
Content of 6th issue of magazine «Voprosy kiberbezopasnosti» at 2020:
Title | Pages |
Kuchurov, V. V. MODEL AND TECHNIQUE FOR ABONENT ADDRESS MASKING IN CYBERSPACE / V. V. Kuchurov, R. V. Maximov, R. S. Sherstobitov // Cybersecurity issues. – 2020. – № 6(40). – С. 2-13. – DOI: 10.21681/2311-3456-2020-06-2-13.
AbstractRegulators charge to counter information security threats against the structural and functional characteristics of the information system to ensure the information security requirements. These requirements include information system structure and composition, information technologies and functioning characteristics, physical and logical, functional and technological interconnections between information system segments. They order false components of information system emulation as a basic step of protection, as well as information technologies hiding, information system configuration management and its switching to predetermined configuration that provides a protection. However that steps are not included into basic set and they protection aims are reached with compensative assets, formalizing and implementing inhibitory orders and set of organizational and technical measures on threat source.The purpose of research - to disclose and to state main ways of search of new technical solutions for structure masking of distributed information systems in cyberspace implementing masking traffic taking into account the requirements for the timeliness of information exchange.The method of research - operations research in the face of uncertainty, the application of the theory of Markov processes and Kolmogorov equation for solving the problem of increasing the efficiency of masking exchange.The result of research - finding the probabilistic and temporal characteristics of the functioning process of the data transmission network when applying technical solutions for information systems masking in cyberspace. The results obtained make it possible to explicitly implement protection measures aimed at forming persistent false stereotypes among violators about information systems and control processes implemented with their help. Keywords: moving target defense, computer reconnaissance, information directions, network address masking, Markov processes, masked exchange. References1. Markov A.S., Cirlov V.L. Rukovodyashchie ukazaniya po kiberbezopasnosti v kontekste ISO 27032 // Voprosy kiberbezopasnosti. – 2014. – № 1(2). – S. 28-35. 2. Maximov R.V., Sherstobitov R.S., Sharifullin S.R. Maskirovanie integrirovannyh setej svyazi vedomstvennogo naznacheniya [Elektronnyj resurs] // Sistemy upravleniya, svyazi i bezopasnosti. – Elektron. zhurn. – 2018. – № 4. – S. 136-175. – Rezhim dostupa : http://sccs.intelgr.com/archive/2018-04/08-Sherstobitov.pdf. 3. Ivanov I.I., Maximov R.V. Etyudy tekhnologii maskirovaniya funkcional’no-logicheskoj struktury informacionnyh sistem / Innovacionnaya deyatel’nost’ v Vooruzhennyh Silah Rossijskoj Federacii: Trudy vsearmejskoj nauchno-prakticheskoj konferencii. 11-12 oktyabrya 2017 goda. – SPb.: VAS, 2017 – 358s. 4. Voronchixin I.S., Ivanov I.I., Maksimov R.V., Sokolovskij S.P. Maskirovanie struktury` raspredelenny`x informacionny`x sistem v kiberprostranstve // Voprosy` kiberbezopasnosti. – 2019. № 6 (34). – S. 92-101. DOI: https://doi.org/10.21681/2311-3456-2019-6-92-101. 5. Maximov R.V., Sokolovskij S.P., Voronchixin I.S. Algoritm i texnicheskie resheniya dinamicheskogo konfigurirovaniya klient-serverny`x vy`chislitel`ny`x setej // Informatika i avtomatizaciya. 2020. № 5 (19). C. 1018-1049. DOI: https://doi.org/10.15622/ia.2020.19.5.5. 6. Beraud, P., Cruz, A., Hassell, S., & Meadows, S. (2011). Using cyber maneuver to improve network resiliency. 2011 - MILCOM 2011 Military Communications Conference, 1121-1126. 7. Sposob maskirovaniya struktury` seti svyazi. Pat. 26822105 Ros. Federaciya, MPK G06F / Zajcev D.V., Zuev O.E., Krupenin A.V., Maksimov R.V., Pochinok V.V., Sharifullin S.R., Sherstobitov R.S.; zayavitel` i patentoobladatel` Krasnodarskoe vy`sshee voennoe uchilishhe (RU). – № 2018112925; zayavl. 09.04.2018; opubl. 14.03.2019, Byul. № 8. 8. Bogovik A.V., Ignatov V.V. E`ffektivnost` sistem voennoj svyazi i metody` ee ocenki. – SPb.: VAS, 2006. – 183 s. 9. Sokolovskij S.P. Model` zashhity` informacionnoj sistemy` ot setevoj razvedki dinamicheskim upravleniem ee strukturnofunkcional`ny`mi xarakteristikami // Voprosy` oboronnoj texniki. Seriya 16 protivodejstvie terrorizmu. 2020. № 7-8. – S. 62-73. 10. Sokolovskij S.P., Krupenin A.V., Xorev G.A., Kalach A.V. Maskirovanie identifikatorov kanal`nogo urovnya sredstv proaktivnoj zashhity` integrirovanny`x setej svyazi special`nogo naznacheniya // Vestnik Voronezhskogo instituta FSIN Rossii. 2018. № 3. – S. 81-89. 11. Markov A.S., Gorshkov YU.G., Matveev V.A., Cirlov V.L. Sovremennye trendy v oblasti kiberbezopasnosti // Bezopasnye informacionnye tekhnologii. Sbornik trudov Sed’moj vserossijskoj nauchno-tekhnicheskoj konferencii / pod. red. V.A. Matveeva. – M.: MGTU im. N.E. Baumana, 2016. 345 s. – ill. 12. Maximov R.V., Sokolovsky S.P., Gavrilov A.L. Hiding Computer Network Proactive Security Tools Unmasking Features. In CEUR Workshop Proceedings, 2017, Vol-2081 (Selected Papers of the VIII All-Russian Scientific and Technical Conference on Secure Information Technologies, BIT 2017). P. 88-92. 