№ 3 (37)

Content of 3rd issue of magazine «Voprosy kiberbezopasnosti» at 2020:

Title Pages
Buinevich, M. V. ANALYTICAL MODELING OF THE VULNERABLE PROGRAM CODE EXECUTION / M. V. Buinevich, K. E. Izrailov // Cybersecurity issues. – 2020. – № 3(37). – С. 2-12. – DOI: 10.21681/2311-3456-2020-03-2-12.

Abstract
The goal of the presented investigation is to create an analytical model of vulnerable program code. This will allow one to analyze the characteristics of the code in various representations: Idea, Conceptual model, Architecture, Algorithms, Source code, Assembler code, Machine code.The research method consists in analysis of the program code during its full lifecycle in the 4 basic aspects:1) dynamic - describes changes in the process of developing program code and its vulnerabilities;2) formalizing - describes analytical rules for representing of a code, vulnerabilities, their mutual influence, dynamics of changes and other concepts of the subject area;3) classification - introduces classes of vulnerabilities that depend on the program code representation chronology;4) cognitive - describes the mechanism of a code perception by a man or by a tool in a formal way.The main scientific result of the investigation is an analytical model of software life cycle. The model combines in a formal way the fundamental concepts of program code: Representation, Form, Content, Vulnerability, Functionality. The particular scientific result is a scheme for vulnerable code transformation into the new representation. The scheme describes in detail the transformation of the code to a new representation and the modification of the code in the current one. The obtained results are a powerful investigation tool in the area of secure software. These results can be used to formalize and investigate the mechanisms of the appearance and evolution of vulnerabilities in a program code. This will allow one to create the detection and neutralization rules for such vulnerabilities using modern methods (including machine learning).
Keywords: cybersecurity, development model, program code representations, program analysis, formalization, classification, code dynamics, cognition.
References
1. Buynevich M.V., Vasileva I.N., Vorobev T.M., Gnidenko I.G., Yegorova I.V., Yenikeeva L.A. et al. Zashchita informatsii v kompyuternykh sistemakh [Information Protection in Computer Systems]. – St. Petersburg: Saint-Petersburg State University of Economics Publ.; 2017. 163 p. (in Russ.)
2. Brechko A.A., Vershennik Ye.V., Zakalkin P.V., Starodubtsev Yu.I. Vzglyady komandovaniy zarubezhnykh gosudarstv na provedeniye operatsii v kiberprostranstve [The Views of the Commands of Foreign States on Operations in Cyberspace]. Problemy tekhnicheskogo obespecheniya voysk v sovremennykh usloviyakh: sbornik trudov IV mezhvuzovskoy nauchno-prakticheskoy konferentsii, 6th February 2019, St. Petersburg, Russian Federation [In Proceedings of the IVth Interuniversity Scientific and Practical Conference on Problems of Technical Support of Troops in Modern Conditions, 6th February 2019, St. Petersburg, Russian Federation]. - St. Petersburg: Military Academy of Communications Publ.; 2019. p.132-136. (in Russ.)
3. Buynevich M.V., Izrailov K.E. Anthropomorphic Approach to Description of the Vulnerabilities Interaction in Program Code. Part 1. Types of Interactions. Zaŝita informacii. Inside. 2019;5(89):78-85. (in Russ.)
4. Buynevich M.V., Izrailov K.E. Anthropomorphic Approach to Description of the Vulnerabilities Interaction in Program Code. Pt. 2. Metric of Vulnerabilities. Zaŝita informacii. Inside. 2019;6(90):61-65. (in Russ.)
5. Kubarev A. The Classification Characteristics Based Approach to Formalization of Information Systems Vulnerabilities. Voprosy Kiberbezopasnosti. 2013;2(2):29-33. (in Russ.)
