the packet.
Destination Destination IP address
of the packet.
Protocol Protocol type identifying
the network protocol used
For each packet.
Length Packet length in bytes.
Source port Source port of the packet.
Destination port | Destination port of the packet.

5. Research Objective

We note here that the previous authors have uti-
lized several thresholding techniques in different fields
and datasets to research different purposes. Howev-
er, no authors have used our novel approach, that is,
network traffic detection with time series analysis
using the cumulative entropy method with threshol-
ding, to detect such attacks most likely in DDoS
on smart home systems and on loT devices specifically,
which will ultimately help future research scope growth.

6. Methodologies Used in this research

6.1 Raw Data Preprocessing

Table 1 represents column names and descriptions
of these featured columns in raw data preprocessing
plays a very crucial and vital role and methods for this
research. There were many steps performed on raw
dataset for data preprocessing. First step was data
cleaning, in this step we identified and rectified errors,
inconsistencies, and inaccuracies in the raw dataset.
We found source port and destination port were having
huge number of missing, inconsistent and inaccurate
values. We used techniques like handling missing data
and removing duplicates to clean the dataset. Later
we analyzed and removed source port and destination
port due to their high inaccuracy and irrelevancy to this
research outcome.

6.2 Exploratory Data Analysis

In this section, we will demonstrate the exploratory
data analysis performed by us to analyze dataset more
deeply. Firstly, we applied many data analysis codes
and functions, we checked the dataset size, the data-
set description in terms of counts, min and max values,
and different percentiles of the dataset in each column.
There are two types of attack files used, one is HTTP
flood, a type of attack that targets web servers by over-
whelming them with high HTTP requests. Another file

is ICMP Flood, an attack that sends a large number
of ICMPv6 packets (often ping requests, but in this
research, data hping was used for a more aggressive
attack) to a target, consuming bandwidth and resour-
ces. In Table 2, we found that HTTP flood has a higher
number of packet counts but the lowest frequency,
whereas ICMPv6 flood has a higher frequency in com-
parison to HTTP flood. These findings results in ICMPv6
floods having a higher effect in the consumption
of storage and bandwidth uses, which can result in
a DDoS attack in loT devices and smart home systems.

In Table 3, we analyzed and found that IP address
10.0.1.22 has the highest number of traffic as an
IP source. HTTP floods have 132 unique values where-
as, ICMPv6 have the highest number of uniqueness
in the traffic. As a finding, higher uniqueness in traffic
are to have unknown distributed sources which is to re-
sult into a DDoS attack (Distributed Denial of service
attack) in the network.

Table 2.
Summary of HTTP and ICMPv6 Flood Protocol Features

Feature HTTP Flood ICMPv6 Flood
Count 22,780,665 11,203,031
Unique 121 26
Top Protocol TCP ICMPv6
Frequency 8,060,484 11,172,532

Table 3.

Overview of HTTP and ICMPv6 Flood Source Features

Feature HTTP Flood ICMPv6 Flood
Count 10,799,707 11,203,031
Unique 132 11,214,481
Top Source 10.0.1.22 10.0.1.22
Frequency 4,859,392 6,602

In table 4, we analyzed and found the destination
IP address request traffic. Also we found that the count
of packet traffic had the same count. We discovered
ICMPV6 requests, indicating a slightly higher volume
compared to HTTP floods, with much higher frequen-
cy than source IP requests. Finally higher percentage
of requests indicates more aggressive and sustained

attack on target.

Table 4.

Overview of HTTP and ICMPv6 Flood Destination Features

Feature HTTP Flood ICMPvV6 Flood
Count 10,799,707 11,203,031
Unique 127 1,747
Top Destination 10.0.1.22 10.0.1.22
Frequency 5,911,972 11,174,499
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7. Feature Engineering

We did feature engineering task to enrich the fea-
tures and applied stratified sampling technique on
HTTP flood dataset and ICMPv6 flood dataset, stratified
sampling, which involves dividing the population into
subpopulations (strata) based on one or more common
attributes; strata membership is determined by some
factor(s) that are hypothesized to be related to the
process being measured, such as class labels- to re-
duce business and increase the performance of model
learning and testing.