13. Krupenin A., Maximov R., Sharifullin S., Sokolovsky S. Innovative Development of Tools and Technologies to Ensure the Russian Information Security and Core Protective Guidelines // Voprosy kiberbezopasnosti [Cybersecurity issue], 2019, №1 (29), pp. 10-17. DOI: 10.21681/2311-3456-2019-1-10-17. 14. Bilinski M., Gabrys R., Mauger J. Optimal Placement of Honeypots for Network Defense. In: Bushnell L., Poovendran R., Başar T. (eds) Decision and Game Theory for Security. GameSec 2018. Lecture Notes in Computer Science, vol 11199. Springer, Cham. 2018. DOI: https://doi.org/10.1007/978-3-030-01554-1_7. 15. Chee Keong NG, Lei Pan, Dr. Yang Xiang. Honeypot Frameworks and Their Applications: A New Framework. In SpringerBriefs on Cyber Security Systems and Networks. Springer, Singapore. 2018. DOI: https://doi.org/10.1007/978-981-10-7739-5. 16. Wang, Y., Guo, Y., Zhang, L. et al. SWIM: An Effective Method to Perceive Cyberspace Situation from Honeynet. Arabian Journal for Science and Engineering. 2018. Vol. 43. P. 6863. DOI: https://doi.org/10.1007/s13369-017-2904-5. 17. Vishnevskij A.S. Obmannaya sistema dlya vy`yavleniya xakerskix atak, osnovannaya na analize povedeniya posetitelej veb-sajtov // Voprosy` kiberbezopasnosti. – 2018. № 3 (27). – S. 8-17. DOI: https://doi.org/10.21681/2311-3456-2018-3-54-62. 18. Iskolnyy B.B., Maximov R.V., Sharifullin S.R. Survivability Assessment of Distributed Information and Telecommunication Networks // Selected Papers of the VIII All-Russian Conference with International Participation «Secure Information Technologies» (BIT 2017). Bauman Moscow Technical University. December 6-7, 2017, Moscow, Russia. P. 59-65. 19. Evnevich E.L., Fatkieva R.R. Modelirovanie informacionny`x processov v usloviyax konfliktov // Voprosy` kiberbezopasnosti. – 2020. № 2 (36). – S. 92-101. DOI: https://doi.org/10.21681/2311-3456-2020-2-42-49. 20. Kubarev A.V., Lapsar` A.P., Fedorova Ya.V. Povy`shenie bezopasnosti e`kspluatacii znachimy`x ob``ektov kriticheskoj infrastruktury` s ispol`zovaniem parametricheskix modelej e`volyucii // Voprosy` kiberbezopasnosti. – 2020. № 1 (35). – S. 8-17. DOI: https://doi.org/10.21681/2311-3456-2020-01-08-17. |
2-13 |
Naschekin, P. A. THEORETICAL JUSTIFICATION OF THE METHOD DESIGN OF INFORMATION SECURITY SYSTEMS IN VIRTUAL ENVIRONMENTS AND CLOUD PLATFORMS / P. A. Naschekin // Cybersecurity issues. – 2020. – № 6(40). – С. 14-22. – DOI: 10.21681/2311-3456-2020-06-14-22.
AbstractThe purpose of the article is to improve the efficiency of information security systems in conditions of high uncertainty of source data.Method: modeling of information security systems using fuzzy set theory, possibility theory, and theoretical computer science.The result: it is shown that the existing models and methods of designing information security systems do not fully reflect the specifics of information security systems as complex organizational and technical systems. The behavior of such systems reflects the dynamics of weakly structured processes characterized by a high degree of uncertainty due to unsteadiness, inaccuracy and insufficiency of observations, indistinctness and instability of trends. While the statistical (probabilistic) approach has obvious advantages and is widely recognized, its application is limited in the process of creating information security systems for such systems. The relevance of the scientific task of developing a methodology for designing information security systems in virtual environments and cloud platforms under conditions of high uncertainty is justified. The proposed theoretical justification is abstracted from specific types of cloud services and their placement models. The model of the security system is studied, which is represented by a hierarchy of security levels compared to the architecture of an information system that implements cloud services: a composition of hierarchically interconnected levels of virtual devices for processing, storing and/or transmitting data, hardware and/or software necessary for their operation. Using the main provisions of theoretical computer science, it is shown that the parameters for evaluating the effectiveness of security mechanisms are also applicable as parameters for evaluating neutralizable threats to information security. Theoretical substantiation of methods of designing of systems of information protection in virtualized environments and cloud platforms made it possible to offer calculation procedure of the semantic threshold preferences when choosing protection mechanisms, defined in neutralizing “a threat Model and a potential intruder information security” threats, to develop and apply in the process of designing public information systems the method of choice preferred defense mechanisms, neutralizing security threats information on security levels in the overall architecture of such systems. Keywords: security mechanisms, information security threats, security levels, fuzzy sets, fuzzy numbers, linguistic variable, opportunity, uncertainty, risks, damage. References1. Minakov S.S. osnovnȳe kriptograficheskie mekhanizmȳ zashchitȳ dannȳkh, peredavaemȳkh v oblachnȳe servisȳ i seti khraneniya dannȳkh // Voprosy kiberbezopasnosty, 2020. № 3(37) P. 66-75. DOI:10.21681/2311-3456-2020-03-66-75 2. Butusov I.,V., Nashchekin P.A., Romanov A.A. Teoretiko-semanticheskie aspekty organizatsii kompleksnoy sisitemy zashchity informatsionnykh system // Voprosy kiberbezopasnosty, 2016. №1(14). pp. 9-16 3. Ryapolova E.I., Shreĭder M.Yu., Borovskiĭ A.S. Metod obrabotki informatsii dlya podderzhki prinyatiya reshenĭi v upravlenii oblachnȳmi servisami // Voprosy kiberbezopasnosty, №3(27). 