6. Grabezhov I.E., Leonov Ju.A. Formalization of the analysis of the vulnerabilities of the information system in the design of KSZI. Proceedings of the Voronezh State University of Engineering Technologies. 2017;79(2):107-112. (in Russ.) DOI: 10.20914/2310-1202-2017-2-107-112
7. Wolfson Yu.R., Volchina A.E. The Difficulty of Information Society Theories Classification. Sovremennye issledovaniya sotsialnykh problem (elektronnyy nauchnyy zhurnal). 2017;8(3-1):80-110. (in Russ.) DOI: 10.12731/2218-7405-2017-3-80-110
8. Chernysheva A.F., Trubin I.S., Korepanov A.G., Repkin D.A. Klassifikatsiya ugroz informatsionnoy bezopasnosti v kognitivnykh setyakh svyazi [Classification of Information Security Threats in Cognitive Communication Networks]. Advanced Science. 2017;4:37. (in Russ.)
9. Grunina L.P., Shirokolobova A.G. Cognitive Aspect of Terms Research. Philological Sciences. Issues of Theory and Practice. 2010;1-1(5):97-99. (in Russ.)
10. Madzhaeva S.I. The Term Infection in Cognitive Aspect. Sovremennye problemy lingvistiki i lingvodidaktiki: kontseptsii i perspektivy: materialy Pyatoy zaochnoy Mezhdunarodnoy nauchno-metodicheskoy konferentsii, 30th April 2015, Volgograd, Russian Federation [In Proceedings of the Vth Correspondence International Scientific and Methodological Conference on Modern Problems of Linguistics and Linguodidactics: Concepts and Perspectives, 30th April 2015, Volgograd, Russian Federation]. - Volgograd: Volgograd State University Publ.; 2015. p. 73-78. (in Russ.)
11. Barabanov A.V., Markov A.S., Tsirlov V.L. Topical issues of identifying vulnerabilities and undeclared capabilities in software. Sistyemy vysokoy dostupnosti. 2018;14(3):12-17. (in Russ.) DOI: 10.18127/j20729472-201803-03
12. Vyalykh A.S., Vyalykh S.A. The Dynamics of Vulnerability in Modern Protected Information Systems. Proceedings of Voronezh State University. Series: Systems analysis and information technologies. 2011;2:59-63. (in Russ.)
13. Buinevich M., Izrailov K., Vladyko A. The life cycle of vulnerabilities in the representations of software for telecommunication devices. In Proceedings of the 18th International Conference on Advanced Communications Technology, ICACT-2016, Pyeongchang, South Korea, 31th January - 03rd February 2016. IEEE; 2016. p.430-435. DOI: 10.1109/ICACT.2016.7423420
14. Buinevich M., Izrailov K., Vladyko A. Metric of vulnerability at the base of the life cycle of software representations. In Proceedings of the 20th International Conference on Advanced Communication Technology, ICACT-2018, 11-14 February 2018, Chuncheon-si Gangwon-do, South Korea. IEEE; 2018. p.1-8. DOI: 10.23919/ICACT.2018.8323940
15. Golovin V.S. Obshchaya teoriya uyazvimostey kompyuternykh system [General Theory of Vulnerabilities in Computer Systems]. Tekhnicheskie nauki: traditsii i innovatsii: sbornik trudov III Mezhdunarodnoy nauchnoy konferentsii, 20-23 March 2018, Kazan, Russian Federation [In Proceedings of the IIIrd International Scientific Conference on Technical Sciences: Traditions and Innovations, 20-23 March 2018, Kazan, Russian Federation]. - Kazan: Molodoy uchenyy Publ.; 2018. p. 10-12. (in Russ.)
16. Buinevich M.V., Izrailov K.E., Scherbakov O.V. Model of Machine Code Specialized for Vulnerabilities Search. Vestnik Voronezhskogo instituta GPS MChS Rossii. 2014;2(11): 46-51. (in Russ.)
17. Markov A.S., Fadin A.A., Shvets V.V. Comparison of static security code analyzers. Zaŝita informacii. Inside. 2015;6(66):38-43. (in Russ.)
18. Izrailov K.E. Arkhitekturnye uyazvimosti programmnogo obespecheniya [Architectural Software Vulnerabilities]. Shestoy nauchnyy kongress studentov i aspirantov SPbGIEU (INZhEKON-2013): sbornik tezisov dokladov nauchno-prakticheskoy konferentsii fakulteta informatsionnykh sistem i ekonomike i upravlenii «Infokommunikatsionnye tekhnologii i matematicheskie metody», 18-19 April 2013, St. Petersburg, Russian Federation [In Proceedings of the Sixth Scientific Congress of Undergraduate and Postgraduate Students of Saint Petersburg State University of Economics: Scientific and Practical Conference of the Faculty of Information Systems and Economics and Management “Infocommunication Technologies and Mathematical Methods”, 18-19 April 2013, St. Petersburg, Russian Federation]. - St. Petersburg: Saint Petersburg State University of Economics Publ.; 2013. p. 35. (in Russ.)