The UCM_FibloT2024 dataset records are enor-
mous (millions of records), processing whole CSV file
at once requires more time-consuming and compu-
tation resources. Therefore, we applied stratified ran-
dom sampling to HTTP flood and ICMPv6 flood CSV fles
for our experiment. We have considered the sample
of frac = 0.02 for each file. In algorithm 1, we have
demonstrated pseudo code representation to our code
and method used on stratified sampling of high volume
dataset. We have also used the time-based feature en-
gineering method to extract each feature from the time
column in separate columns (year, month day, hour,
minutes, seconds, microseconds).

Algorithm 1 Sampling from Dataset by Protocol

1: BEGIN

2: DATASET « Load dataset

3: GROUPED_DATASET « GROUP DATASET BY

"Protocol’

SAMPLED_DATA <]

For each GROUP in GROUPED_DATASET DO
SAMPLE «— SAMPLE 20% FROM GROUP
SAMPLED_DATA.APPEND(SAMPLE)

END For

FINAL_SAMPLED_DATA « Convert

SAMPLED_DATATO DataFrame

10: END

©oONDaR

7.1 Cyclical Time Encoding

Further we used Cyclical Encoding technique to cre-
ate more features on time. To handle the cyclical nature
of time (e.g., hours in a day, days in a week), we have
converted time into a circular representation using sine
and cosine functions. Let hour be the hour of the day
(in 24-hour format). The angle can be calculated as:

angle = (hg}llr) x 27

The sine and cosine transFormations are defined
as follows:

(1)

Information Security Risk Management

These transformations allow the model to capture
the cyclical nature of time, effectively treating 23 : 00
and 00 : 00 as close to each other.

7.2 Seconds Since Epoch

The term seconds since the epoch represents
the representation of time by counting the aggregate
number of seconds elapsed, from a particular starting
point in time, is called the epoch. Seconds since epoch
are prominently used to detect and analyze Distributed
Denial of Service (DDoS) attacks. Here, we highlight its
usage concerning time-stamping and network traffic
monitoring. In DDoS detection systems, every packet
of network traffic can be timestamped in seconds since
epoch format to keep the record of exactly when it was
received. Accurate timestamps can be used to track
trends, such as a traffic spike over an extended period
of time indicating a possible DDoS attack. Using the
timestamps from incoming packets detection systems
can measure the number of packets or amount of traf-
fic within a given (40 seconds) window, if too many
packets arrive within that time span. Systems can
compare the number of packets received in an epoch
to a threshold value and then generate an alert if the
packet total is above a pre-determined threshold base-
line, indicative of DDoS. So, we created new feature
called seconds since epoch. To do this we have created
a mathematical formulae calculation to calculate sec-
onds since epoch on each packet traffic. Let T repre-
sent the timestamp from the data sample, and let T,
denote the epoch time defined as:

T, = Timestamp(2024, 1, 1, 0, 0, 0). (4)

The Seconds Since Epoch can be calculated as fol-
lows:

SecondsSinceEpoch = (T - T;) + 1 second.

Where:

e T=[Time’'] (the dataset timestamp features);

e T, =Timestamp representing the epoch;

e The division by 1 second effectively converts
the time difference from a Timedelta object into
an integer representing seconds.

The formula presented provides a clear method
to calculating Seconds Since Epoch, which is funda-
mental in various applications involving time series
analysis and event logging.

)

8. Mathematical Formulations For calculating entropy
and detecting anomalies in packet data

8.1 Entropy Calculation
The Shannon entropy H(X) for a discrete random

X = sin(angle) = sin ((}%) x 271) (2) variable Xis defined as:
Y = cos(angle) = cos((hg:frj x 27[) 3) H(X) = - % p;logy(p) (6)
i=1
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Where:
* p; is the probability of occurrence of the i-th out-
come.
* nis the total number of distinct outcomes.
In this context, the entropy is calculated for packet
lengths over a rolling window of size 10:

H(Lengthwindow) == Zl pj logz(Pj)
j=

Where:
* m is the number of distinct packet lengths in the
current window.