2018. P. 39-46. DOI:10.21681/2311-3456-2018-3-39-46 4. Simon, H. The Structure of Ill-structured Problems / H. Simon // Artificial Intelligence. 1973. Vol. 4. P. 181-202. 5. Shcherbakov E.S., Korchagin P.V. Primenenie metodov teorii vozmozhnosteĭ pri modelirovanii sistem zashchitȳ informatsii // Voprosy kiberbezopasnosty, 2017. №1(19). pp. 2-5. DOI: 10.21681/2311-3456-2017-1-2-5 6. Yager R. A foundation for a theory of possibility // J. of Cybernetics, 1980. Vol. 10. №. 1−3. P. 177−209. 7. Pȳt′ev Yu. M. Vozmozhnost′: élementȳ trorii i primeneniya. М.:URSS, 2000. 8. Zadeh L.A. Fuzzy Sets. Information and Control. 8 (1965). pp. 338-353. 9. Zadeh L.A. PRUF - A Meaning Representation Language for Natural Language//Intern.J. of Man-Machine Studies,1978. Vol.10. N4. P.395-399, 451-460. 10. Dyubua D., Prad А. Teoriya Vozmozhnostei: prilozheniya k predstavleniyu znanii v informatike. М.: Radio I svyaz’, 1990. 11. Chechkin A.V. Matematicheskaya informatika. M.: Nauka. Gl. red. fiz.-mat. lit. 1991. 416 p. 12. Bel′fer R.A., Kalyuzhnȳĭ D.A., Tarasova D.V. Analiz zavisimosti urovnya riska informatsionnoĭ bezopasnosti seteĭ svyazi ot ékspertnȳkh dannȳkh pri raschëtakh s ispol′zovaniem modeli nechetkikh mnozhestv // Voprosy kiberbezopasnosty, №1(2). 2014. P. 33-39. 13. Murzin A.P., Butusov I.V., Romanov A.A. Adaptatsiya sistemȳ zashchitȳ informatsii avtomatizirovannȳkh system upravlrniya k neĭtralizuemȳm ugrozam // Priborȳ i sistemȳ. Upravlenie, rontrol′, diagnostika. Avtomatizirovannȳe systemȳ upravlrniya. 2017. №10. pp. 1–7. 14. Olad`ko V.,S. Model′ vȳbora ratsional′nogo sostava sredstv zashchity v sisteme elektronnoĭ kommertsii // Voprosȳ kiberbezopasnosti, 2016. №1 (14). pp. 17-23. 15. Kompleksnaya zashchita informatsii. Analiz uyazvimosteĭ i otsenka stoĭkosti funktsiĭ bezopasnosti. Adres dostupa: URL: http://rpcnix.blogspot.ru/2012/04/1999.html 16. Sapkina N. V. Svoistva operatsii nad nechetkimi chislami // Vestnik VGU, seriya: sistemnȳi analiz I informatsionnȳe tekhnologii, 2013. № 1. P. 23-28. 17. An’shin V.M., Demin I.V., Tsar’kov I.N., Nikonov I.М. Primenenie teorii nechetkikh mnozhestv k zadache formirovaniya portfelya proektov (teoriya vozmozhnostei). URL: https://www.hse.ru/data/620/907/1224/Publ2_Anshin.pdf 18. Nechetkie mnozhestva v modelyakh upravleniya I iskustvennogo intellekta/pod red. D.A.Pospelova/ M.: Nauka. Gl. red. fiz.-mat. lit. 1986. 312 p. (Problemȳ iskustvennogo intellekta). 19. Zakharenkov A.I., Butusov I.,V., Romanov A.A. Metod kolichestvennoy otsenki stepeni doverennosti programmno-apparatnykh sredstv // Pribory i sistemy. Upravlenie, control`, diagnostika. Avtomatizirovannye sistemy upravleniya. 2017. №8. P. 34-39. 20. Nashekin P.A. Perspektivȳ informatizatsii osnovnȳkh vidov deyatelnosti v gosudarstvennoi sisteme pravovoi informatsii // Pribory i sistemy. Upravlenie, control`, diagnostika. Avtomatizirovannye sistemy upravleniya. 2020. № 5. P. 1-6. |
14-22 |
Stepenkin, A. A. TRUST MODEL OF INFORMATION SECURITY OF THE ENVIRONMENT OF MULTI-AGENT ROBOTIC SYSTEMS / A. A. Stepenkin // Cybersecurity issues. – 2020. – № 6(40). – С. 23-31. – DOI: 10.21681/2311-3456-2020-06-23-31.
AbstractThe capabilities of robotic systems are growing rapidly. The ways of operating such systems are increasing every day. Sensor networks, the Internet of Things, cyber-physical systems have similar properties as multi-agent robotic systems, which allows us to consider the approaches and methods of ensuring security used in them.Purpose of the article: improving the security of multi-agent systems in an uncontrolled environment, developing methods for assessing trust of the environment.Research methods: analysis of existing threat models for multi-agent robotic systems, as well as systems with similar properties: cyber-physical systems and the Internet of things. Analysis of the research results of existing approaches to ensuring the security of multi-agent systems.The results: an analysis of security threats and existing methods of ensuring security for robotic multi-agent systems, as well as systems with similar properties, was carried out. An extension for security methods based on trust and reputation has been developed, taking into account the operating environment of the system as part of information interaction. A method for localizing the subject of an external intruder in the environment is proposed. Keywords: multi-agent systems, group management systems, trust and reputation systems, intrusion detection. References1. Ismail Z. H., Sariff N. A survey and analysis of cooperative multi-agent robot systems: challenges and directions //Applications of Mobile Robots. – IntechOpen, 2018. 2. Sotzing C. C., Evans J., Lane D. M. A multi-agent architecture to increase coordination efficiency in multi-auv operations //OCEANS 2007-Europe. – IEEE, 2007. – С. 1-6. 3. Uluagac A. S., Subramanian V., Beyah R. Sensory channel threats to cyber physical systems: A wake-up call //2014 IEEE Conference on Communications and Network Security. – IEEE, 2014. – С. 301-309. 4. Parkinson S. et al. Cyber threats facing autonomous and connected vehicles: Future challenges //IEEE transactions on intelligent transportation systems. – 2017. – Т. 18. – №. 11. – С. 2898-2915. 5. Makhdoom I. et al. Anatomy of threats to the internet of things //IEEE Communications Surveys & Tutorials. – 2018. – Т. 21. – №. 2. – С. 1636-1675. 