19. Izrailov K., Tatarnikova I. An Approach to Analyzing the Security of a Software Code from the Standpoint of its Form and Content. In Proceedings of the VIIIth International Conference on Infotelecommunications in Science and Education, 27–28 February 2019, St. Petersburg, Russian Federation). St. Petersburg: The Bonch-Bruevich Saint-Petersburg State University of Telecommunications Publ.; 2019. p. 462-467. (in Russ.)
20. Pustigin A.N., Yazov Y.K., Mashin O.A., Zubov M.V. To the Question on Automatic Commenting in the Natural Language of Initial Texts Programs. Software Engineering. 2013;11:17-21. (in Russ.)
21. Markov A.S., Sheremet I.A. Software Safety in the Context of Strategic Stability. Vestnik akademii voennykh nauk. 2019;2(67):82-90. (in Russ.)
22. Borodin A.A. Entropiya i primenenie entropii dlya analiza system [Entropy and the Use of Entropy for Systems Analysis]. Vestnik of Russian New University. Series: Complex Systems: Models, Analysis and Management. 2010;3:33-36. (in Russ.)
23. Chepkasov V.L., Mikhaylova T.L. Novye smysly ponyatiya entropii, ili k voprosu o neklassicheskom variante ponyatiya entropii [New meanings of the concept of entropy, or to the question of a non-classical version of the concept of entropy]. Mezhdunarodnyy zhurnal eksperimentalnogo obrazovaniya. 2014;6-1:164-167. (in Russ.)
24. Merzhvinskiy A.A. Teoriya informatsii - bazovoe yadro teorii informatiki [Information theory - the basic core of computer science theory]. Trudy Severo-Kavkazskogo filiala Moskovskogo tekhnicheskogo universiteta svyazi i informatiki. 2018;1:225-234. (in Russ.)
25. Troitskiy I.I., Basarab M.A., Glinskaya E.V. Determination of the amount of information for a discrete signal with K values in the communication channel with uniform noise. Radioengineering. 2019;83(10):82‑86. (in Russ.) DOI: 10.18127/j00338486-201910(15)-13
26. Petrenko S.A., Biryukov D.N., Petrenko A.S. Umnaya kiberbezopasnost [Smart cybersecurity]. In Proceedings of the IIIrd International Scientific and Technical Conference on Cybersecurity of the Digital Economy, CDE’19, 22-24 May 2019, Kazan, Russian Federation. - St. Petersburg: Afina Publ.; 2019. p.160-172. (in Russ.)
27. Kalashnikov A.O., Bugayskiy K.A., Anikina E.V. Models of Quantitative Estimation of Computer Attacks (Part 1). Informatsiya i bezopasnost. 2019;22(4):517-528. (in Russ.)
28. Kalashnikov A.O., Bugayskiy K.A., Anikina E.V. Models of Quantitative Estimation of Computer Attacks (Part 2). Informatsiya i bezopasnost. 2019;22(4):529-538. (in Russ.)
29. Pakhomova A.S., Rakhmanin D.N., Parinova L.V., Yazov Yu.K. Usability Assesment of CVSS version 2 vulnerability scoring to riskanalysis of trusted systems. Informatsiya i bezopasnost. 2017;20(1):129-132. (in Russ.)
2-12
Deundyak, V. M. ON THE PROBLEM OF SECURE COMMUNICATION IN WIRELESS SENSOR NETWORKS / V. M. Deundyak, A. A. Taran // Cybersecurity issues. – 2020. – № 3(37). – С. 13-21. – DOI: 10.21681/2311-3456-2020-03-13-21.