(7)

8.2 Cumulative Entropy Calculation
The cumulative entropy at time t can be expressed as:

C(t) ==X H(Length,). (8)
i=1

Where:

e (C(t) is the cumulative entropy up to time index t.

* H(Length,) is the entropy calculated For packet
lengths at time index i.

8.3 Anomaly Detection
Anomaly detection is performed using a simple
thresholding method. The threshold T'is defined as:

T=p+30. (9)
Where:

e pis the mean of the cumulative entropy values.

* o is the standard deviation of the cumulative entro-

py values.
An anomaly occurs when:

A1) ={ 1 if C(t) > T, (10)

0 otherwise.
Where:

» A(t) indicates whether an anomaly is detected
at time index t.

9. Experiments

We extracted time components from time fea-
ture. We have written our own code for date-time fea-
ture with (Year, Month, Day, Hour, Minutes, Seconds,
Microseconds). We used python prebuilt library called
DATETIME. In algorithm 2 Label of the algorithm
is "Extract Time Components from Date-time which
tells us that this algorithm is responsible for extrac-
ting specific-time-related features from date-time.
In the beginning of the algorithm there is a comment
saying that: dataset is a data-structure (like table
or Data Frame) that has a column called Time which
contains date-time values. A separate loop goes throw
all rows in dataset one by one and extract time column
value and stores it into new created separate column
named (Year, Month, Day, Hour, Minutes, Seconds,
Microseconds). The algorithm is finished with an <END»
statement then. In general, this algorithm is designed
to extract all the possible individual time components

including year, month, day, hour, minute, second and
microsecond of a date-time object separately in order
to analyze or process them individually. It can be very
helpful for data analysis purposes when we may want
to analyze/visualize some patterns at year/month/day/
hour/minute/second/microsecond level or want to fil-
ter/group by these individual time components etc.
while performing some machine learning tasks over
timeseries like feature engineering.

We have used mathematical formulae for sine and
cosine calculations for hour, for each row, it retrieves
the value of hour and assigns it to hour value. Then
it fetches the value of hour and stores it in an hour
variable. It subsequently calculates sine and cosine
of this hour value using above mentioned Formulas 1,
2 and 3 as before. By doing these calculations, it maps
the respective hour into a form of cyclic representation
which helps to present time-concept to the models. Sine
and cosine calculations for month, similarly, it fetches
the value of month and stores it in a month variable.
Then, it calculates sine and cosine for month value
with formulae similar to hours but divided by 12. The
algorithm ends with an «END» statement representing
that all calculations have been made here. This algo-
rithm essentially performs conversion of cyclical time
data (hours & months) into simple sine-cosine way.
This whole code is classically inspired from https://en.
wikipedia.org/wiki/Besselpublication by Don E. Knuth
which approximates values of sin() & cos().

In algorithm 3, the algorithm name is «Calculate
Seconds Since Epoch». The algorithm defines the con-
stant EPOCH_TIMESTAMP as a string, representing this
epoch: «2024-01-01 00:00:00». It loops through each
data row assuming that there is a column with date-
times Time in the dataset. For each row, it assigns the
current timestamp from column Time to CURRENT_
TIMESTAMP. It calculates the difference CURRENT_
TIMESTAMP minus EPOCH_TIMESTAMP as TIME_DIF-
FERENCE. This difference represents how much time
passed between the epoch and that timestamp.
The algorithm converts this value then into seconds
by dividing it by one second (which might be implicit
for many programming languages if you handle simply
date objects). The resulting number of seconds since
the epoch SECONDS_SINCE_EPOCH, it saves in an ad-
ditional column named SecondsSinceEpoch, defined
in memory for the dataset data_sample at correspon-
ding row. Finally, there is an <END» after which we know
that all these operations end. The main aim of conver-
ting date-time values into such a standardized nume-
ric Format (seconds since epoch) is facilitating their
usage for various operations and especially mathemati-
cal analyses during which we want to help computer
somehow understand how timestamps are big/small
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or older/newer than other timestamps. For example
when comparing them during some model learning.