6. Li M. et al. Robot swarm communication networks: architectures, protocols, and applications //2008 Third International Conference on Communications and Networking in China. – IEEE, 2008. – С. 162-166. 7. Quenum J. G. et al. Dynamic protocol selection in open and heterogeneous systems //2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. – IEEE, 2006. – С. 333-341. 8. Ahmad Yousef K. M. et al. Analyzing cyber-physical threats on robotic platforms //Sensors. – 2018. – Т. 18. – №. 5. – С. 1643. 9. Loukas G. et al. A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles //Ad Hoc Networks. – 2019. – Т. 84. – С. 124-147. 10. Archibald C., Schwalm L., Ball J. E. A survey of security in robotic systems: vulnerabilities, attacks, andsolutions //International Journal of Robotics and Automation. – 2017. – Т. 32. – №. 2. 11. Bijani S., Robertson D. A review of attacks and security approaches in open multi-agent systems //Artificial Intelligence Review. – 2014. – Т. 42. – №. 4. – С. 607-636. 12. Dorri A., Kanhere S. S., Jurdak R. Multi-agent systems: A survey //Ieee Access. – 2018. – Т. 6. – С. 28573-28593. 13. Bezemskij A. et al. Detecting cyber-physical threats in an autonomous robotic vehicle using Bayesian Networks //2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). – IEEE, 2017. – С. 98-103. 14. Afanasyev I. et al. Blockchain solutions for multi-agent robotic systems: Related work and open questions //arXiv preprint arXiv:1903.11041. – 2019. 15. Danilov K. et al. Towards blockchain-based robonomics: autonomous agents behavior validation //2018 International Conference on Intelligent Systems (IS). – IEEE, 2018. – С. 222-227. 16. Wang Y., Singh M. P. Formal Trust Model for Multiagent Systems //IJCAI. – 2007. – Т. 7. – С. 1551-1556. 17. Wang Y., Singh M. P. Evidence-based trust: A mathematical model geared for multiagent systems //ACM Transactions on Autonomous and Adaptive Systems (TAAS). – 2010. – Т. 5. – №. 4. – С. 1-28. 18. Jung Y. et al. A survey of security issue in multi-agent systems //Artificial Intelligence Review. – 2012. – Т. 37. – №. 3. – С. 239-260. 19. Granatyr J. et al. Trust and reputation models for multiagent systems //ACM Computing Surveys (CSUR). – 2015. – Т. 48. – №. 2. – С. 1-42. 20. Zikratov I. et al. Dynamic trust management framework for robotic multi-agent systems //Internet of Things, Smart Spaces, and Next Generation Networks and Systems. – Springer, Cham, 2016. – С. 339-348. 21. Shi J. et al. A survey of cyber-physical systems //2011 international conference on wireless communications and signal processing (WCSP). – IEEE, 2011. – С. 1-6. 22. Gunes V. et al. A survey on concepts, applications, and challenges in cyber-physical systems //KSII Transactions on Internet & Information Systems. – 2014. – Т. 8. – №. 12. 23. Wong L. H., Looi C. K. Swarm intelligence: new techniques for adaptive systems to provide learning support //Interactive Learning Environments. – 2012. – Т. 20. – №. 1. – С. 19-40. 24. Li X., Branke J., Blackwell T. Particle swarm with speciation and adaptation in a dynamic environment //Proceedings of the 8th annual conference on Genetic and evolutionary computation |
23-31 |
Tali, D. I. CRYPTOGRAPHIC RECURSIVE CONTROL OF INTEGRITY OF METADATA ELECTRONIC DOCUMENTS. PART 2. COMPLEX OF ALGORITHMS / D. I. Tali, O. A. Finko // Cybersecurity issues. – 2020. – № 6(40). – С. 32-47. – DOI: 10.21681/2311-3456-2020-06-32-47.
AbstractThe purpose of the study is to develop a set of algorithms to increase the level of security of metadata of electronic documents in conditions of destructive influences from authorized users (insiders).Research methods: the principle of chain data recording technology, methods of the theory of algorithms, theoretical provisions for the construction of automated information systems of legally significant electronic document management.The result of the research: a complex of algorithms for cryptographic recursive 2-D control of the integrity of metadata of electronic documents has been developed. Its feature is the following features:1. localization of modified (with signs of integrity violation) metadata records of electronic documents;2. identification of authorized users (insiders) who have carried out unauthorized modifications to the metadata of electronic documents;3. identification of the fact of collusion of trusted parties through the introduction of mutual control of the results of their actions.The proposed solution allows to implement the functions of cryptographic recursive two-dimensional control of the integrity of metadata of electronic documents. At the same time, the use of the technology of chain data recording, at the heart of the presented solution, is due to the peculiarities of the functioning of departmental automated information systems of electronic document management. Keywords: automated information systems, electronic document management, metadata management, insider, chain data recording, dynamic ledger, hash function, electronic signature. References1. Tali D.I., Finko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 1. Matematicheskaya model’ // Voprosy kiberbezopasnosti. 2020. № 5 (39). S. 2-18. DOI: 10.21681/2311-3456-2020-05-02-18 2. Tali D.I. Model’ ugroz bezopasnosti metadannym v sisteme elektronnogo dokumentooborota voyennogo naznacheniya // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2020. № 139-140. S. 95-101. 3. Hartmann K., Giles K. UAV exploitation: A new domain for cyber power // 8th International Conference on Cyber Conflict (CyCon). 2016. Pp. 205-221. 