Abstract
The goal of the paper is a secure communication in wireless sensor networks in the presence of external and internal attackers. Comparative analysis of different types of key distribution protocols is performed, different approaches to building secure communication schemes in wireless sensor networks are studied, and estimations for the entropy of the predistributed key information are calculated. The key predistribution schemes are suggested to be used for wireless sensor networks; the model of such schemes that provide protection from external attacker is developed. The requirements to the size of predistributed key information for each device in the network are studied based on the requirements to common secret key and scheme resilience against collusive attacks by internal attacker. For better resilience against collusive attacks threshold key predistribution schemes such as polylinear and combinatorial schemes are suggested to be used. Probabilities of successful attacks in case when size of the coalition exceeds the threshold are studied for such schemes. The conclusions are supported by previously conducted research.
Keywords: wireless sensor networks, secret key establishment, key predistribution schemes, threshold schemes,
polylinear schemes, combinatorial schemes, collusive attacks.
References
1. Gol’dshteyn B.S., Kucheryavyy A.E. Seti svyazi post-NGN. – Saint-Petersburg: BKhV-Peterburg, 2013, 160 p.
2. Karlof C., Wagner D. Secure routing in wireless sensor networks: attacks and countermeasures. // Ad Hoc Networks, Volume 1, Issues 2-3, September 2003, pp. 293-315. DOI: 10.1016/S1570-8705(03)00008-8
3. Al-Karaki J.N. and Kamal A.E. Routing techniques in wireless sensor networks: A survey. // IEEE Wireless Communications Magazine, vol. 11, no. 6, 2004, pp. 6-28. DOI: 10.1109/MWC.2004.1368893
4. Slovar’ kriptograficheskikh terminov. / by ed. B.A. Pogorelov and V.N. Sachkov. Moskow: MTsNMO, 2006, 94 p.
5. Martin K.M. The Combinatorics of Cryptographic Key Establishment / Surveys in Combinatorics (London Mathematical Society Lecture Note Series), 2007, pp. 223-273. DOI: 10.1017/CBO9780511666209.009
6. Deundyak V.M., Taran A.A. O primenenii kodov Khemminga v sisteme raspredeleniya klyuchey dlya konferentsiy v mnogopol’zovatel’skikh sistemakh svyazi // Vestnik VGU. Seriya: Sistemnyy analiz i informatsionnye tekhnologii, 2015, № 3, pp. 43-50.
7. Deundyak V.M., Taran A.A. O veroyatnosti provedeniya uspeshnykh atak na klyuchi konferentsiy v polilineynykh sistemakh raspredeleniya klyuchey // Izvestiya vuzov. Severo-Kavk. Region. Tekhn. nauki, 2018, № 1, pp. 10-17.
8. Deundyak V.M., Taran A.A. Sistema raspredeleniya klyuchey na dizaynakh Adamara // Modelirovanie i analiz informatsionnykh sistem, 2019, 26(2), pp. 229-243. https://doi.org/10.18255/1818-1015-2019-2-229-243
9. Martin K.M., Paterson M. An Application-Oriented Framework for Wireless Sensor Network Key Establishment. // Electronic Notes in Theoretical Computer Science, vol. 192(2), 2008, pp. 31-41. DOI: 10.1016/j.entcs.2008.05.004
10. Eschenauer L., Gligor. V.D. A key-management scheme for distributed sensor networks. // CCS ‘02: Proceedings of the 9th ACM conference on Computer and communications security, 2002, pp. 41–47. DOI: 10.1145/586110.586117
11. Mitchell C.J., Piper F.C. Key Storage in Secure Networks. // Discrete Applied Mathematics, vol. 21(3), 1988, pp. 215–228. DOI:
10.1016/0166-218X(88)90068-6
12. Stinson D.R. On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption. // Designs, Codes and
Cryptograpy, 1997, pp. 215–243. DOI: 10.1023/A:1008268610932
13. Stinson D.R., Trung T.V. Some New Results on Key Distribution Patterns and Broadcast Encryption. // Designs, Codes and Cryptography,
1998, pp. 261–279. DOI: 10.1023/A:1008209004667
14. Blom R. An Optimal Class of Symmetric Key Generation Systems // Workshop on the Theory and Applications of Cryptographic
Techniques, 1985, pp. 335–338. DOI: 10.1007/3-540-39757-4_22
15. Blundo C., Mattos L.A.F., Stinson D.R. Trade-offs Between Communication and Storage in Unconditionally Secure Schemes for
Broadcast Encryption and Interactive Key Distribution // Annual International Cryptography Conference, 1996, pp. 387–400. DOI:
10.1007/3-540-68697-5_29
16. Sidel’nikov V.M. Teoriya kodirovaniya – Moskow: FIZMATLIT, 2008, 324 p.
17. Liu D., Ning P. Establishing pairwise keys in distributed sensor networks. // CCS ‘03: Proceedings of the 10th ACM conference on
Computer and communications security, 2003, pp. 52–61. DOI: 10.1145/948109.948119
18. Du W., Deng J., Han Y., Varshney P. A pairwise key pre-distribution scheme for wireless sensor networks. // CCS ’03: Proceedings of the
10th ACM conference on Computer and communications security, 2003, pp. 42–51. DOI: 10.1145/948109.948118
19. Mohaisen A., Nyang D., Lee K. Hierarchical Grid-based Pairwise KeyPre-distribution in Wireless Sensor Networks // International
Journal of Network Security, vol. 8(3), 2009, pp. 282–292.
20. Tarannikov Yu.V. Kombinatornye svoystva diskretnykh struktur i prilozheniya k kriptologii – Moskow: MTsNMO, 2011, 152 p.
13-21
RESEARCH PROJECT OF MASS-PARALLEL PROCESSOR BASED ON MULTITREAD CORE WITH SPECIALIZED ACCELERATORS / L. К. Eisymont, A. I. Nikitin, D. V. Bikonov, А. А. Brazhkin, I. S. Peplov, P. P. Fedorenko, S. S. Еrmakov, А. L. Eisymont, А. А. Comlev // Cybersecurity issues. – 2020. – № 3(37). – С. 22-39. – DOI: 10.21681/2311-3456-2020-03-22-39.

Abstract
Purpose. Present a training and research project of the development a domestic mass-parallel processor mPX, samples of which could be used as processor-accelerators along with domestic universal processing frames when building computer nodes of supercomputers.Method. Generation of mPX processor functionality and evaluation of its expected performance, analysis based on the results of information and analytical studies.Result. The principles of operation of the processor and issues of its implementation have been developed at project. The basic component of the processor is a tile consisting of a 64-thread core (mt-LWP), 256 KB local memory, connected with special-purpose accelerators (SFU). The mPX processor must include several hundred of tiles connected by an intra-chip network, several links of inter-chip connection, and a PCI-e interface with the host-processor. The interface with off-chip memory is not yet considered. At this stage, attention is paid to the mt-LWP core ISA, which the article is devoted. The ideology of architecture, mPX is similar to the Colossus processor of the English company Graphcore, focused on machine learning tasks, but the mPX processor is a platform on the basis of which you can develop different variants. The objectives of the project are also information and analytical work, theoretical and practical edication of young specialists, and the development of technical solutions for creating a high-speed chips.
Keywords:  mass-parallel processor, multithreading, data flow control, graph representation of programs, specialized accelerators.
References
1. Adamov A.A., Fomin D.V., Eysymont L.K. Glavnye problemnye napravleniya v oblasti otechestvennoj elementnoj bazy superkomp’yuterov
// Voprosy kiberbezopasno-sti, N4, 2019. — S. 2-12.
2. Adamov A.A., Pavluhin P.V., Bikonov D.V., Eysymont A.L., Eysymont L.K. Al’ternativnye sovremennym GPGPU perspektivnye universal’nye i specializiro-vannye processory-uskoriteli // Voprosy kiberbezopasnosti, N4, 2019 – S.13 – 21// http://cyberrus.com/wp-content/uploads/2019/07/13-21-432-19_2.-Bikonov.pdf
3. Durant L. [et al.] Inside Volta: The World’s Most Advanced Data Center GPU, 10 may 2017 // https://devblogs.nvidia.com/parallelforall/inside-volta/
4. Jia Z., Maggioni M., Staiger B., Scarpazza D.P. Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking //Technical report, High Performance Computing R&D Team Citadel, April 18, 2018 — 66 pp.