Algorithm 2 Extract Time Components from Datetime

1: BEGIN

2: // Assume data_sample is a data structure
(like a table or DataFrame) with a column 'Time’
of datetime type

3: // Extract year from the 'Time’ column

4: for each row in data_sample do

5: row['Year’] < EXTRACT_YEAR(row['Time’])

6: end for

7. // Extract month from the 'Time’ column

8 for each row in data_sample do

9: row[’'Month’] «— EXTRACT_MONTH(row[' Time’])

10: end for

11: // Extract day from the 'Time’ column

12: for each row in data_sample do

13: row['Day’] «— EXTRACT_DAY(row['Time’])

14: end for

15: // Extract hour from the 'Time’ column

16: for each row in data_sample do

17: row['Hour’] « EXTRACT_HOUR(row['Time'])

18: end for

19: // Extract minute from the 'Time’ column

20: for each row in data_sample do

21: row[’Minute’] «— EXTRACT_MINUTE(row[' Time'])

22: end for

23: // Extract second from the 'Time’ column

24: for each row in data_sample do

25: row['Second’] < EXTRACT_SECOND

(row['Time'])

26: end for

27: // Extract microsecond from the 'Time’ column

28: for each row in data_sample do

29: row['Microsecond’] «— EXTRACT_MICRO-

SECOND(row['Time’])
30: end for
31: END

Information Security Risk Management

9.1 Anomaly Detection Using Threshold and Cu-
mulative Entropy

In algorithm 4, we experimented on sample data
using cumulative entropy and different threshold
values. The algorithm takes sample data as a Data-
frame having several columns as input, displays
the cumulative entropy and which packets are conside-
red an anomaly. A list of required column names (re-
quired columns) is created, it consists of the attributes,
for example, Length, Year, Month etc to ensure that
the dataset contains all the necessary information
For analysis. Then it checks if all provided columns exist
in sample data if any of required column is missing
from dataset, then raise Value Error with suitable mes-
sage. A function calculate_entropy(data) is created
to compute Shannon’s entropy of given data it calcu-
lates normalized value counts of unique values in the
data. It returns the entropy using the Formula men-
tioned in 6, 7, 8, 9, and 10 earlier in sections of this pa-
per. A new column, PacketLengthEntropy, is created in
sample data. This column stores the rolling entropy cal-
culated over the last 10 entries of the Length column,
using the previously defined f unction. The cumulative
sum of the PacketLengthEntropy column is calculated
and stored in a new column CumulativeEntropy. This
serves as the cumulative entropy over time. Any NaN
value in the CumulativeEntropy column is replaced
with O, such that subsequent calculations do not fail.
The threshold to determine anomalies is computed
as mean(CumulativeEntropy) + 3 * standard_devia-
tion(CumulativeEntropy), where an anomaly represents
an entry being seen after which its cumulative entropy
becomes larger than this threshold. Also, another new
column Anomaly among the sample dataset construc-
ted by replicate indicating if each packet’s cumulative
entropy exceeds the determined threshold (TRUE for
anomaly; FALSE otherwise). Finally, we print columns
year, month, day, hour, minute, second, Cumulative_
Entropy and Anomaly from our sample datasets.

Algorithm 3 Calculate Seconds Since Epoch

1: BEGIN

2:  EPOCH_TIMESTAMP « "2024-01-01 00:00:00"

3: For each row in data_sample DO

4 CURRENT_TIMESTAMP « data_sample
[Time'] [row]

5: TIME_DIFFERENCE «— CURRENT_
TIMESTAMP -

6: EPOCH_TIMESTAMP SECONDS_SINCE_
EPOCH — TIME_DIFFERENCE // 1 second

7 data_sample[’'SecondsSinceEpoch’][row]
«— SECONDS_SINCE_EPOCH

8: END For

9: END

Algorithm 4 Anomaly Detection in Packet Data

1: BEGIN

2: // Input: sample_data (DataFrame containing
packet data with required columns)

3: // Output: Display of cumulative entropy

and detected anomalies

// Step 1: Define required columns

required_columns « [Length, Year, Month,

Day, Hour, Minute, Second, Microsecond,

Protocols...]