4. Kuksov I. Kak nevidimyye dannyye elektronnykh dokumentov privodyat k real’nym problemam. https://www.kaspersky.ru/blog/officedocuments-metadata/14277/ 5. Put’kina L.V. Rol’ informatsionnykh sistem i tekhnologiy v upravlenii predpriyatiyami sfery uslug // Nauka-Rastudent.ru. 2016. № 5. S. 13. 6. Seliverstov D.Ye., Popov A.M., Zakharov Ye.N. Algoritm otsenki i opredeleniya napravleniy povysheniya kachestva trenazhernykh kompleksov dlya podgotovki operatorov robototekhnicheskikh kompleksov voyennogo naznacheniya // Strategicheskaya stabil’nost’. 2017. №2 (79) S. 17-20. 7. Savin S.V., Finko O.A., Yeliseyev N.I. Sistema kontrolya tselostnosti zhurnalov nepreryvno vedushchikhsya zapisey dannykh // Patent na izobreteniye RU 2637486, opubl. 04.12.2017, byul. № 34. 8. Tali D.I., Finko O.A., Yeliseyev N.I., Dichenko S.A., Baril’chenko S.A. Sposob kriptograficheskogo rekursivnogo 2-D kontrolya tselostnosti metadannykh faylov elektronnykh dokumentov // Patent na izobreteniye RU 2726930, opubl. 16.07.2020, byul. №20. 9. Zhigalov K.Yu., Podlevskikh A.P., Avetisyan K.R. Napravleniya razvitiya sistem obespecheniya bezopasnosti elektronnogo dokumentooborota v sovremennykh usloviyakh // Sovremennyye naukoyemkiye tekhnologii. 2019. № 2. S. 52-56. 10. Baranov A.V. Sistemy yuridicheski znachimogo elektronnogo dokumentooborota // Aktual’nyye problemy ekonomiki sovremennoy Rossii. 2015. T. 2. № 2. S. 28-31 11. Prutskov A.V., Volkova L.L. Matematicheskaya logika i teoriya algoritmov. M.: INFRA-M, 2018. 152 s. 12. Maksimov R.V., Orekhov D.N., Sokolovskiy S.P. Model’ i algoritm funktsionirovaniya kliyent-servernoy informatsionnoy sistemy v usloviyakh setevoy razvedki // Sistemy upravleniya, svyazi i bezopasnosti. 2019. № 4. S. 50-99. 13. Seliverstov D.Ye. Algoritm otsenki kachestva slozhnykh tekhnicheskikh sistem na osnove modeley metodologii ASF // V sbornike: Naukoyomkiye tekhnologii na sovremennom etape razvitiya mashinostroyeniya. Materialy VIII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. 2016. S. 204-207. 14. Gumbataliyev R.Z., Sadigov A.S., Akhmedov G.G. Osnovnyye cherty algoritmov // V sbornike: Collection of scientific articles XVI International correspondence scientific specialized conference. 2020. S. 31-37. 15. Zakharov Ye.N., Pipko V.S., Bal’ M.A. Obshchiy analiz razlichnykh algoritmov dlya vozmozhnogo matematicheskogo obespecheniya intellektual’nykh sistem peredachi informatsii // Trudy FGUP «NPTSAP». Sistemy i pribory upravleniya. 2018. № 1. S. 59-62. 16. Yeliseyev N.I., Finko O.A. Teoreticheskiye aspekty razvitiya sistemy elektronnogo dokumentooborota Ministerstva oborony Rossiyskoy Federatsii // Voyennaya mysl’. 2015. № 7. S. 55-63. 17. Yeliseyev N.I., Finko O.A. Upravleniye tselostnost’yu sistemy yuridicheski znachimogo elektronnogo dokumentooborota v usloviyakh mezhformatnykh preobrazovaniy elektronnykh dokumentov // Problemy upravleniya. 2014. № 3 S. 68-73. |
32-47 |
Kubarev, A. V. THE SYNTHESIS OF A CRITICAL INFRASTRUCTURE OBJECT MODEL FOR SAFE OPERATION OF A TECHNICAL SYSTEM UNDER THE CONDITIONS OF DESTRUCTIVE INFORMATION IMPACT / A. V. Kubarev, A. P. Lapsar’, A. A. Asyutikov // Cybersecurity issues. – 2020. – № 6(40). – С. 48-56. – DOI: 10.21681/2311-3456-2020-06-48-56.
AbstractThe purpose of the article: improving the security and stability of the functioning of complex technical systems managed by critical information infrastructure objects under the conditions of a destructive information impact, using parameterized evolutionary models.Methods: synthesis of parametrized evolutionary models of significant objects of critical information infrastructure based on the Markov theory of estimation of multidimensional diffusion processes.The result: within the framework of an integrated approach to ensuring the security of complex technical systems, a parametrized evolutionary model of an object of a critical information infrastructure operating under conditions of destructive information impact has been synthesized. An approach to the development of recommendations for managing a complex technical system by means of an operational assessment of the main characteristics of the functioning of a critical information infrastructure object is proposed. A sequence has been developed for developing solutions for the operation of a complex technical system, based on an assessment of the impact level and the results of an operational calculation of the main characteristics of the functioning of a critical information infrastructure object. The results obtained make it possible to reasonably formulate technical requirements for the created or modernized means of ensuring the security of significant objects of critical information infrastructure that manage complex technical systems. Keywords: critical information infrastructure object, level of destructive impact, integrated approach, set of security functions, basic solutions, evolutionary models, functioning characteristics, vector parameter. References1. Vasil’eva V.I., Kirillova A.D., Kuharev S.N. Kiberbezopasnost’ avtomatizirovannyh sistem upravleniya promyshlennyh ob»ektov (sovremennoe sostoyanie, tendencii) // Vestnik UrFO. Bezopasnost’ v informacionnoj sfere. 2018. № 4. S. 66-74. 2. Zegzhda D.P., Vasil’ev YU.S., Poltavceva M.A., Kefeli I.F., Borovkov A.I. Kiberbezopasnost’ progressivnyh proizvodstvennyh tekhnologij v epohu cifrovoj transformacii // Voprosy kiberbezopasnosti. 2018. № 2. S. 2-15. DOI: 10.21681/2311-3456-2018-2-2-15. 3. Lifshic I.I., Fatkieva R.R. Model’ integrirovannoj sistemy menedzhmenta dlya obespecheniya bezopasnosti slozhnyh ob»ektov // Voprosy kiberbezopasnosti. 2018. № 1. S. 64-71. DOI: 10.21681/2311-3456-2018-1-64-71. 4. Gos’kova D.A., Massel’ A.G. Tekhnologiya analiza kiberugroz i ocenka riskov kiberbezopasnosti kriticheskoj infrastruktury // Voprosy kiberbezopasnosti. 2019. № 2. S. 42-49. DOI: 10.21681/2311-3456-2019-2-42-49. 5. Kolosok I.N., Gurina L.A., Povyshenie kiberbezopasnosti intellektual’nyh energeticheskih sistem metodami ocenivaniya sostoyaniya // Voprosy kiberbezopasnosti. 2018. № 3. S. 63-69. DOI: 10.21681/2311-3456-2018-3-63-69. 6. Bratchenko A.I., Butusov I.V., Kobelyan A.M., Romanov A.A. Primenenie metoda nechetkih mnozhestv k ocenke riskov narusheniya kriticheski vazhnyh svojstv zashchishchaemyh resursov avtomatizirovannyh sistem upravleniya // Voprosy kiberbezopasnosti. 2019. № 1. S. 18-24. DOI: 10.21681/2311-3456-2019-1-18-24. 7. Andryuhin E.V. , Ridli M.K., Pravikov D.I., Prognozirovanie sboev i otkazov v raspredelennyh sistemah upravleniya na osnove modelej prognozirovaniya vremennyh ryadov // Voprosy kiberbezopasnosti. 2019. № 3. S. 24-32. DOI: 10.21681/2311-3456-2019-3-24-32. 8. Kubarev A.V., Lapsar’ A.P., Fedorova YA.V. Povyshenie bezopasnosti ekspluatacii znachimyh ob»ektov kriticheskoj infrastruktury s ispol’zovaniem parametricheskih modelej evolyucii // Voprosy kiberbezopasnosti. 2020. № 1. S. 8-17. DOI: 10.21681/2311-3456-2020-01-08-17. 9. Klimov S.M., Astrahov A.V., Sychev M.P. Metodicheskie osnovy protivodejstviya komp’yuternym atakam. Elektronnoe uchebnoe izdanie. – M.: MGTU imeni N.E. Baumana, 2013. 110 s. 10. Antonov S.G., Klimov S.M. Metodika ocenki riskov narusheniya ustojchivosti funkcionirovaniya programmno-apparatnyh kompleksov v usloviyah informacionno-tekhnicheskih vozdejstvij // Nadezhnost’. 2017. Tom 17. № 1. S. 32-39. 11. Kriticheski vazhnye ob»ekty i kiberterrorizm. CHast’ 1. Sistemnyj podhod k organizacii protivodejstviya / O.O. Andreev i dr. Pod red. V.A. Vasenina. – M.:MCNMO, 2008. 398 s. 12. Minaev V.A., Korolev I.D., Zelencova E.V., Zaharchenko R.I. Kriticheskaya informacionnaya infrastruktura: ocenka ustojchivosti funkcionirovaniya // Radiopromyshlennost’. 2018. Tom №28, № 4. S. 59–67. 13. Severcev N.A., Beckov A.V. Sistemnyj analiz teorii bezopasnosti. – M.: Izd. MGU «TEIS», 2009. 452 s. 14. Ostrejkovskij V.A., Sal’nikov N.L. Veroyatnostnoe prognozirovanie rabotosposobnosti YAEU. – M.: Energoatomizdat, 1990. 416 s. 15. Pugachev V.S., Sinicyn I.N. Teoriya stohasticheskih sistem. M.: Logos, 2000. 1000 s. 16. Pyatkova N.I., Beresneva N.M. Modelirovanie kriticheskih infrastruktur energetiki s uchetom trebovanij energeticheskoj bezopasnosti. // Informacionnye i matematicheskie tekhnologii v nauke i upravlenii. 2017. № 3. S 54-65. 17. Astrahov A.V., Kulikov L.S., Minaev V.A. Modelirovanie ugroz informacionnyh vozdejstvij manipulyativnogo haraktera // Voprosy radioelektroniki. 2016. № 12. S. 63-69 18. Zaharchenko R.I., Korolev I.D. Model’ funkcionirovaniya avtomatizirovannoj informacionnoj sistemy v kiberprostranstve // Voprosy kiberbezopasnosti. 2019. № 6. S. 69-78. |
48-56 |
Lapshichyov, V. V. IDENTIFICATION OF THE “TOR” NETWORK HTTPS-CONNECTION VERSION TLS V1.3 / V. V. Lapshichyov, O. B. Makarevich // Cybersecurity issues. – 2020. – № 6(40). – С. 57-62. – DOI: 10.21681/2311-3456-2020-06-57-62.
AbstractPurpose of the study: compilation of a set of features that allow to detect and identify the establishment of a connection between the client and the anonymous network Tor in conditions of using encryption of the data stream using the TLS v1.3 protocol.Method: software analysis of the data flow, frequency methods, decomposition of the content of data packets according to their number, sequence, finding frames in a packet and sizes, a comparative method in point of different versions of the encryption protocol and resources making the connection were used.Results: a set of features of the Tor network connection established using TLS v1.3 encryption was compiled, allowing to detect and identify in the data stream a “handshake” between the client and the Tor network in order to legally block the connection; a comparative analysis of the data of the Tor network and the VKontakte social network during the establishment of an encrypted connection was carried out; studied and described the structure and differences of the “handshake” of the TLS protocols v1.2 and v1.3; the structure, size and arrangement of frames and data packets of the Tor network and a connection of other network type, both using TLS v1.3 encryption, has been revealed. Keywords: X.509 certificate, TLS handshake, legal blocking of access, cybersecurity, deanonymization. References1. Batyukova V.E. Aktual’nye problemy protivodeystviya ekstremizmu v molodezhnoy srede // Gosudarstvennaya sluzhba i kadry [State service and personnel], 2020, No 1, pp. 67-70. DOI: 10.24411/2312-0444-2020-10013. 2. Bondarenko Y.A., Kizilov G.M. Problemy vyyavleniya i ispol’zovaniya sledov prestupleniy, ostavlyaemyh v seti «Darknet» // Gumanitarnye, sotsial’no-ekonomicheskie i obshchestvennye nauki [Humanitarian, socio-economic and social sciences], 2019, No 5, pp. 97-101. DOI: 10.23672/SAE.2019.5.31422. 3. Batoev V.B. Problemy protivodeystviya ekstremistskoy deyatel’nosti, osushchestvlyaemoy s ispol’zovaniem seti Internet // Vestnik VI MVD Rossii [Gerald of Voronezh Institute of Russian Ministry of Interior], 2016, No 2, pp. 37-43. 