6: // Step 2: Check if all required columns are
present NOT ALL(col € sample_data.columns
For col in required_columns)

7:  RAISE ValueError("Missing required columns in
the dataset.")

ak
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8: // Step 3: Define function calculate_entropy
(data)
9:  Function calculate_entropy(data)
10: // Calculate value counts of data normalized
to probabilities
value_counts «— COUNT(occurrences
of each unique value in data)
RETURN - X(p; = log,(p; + €)) where e = 1e - 9
// Step 4: Create new column PacketLength
Entropy
sample_data['PacketLengthEntropy’] < APPLY
calculate_entropy ON ROLLING WINDOW OF
SIZE 10 OVER icmp_sample_data['Length’]
WITH min_periods = 1
15: // Step 5: Calculate cumulative entropy
16: sample_data['CumulativeEntropy']
«— CUMULATIVE SUM OF sample_
data['PacketLengthEntropy']
17: // Step 6: Fill NaN values in Cumulative Entropy
with zero

11:

12:
13:

14:

18: 18: FILL NaN VALUES IN sample_data
["CumulativeEntropy’] WITH O
19: // Step 7: Define threshold for anomaly

detection

threshold «— MEAN(sample_data
['CumulativeEntropy’]) + 3 *STD
(sample_data['CumulativeEntropy'])

// Step 8: Create new column Anomaly
sample_data[’Anomaly’] —TRUE IF icmp_
sample_data['CumulativeEntropy’] >
threshold ELSE FALSE

// Step 9: Display results

PRINT SELECTED COLUMNS (Year,Month,Day,
Hour,Minute,Second,CumulativeEntropy,
Anomaly)

END

20:

21:
22:

23:
24:

25:

10. Results and Findings

10.1 Time series analysis research findings on data-
set comparing HTTP flood a ttacks and ICMP flood
attacks

In this research, we have created a graph for both
HTTP flood attack and ICMP flood attack IOT datasets.
We used the most important length and time features
indicated in the dataset. Then we compared these two
graphs and we discovered that ICMP traffic was much
higher in the ICMP flood dataset. In Fig. 2, we also
found that in the HTTP flood dataset, the other protocol
traffic was higher and stable, which indicates a much
lower risk. In Fig. 3, however, in the ICMP flood data-
set, the other protocol traffic was less and unstable,
which indicates a much higher risk. In this time series
analysis, we have also found that having higher ICMP
traffic in ICMP floods would have resulted in disrupting
other protocol traffic in the system, creating a traffic

congestion in 10T devices and smart home systems.
We also discovered a very important understanding
with this research analysis that, if both ICMP flood
attack and HTTP flood attack have been initiated simul-
taneously, if both ICMP and HTTP traffic increase simul-
taneously, this may suggest a multi-vector attack stra-
tegy and would have and in future can have much more
higher risk of traffic congestion and will result in more
successful DDoS attack.

ICMP and ICMPv6 Traffic vs Other Protocols in HTTP flood
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Figure 2. Time series analysis on HTTP Flooded attack traffic
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Figure 3: Time series analysis on ICMP Flooded attack traffic

10.2 Anomaly Detection using Cumulative Entro-
py and Thresholding Comparison

In both graphs, you will find a common chart, <Ano-
maly Detection Threshold». It is generally obtained
by statistically calculating (taking average and stan-
dard deviation of cumulative entropy values) from
the historical data. Now when your cumulative entropy
exceeds that threshold, then there is an indication that
an anomaly has been detected, i.e. some malicious
activity (here DDoS attack) might be going on. Then,
in both graphs, you can see a few explicit points marked
where anomalies were detected throughout the time
frame for which the analysis was done. So those peaks
in Cumulative Entropy give an idea of which explicit
timings during that period traffic was abnormal with re-
spect to other timing instances.