4. Volkova O.V., Vysotskiy V.L., Drozdova E.A. Aktual’nye voprosy protivodeystviya narkoprestupleniyam, sovershennym beskontaktnym sposobom // Probely v rossiyskom zakonodatel’stve [Gaps in Russian Legislation], 2018, No 6, pp. 176-178. 5. Usmanov R.A. Harakteristika prestupnoy deyatel’nosti, osushchestvlyaemoy v seti Internet posredstvom servisov-anonimayzerov // Yuridicheskaya nauka i pravoohranitel’naya praktika [Legal Science and Law Enforcement Practice], 2018, No 4 (46), pp. 135-141. 6. Avdoshin S.M., Lazarenko A.V. Metody deanonimizatsii pol’zovateley Tor // Informatsionnye tekhnologii [Information Technology], 2016, b. 22, No 5, pp. 362-372. 7. Basynya E.A., Hitsenko V.E., Rudkovskiy A.A. Metod identifikatsii kiberprestupnikov, ispol’zuyushchih instrumenty setevogo analiza informatsionnyh sistem s primeneniem tekhnologiy anonimizatsii // Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems and Radioelectronics], 2019, vol. 22, No 2, pp. 45-51. DOI: 10.21293/1818-0442-2019-22-2-45-51. 8. Avdoshin S.M., Lazarenko A.V. Deep web users deanonimization system // Trudy ISP RAN, [Proceedings of the Institute for System Programming of the Russian Academy of Sciences], 2016, vol. 28, No 3, pp. 21-34. DOI: 10.15514/ISPRAS-2016-28(3)-2. 9. Shcherbinina I.A., Kytmanov N.S., Aleksandrov R.V. Primenenie tekhnologii DNS-Rebinding dlya opredeleniya real’nogo IP-adresa anonimnyh veb-pol’zovateley // Voprosy kiberbezopasnosti [Cybersecurity Issues], 2016, No 1 (14), pp. 31-35. 10. Martin Steinebach, Marcel Schäfer, Alexander Karakuz, Katharina Brandl, and York Yannikos. 2019. Detection and Analysis of Tor Onion Services. In Proceedings of the 14th International Conference on Availability, Reliability and Security. ARES ‘19. Association for Computing Machinery, New York, NY, USA, art. 66, pp. 1–10. DOI: 10.1145/3339252.3341486. 11. Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society. WPES ‘13. Association for Computing Machinery, New York, NY, USA, 2013, pp. 201–212. DOI: 10.1145/2517840.2517851. 12. Florian Platzer, Marcel Schäfer, and Martin Steinebach. 2020. Critical traffic analysis on the tor network. In Proceedings of the 15th International Conference on Availability, Reliability and Security. ARES ‘20. Association for Computing Machinery, New York, NY, USA, art. 77, pp. 1–10. DOI: 10.1145/3407023.3409180 13. Lapshichyov V.V. Makarevich O.B. Metod obnaruzheniya i identifikatsii ispol’zovaniya programmnogo kompleksa «Tor» // Informatizatsiya i svyaz’ [Informatization and communication], 2020, No 3, pp. 17-20. DOI: 10.34219/2078-8320-2020-11-3-17-20. 14. Lapshichyov V.V., Makarevich O.B. TLS Certificate As A Sign Of Establishing A Connection With The Network Tor. In proceedings of the 12th International Conference on Security of Information and Networks (Sochi, Russian Federation, September 12-15, 2019). SIN’19. ACM New York, NY, USA, 2019, pp. 92-97. DOI: 10.1145/3357613.3357628. 15. Lapshichev V.V. TLS Certificates of The Tor Network And Their Distinctive Features // International Journal of Systems and Software Security and Protection, 2019, vol. 10, No 2. pp. 20-43. DOI: 10.4018/IJSSSP.2019070102. 16. Lapshichyov V., Makarevich O. Technology of Deep Packet Inspection For Recognition And Blocking Traffic Of The Tor Network In proceedings of the 12th International Conference on Security of Information and Networks (Sochi, Russian Federation, September 12-15, 2019). SIN‘19. Sochi State University, Sochi, Russia, 2019, pp. 24-27. |
57-62 |
Gavrilov, D. A. REGULATORY ISSUES TO DEVELOP SECURE AUTOMATED SMART SYSTEMS / D. A. Gavrilov // Cybersecurity issues. – 2020. – № 6(40). – С. 63-71. – DOI: 10.21681/2311-3456-2020-06-63-71.
AbstractThe purpose of the article is to address the regulatory and technical issues of effective creation, operation and operation of safe, reliable and effective systems based on artificial intelligence. The research method. Opportunities for conceptual and logical modeling of ergasystems and invariant architectures of rational modeling based on the problem-oriented version of the integrated “information-cybernetic-didactic” approach using the information and mathematical structure of the automated optical-electronic system of ground-space monitoring are considered.Results. Presented conceptual and logical model of the system of regulatory and technical regulation of systems based on artificial intelligence technologies, and the invariant architecture of the rational model of the artificial intelligence system, developed a method of solving the problem of the operation of the automated optical-electronic system of ground-space monitoring.Keywords: artificial intelligence technologies, regulation of artificial intelligence, two-tier ergasystem, methodological principles, conceptual and logical model. References1. Gavrilov D.A., Lovtcov D.A. Avtomatizirovannaia optiko–e`lektronnaia sistema nazemno–kosmicheskogo monitoringa dlia sistem bezopasnosti real`nogo vremeni // Voprosy` kiberbezopasnosti. – 2020. № 5. S. 41–47. DOI: 10.21681/2311-3456-2020-05-41-47 2. Stepanov O.A. Pravovoe regulirovanie otnoshenii` v sfere bezopasnogo funktcionirovaniia i razvitiia sistem iskusstvennogo intellekta: doktrinal`ny`e aspekty` // Pravovaia informatika. 2019. № 1. S. 56–63. DOI: 10.21681/1994-1404-2019-01-53-63 3. Sady`hov R.KH., Dudkin A.A. Obrabotka izobrazhenii` i identifikatciia ob``ektov v sistemakh tekhnicheskogo zreniia // Iskusstvenny`i` intellekt. 2006. № 3. S. 694–703. 4. Tropchenko A.Iu., Tropchenko A.A. Metody` vtorichnoi` obrabotki i raspoznavaniia izobrazhenii`. Uchebnoe posobie. SPb: Universitet ITMO. 2015. 215 s. 5. Anisimov B. V., Kurganov V. D., Zlobin V.K. Raspoznavanie i tcifrovaia obrabotka izobrazhenii`. M: Vy`sshaia shkola, 1983. 295 s. 6. Haustova E.Iu., El`tcov D.A., Ershov D.P. Razvitie sistem iskusstvennogo intellekta // VIII Mezhdunarodnoi` nauchno-prakticheskoi` konferentcii «Nauchnoe soobshchestvo studentov XXI stoletiia. Tekhnicheskie nauki». Novosibirsk, 2013. S. 67-70. 7. Gavrilov D.A. Nei`rosetevoi` algoritm avtomaticheskogo obnaruzheniia i soprovozhdeniia ob``ekta interesa v videosignale // 16 Natcional`naia konferentciia po iskusstvennomu intellektu (24–27 sentiabria 2018 g., g. Moskva, Rossiia). Trudy` konferentcii. V 2-kh tomakh. T 2. M: RKP. 2018. № 8. S. 188–195. 8. Sheluhin O.I., Polkovnikov M.V. Classifikatciia zashifrovannogo trafika mobil`ny`kh prilozhenii` metodom mashinnogo obucheniia // Voprosy` kiberbezopasnosti. 2018. t. 28, № 4. S. 21–28. DOI: 10.21681/2311-3456-2018-04-21-28 9. Kruglikov S.V., Dmitriev V.A., Stepanian A.B., Maksimovich E.P. Politika upravleniia dostupom v sisteme zashchity` informatcii vy`sokoproizvoditel`noi` sistemy` obrabotki geologo-geofizicheskikh danny`kh // Voprosy` kiberbezopasnosti. 2018. № 3. S. 22–28. DOI: 10.21681/2311-3456-2018-03-22-28 10. Lovtcov D.A. Osnovy` tekhnologii e`ffektivnogo dvuhurovnevogo pravovogo regulirovaniia informatcionny`kh otnoshenii` v infosfere // Pravovaia informatika. 2018. № 2. S. 4–14. DOI: 10.21681/1994-1404-2018-02-4-14 11. Lovtcov D.A. Informatcionnaia teoriia e`rgasistem: Tezaurus. M: Nauka. 2005. 248 s. 12. Skobtcov V.Iu., Kruglikov S.V., Kim D.S., Novoselova N.A., Arhipov V.I., Kul`bak L.I., Nicolaenia E.D., Lapitckaia N.V., Vakul`chik E.N, Saksonov R. Analiz pokazatelei` nadezhnosti, zhivuchesti i telemetrii bortovoi` apparatury` maly`kh kosmicheskikh apparatov // Voprosy` kiberbezopasnosti. 2018. t. 28, № 4. S. 54–69. DOI: 10.21681/2311-3456-2018-04-54-69 13. Gavrilov D.A., Shchelkunov N.N. Programmnoe obespechenie razmetki krupnoformatny`kh ae`rokosmicheskikh izobrazhenii` i podgotovki obuchaiushchikh vy`borok // Nauchnoe priborostroenie. 2020. t. 30, № 2. S. 67–75. 14. Mestetckii` L.M., Gavrilov D.A., Semenov A.B. Metod razmetki izobrazhenii` samoletov na ae`rokosmicheskikh snimkakh na osnove neprery`vny`kh morfologicheskikh modelei` // Programmirovanie. 2019. № 6. S. 3–12. 15. Pun` A.B., Gavrilov D.A., Shchelkunov N.N., Fortunatov A.A. Algoritm adaptivnoi` binarizatcii ob``ektov v videoposledovatel`nosti v rezhime real`nogo vremeni // Uspehi sovremennoi` radioe`lektroniki. 2018. № 8. S. 40–48. |
63-71 |
Kartskhiya, A. A. NEW ELEMENTS OF NATIONAL SECURITY: NATIONAL AND INTERNATIONAL ASPECTS / N. P. Kartskhiya // Cybersecurity issues. – 2020. – № 6(40). – С. 72-82. – DOI: 10.21681/2311-3456-2020-06-72-82.
AbstractThe purpose of the article is to address the regulatory and technical issues of effective creation, operation and operation of safe, reliable and effective systems based on artificial intelligence. The research method. Opportunities for conceptual and logical modeling of ergasystems and invariant architectures of rational modeling based on the problem-oriented version of the integrated “information-cybernetic-didactic” approach using the information and mathematical structure of the automated optical-electronic system of ground-space monitoring are considered.Results. Presented conceptual and logical model of the system of regulatory and technical regulation of systems based on artificial intelligence technologies, and the invariant architecture of the rational model of the artificial intelligence system, developed a method of solving the problem of the operation of the automated optical-electronic system of ground-space monitoring.Keywords: sovereignty, constitutional rights, international agreements, foreign investment, digital rights, biosecurity, cybersecurity, cryptosecurity References1. Kartchiia A.A. Pravovoe regulirovanie o vozmozhnosti sovremenny`kh biotekhnologii` // Intellektual`naia sobstvennost`. Promy`shlennaia sobstvennost`. 2020. № 8. S. 33-46. 2. Zhavoronkova N.G., Agafonov V.B. Teoretiko-metodologicheskie problemy` pravovogo obespecheniia e`kologicheskoi`, biosfernoi` i geneticheskoi` bezopasnosti v sisteme natcional`noi` bezopasnosti Rossii`skoi` Federatcii // Lex russica. 2019. № 9. S. 96–108. 3.Romanovskii` G.B. Pravovoe regulirovanie geneticheskikh issledovanii` v Rossii i za rubezhom // Lex russica. 2016. № 7. S. 93–102. 4. R. Sabillon, V.Cavaller, J.Cano. National Cyber Security Strategies: Global Trends in Cyberspace International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 5, May 2016. R.67-81. www.IJCSSE.org 5. Molchanov N.A., Matevosova E.K. Kontceptual`no-politicheskii` i formal`no-iuridicheskii` analiz Parizhskogo prizy`va k doveriiu i bezopasnosti v kiberprostranstve i rossii`skie initciativy` v oblasti mezhdunarodnogo prava // Aktual`ny`e problemy` rossii`skogo prava. 2020. № 1. S. 133 - 141. DOI: 10.17803/1994-1471.2020.110.1.133-14 6. Štitilis, D., Pakutinskas, P. & Malinauskaitė, I. EU and NATO cybersecurity strategies and national cyber security strategies: a comparative analysis. Secur J 30, 1151–1168 (2017). https://doi.org/10.1057/s41284-016-0083-9 7. R. Klahr, J.Shah, P. Sheriffs, T.Rossington,G. Ipsos . Cyber security breaches survey 2017. Main report. 2017. URL: http://www.ipsos-mori.com/terms |
72-82 |
Leave a Reply