In fig. 4, we have found that there was an unstable
traffic anomaly detected after the threshold mentioned
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in the ICMP flooded attack loT dataset. We have also
discovered, that there was a sudden, unstable traffic
change, and an anomaly was detected after a certain
point of threshold calculated. In fig. 5, however, we have
investigated the HTTP flooded attack loT dataset with
the same threshold algorithm and we found no anoma-
ly detection of any unstable traffic in comparison to the
ICMP flooded attack. We have also discovered that the
traffic was not able to even touch the threshold mark at
any point. Hence, after all the investigation and analy-
sis of both the graphs, we have concluded that, ICMP
flooded attack poses much higher risk in loT devices
and smart systems than the HTTP flooded attack.

ICMP Flooded : Cumulative Entropy Over Time with Anomaly Detection

—— Cumulative Entropy
~=- Anomaly Detection Threshold
Detected Anomalies

12000
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Figure 4: Anomaly Detection in ICMP Flooded attack dataset

1e6 HTTP Flooded Cumulative Entropy Over Time with Anomaly Detection
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Figure 5: Anomaly Detection in HTTP Flooded attack dataset

11. Conclusion

The research findings reported in this article rovide
substantial information on the impact of DDoS attacks,
with an emphasis on ICMP and HTTP flood attacks in
loT contexts. We created comparison graphs of network
traffic flow during different assault scenarios by ana-
lyzing time series data. Our results indicated that the
level of ICMP traffic was significantly higher than HTTP
in the ICMP flood dataset with the highest risk among
other threats as reflected in our dataset. However,
HTTP at its constant and highest rate used much traffic
of other protocols within the HTTP flood dataset. There-
fore, the risks associated with these types of attacks
are less in general because they do not strictly use
a specific protocol. By investigating cumulative entro-
py graphs, we noted the presence of peak sections
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or varying windows where anomalies occur along time
signatures which function as reliable indicators to iden-
tify a potential malicious behavior and provide required
knowledge on duration; how long and how network can
be exposed to DDoS attacks harm. Notably, we discov-
ered that simultaneous surges in both ICMP and HTTP
traffic might indicate a multi-vector assault approach.
This scenario increases the likelihood of network con-
gestion and may lead to more effective DDoS attacks
on loT devices and smart home systems. In conclusion,
our findings clearly show that ICMP flood attacks of-
fer a far higher danger to loT devices and smart home
systems than HTTP flood assaults. The findings of this
study will help to design effective countermeasures
for strengthening the security of smart home systems
against growing DDoS attacks. Further research is re-
quired to develop anomaly detection tools and study
adaptive responses for increasing resilience to these
sorts of intrusions.

12. Future Work and Ideas

In the future, we will use the same datasets, UCM_
fiblo for hybrid model training on IoT devices and smart
home systems datasets. This can be made possible by
exploiting more powerful machine learning methods
like deep learning models to improve anomaly detec-
tion accuracy in different kinds of network domains.
Also, the combination with real-time big data analytics
and edge computing aids in immediate threat intelli-
gence-driven response and minimizes the latency. It
is worth collaborating with loT device manufacturers
where adaptive security functionalities should be di-
rectly deployed in devices so that smart homes will have
the capabilities of proactive defense against emerging
DDoS attack vectors. In addition, multiple field experi-
ments on real-world smart home deployment should be
more intense, as these deployments provide a wealth
of practical data that can facilitate rapid iteration on
performance optimizations based on both user feed-
back and scientific measurements.
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AANTUBHbIW NOPOT KYMYNATUBHOK IHTPONMK:
HOBbIN MOAXOA K OBHAPY)XEHUIO DDOS-ATAK

B YCTPOHCTBAX WHTEPHETA BELUEN

W CUCTEMAX YMHbIX 10MOB

Amurt Kymap [xauncsan

Lienb nccaeao0BaHMA: NPEANOXKXNTb MHHOBALIMOHHYH MOAEAb C MCMNOAb30BaAHUEM aAaNTMBHOIMO Mopora, Kotopas npumMme-
HAET KYMYASITUBHbIM 3HTPOMUMHbINA aHaAU3 BPEMEHHbIX PSIAOB AaHHbIX AAST 6oAee 3PGEKTUBHOro 0OHapPyXeHUSI U CMATYeHUs
arak GAyAMHIra B Cpeae «yMHOro AomMa.

MeToA: cUCTEMHbIN aHaAM3, MateMaTtudeckume MOAEAU. Pe3yAbTaT: ¢ POCTOM MOMYASIPHOCTM CUCTEM «YMHOIo AOMa»
B NMOBCEAHEBHOM XW3HU, ataku Tuna Knbep-gpayaAMHra Ha 31 B3auMOCBS3aHHbIE€ YCTPOMCTBA CTaAU KPUTUUECKM BaXXHbIMM.
B HacrosLeM UCCAEAOBaHUU MNPEANOXKEHA MHHOBaLMOHHas MOAEAb C MCMOAb30BaHMEM aAarnTMBHOMO Mopora, KoTtopas
MPUMEHSET KYMYASTUBHbIN SHTPOMUIHbIN aHaAU3 BPEMEHHbIX PSAOB AQHHbIX AAS1 6oAee 3PPEKTUBHOIO OOHAPYXEHUST M CMSI-
YeHUs atak PAyAMHIa B CPeAE «yMHOro Aoomar. MoaeAb ycTaHaBAMBaET AMHAMMUYECKUE MOPOru, aaanTupyemMble K UBMEHEHUAM
KonebaHMi AQHHBIX B PEXUME PeaAbHOIro BPEMEHMU, MCMOAb3YS KYMYASITUBHYHO SHTPOMMIO — NMOKa3aTteAb, KOTOPbIN OMPEAEASET
HEernpeAckasyeMoCTb U AMCIIEPCHIO MOAEAEH CETEBOro Tpaguka. M3yueHbl nepeaoBble METOAbl MalUMHHOMO 0by4YeHus AN
YTOUHEHMS NpoLIecca yCTaHOBAEHMS MOPOroBbIX 3HAYEHUM, UTO B UTOre NPUBEAET K 60AeEe BbICOKOM TOYHOCTU 0OHaPYXEHMS
aHomannn. @aKkTnyecku byayT npoaHarM3upoBaHbl TakMe BaXHble PaKTopbl, Kak BPEMEHHbIE NaTTepHbl, TUIMbl MPOTOKOAOB
M AEMCTBUS NMOAb30BATEAEH, C TOYKU 3PEHUST X BAMSIHUS HA NOKa3aTeAU LIEAEN.

HayuyHas HOBU3Ha: NoATBEPXAEHA 3OYEKTMBHOCTb NPEANAraeMblX aAanTUBHbIX NOPOroBbIX paMOK B OTBET Ha 3HaYMTEAb-
HOEe COKpaLLeHNe AOXHbIX cpabaTbiBaHWIA NMpu OAHOBPEMEHHOM YAYYLLIEHUW PearupoBaHUsi Ha BO3HUKAIOLIME Yrpo3bi, UTO
B LIEAOM [MOBbILLAET YCTOMUYMBOCTL CUCTEM YMHOIO AOMa K 0OHapYXEHHbIM atakaM Tuna «payA».

KaroueBble cnoBa: aHaAU3 BPEMEHHbIX PAAOB, CMATYEHUE MOCAEACTBUI aTak Tura «payA», 6e30MacHOCTb YMHOIo AOMa,
06HapyXeHne aHoOMaAui, aHaAu3 CETEBOro TPaPUKa, BPEMEHHbIE NaTTePHbI AGHHbIX.
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