5. NVIDIA A100 Tensor Core GPU Architecture, May 2020, 83 pp.
6. Elizarov S.G., Luk’yanchenko G.A., Markov D.S., Monahov A.M., Sizov A.D., Ro-ganov V.A. Programmiruemye na yazykah vysokogo urovnya energoeffektivnye speciali-zirovannye SBIS dlya resheniya zadach in-formacionnoj bezopasnosti // Sistemy vyso-koj dostupnosti, 2018, t.14, №3 – S.40-48.
7. Knowless S. How to build processor for machine intelligence// RAAIS 30th June 2017// Videozapis’, 34 min, 17 slajdov // https://www.youtube.com/watch?v=T8DvHnb3Y9g
8. Knowless S. Scaling Throughput Processors for machine Intelligence// ScaledML Con-ference, Stanford, 24 May 2018 // Videozapis’, 36 min, 25 slajdov // https://www.youtube.com/watch?v=GgFUiN81QKo 
9. Jia Z., Tillman B., Maggioni M., Scarpazza D.P. Dissecting the Graphcore IPU Architecture via Microbenchmarking. // Technical report, High Performance Computing R&D Team Citadel, 7 Dec 2019 — 91 pp.
10. Performance Benchmarks. https://www.graphcore.ai/benchmarks
11. Tommy Flowers // https://en.wikipedia.org/wiki/Tommy_Flowers
12. PEZY-SC2-PEZY// https://en.wikichip.org/wiki/pezy/pezy-scx/pezy-sc2
13. Ajavi T. [et al]. Experiences Using the RISC-V Ecosystems to Design an Accelerator-Centric SoC in TSMC 16 nm. // First Workshop on Computer Architecture Research with RISC-V, August 2017, 6 pp.
14. Taylor M. Celerity: An Open Source 511-core RISV-V Tiered Accelerator Fabric, 2017, 50 slides, http://www.opencelerity.org.
15. Schor D. A Look at Celerity’s Second-Gen 496-core RISC-V Mesh NoC // Wiki Chip Fuse, Jan 12, 2020, https://fuse.wikichip.org/news/3217/a-look-at-celeritys-second-gen-496-core-risc-v-mesh-noc/
16. Sluckin A.I., Eysymont L.K. Rossijskij superkomp’yuter s global’no adresuemoj pamyat’yu // Otkrytye sistemy, №9 – 2007 — C. 42-51.
17. [17] Mitrofanov V.V., Sluckin A.I., Eysymont L.K. Superkomp’yuternye tekhnologii dlya strategicheski vazhnyh zadach. // Elektronika: NTB, №7,2008. — C. 66-79.
18. Semenov A.S., Sokolov, A.A. Eysymont L.K. Arhitektura global’no adresuemoj pamyati mul’titredovo-potokovogo superkomp’yutera // Elektronika: NTB, №1, 2009. — C. 50-56.
19. Eysymont L.K., Butov A.A., Peplov I.S. i dr. Rekonfiguriruemyj vychislitel’nyj modul’ // Patent na izobretenie, RU 2 686 017, Data registracii 23.04.2019, 24 str.
20. Eysymont A.L., CHernikov V.M., CHernikov An.V., CHernikov Al.V., Kosorukov D.E., Nasonov I.I., Komlev A.A. Geterogennaya mnogoprocessornaya sistema na kristalle s proizvoditel’nost’yu 512 Gflops // Sistemy vysokoj dostupnosti, 2018, t.14, №3, s.49-56.
21. Bikonov D.V., Puzikov A.D., Sivcov A.S., Eysymont L.K. Trekhurovnevaya sistema parallel’nogo programmirovaniya gibridnogo 21-yadernogo skalyarno-vektornogo mikroprocessora NM6408MP. // Voprosy kiberbezopasnosti, nomer 4, 2019, str.22-34, https://cyberrus.com/wp-content/uploads/2019/07/22-34-432-19_3.-Puzikov.pdf
22. Kudryavcev M., Eysymont L., Moshkin D., Polunin M.. Superklastery — mezhdu proshlym i budushchim // Otkrytye sistemy, №8 – 2008 23. Rechinskij A., Gorbunov V., Eysymont L. Superklaster s global’no adresuemoj pamyat’yu // Otkrytye sistemy, №7, 2011. – S. 21-25.
24. Gorbunov V.S., Eysymont L. K. Ekzaflopsnyj bar’er: problemy i resheniya // Otkrytye sistemy, №6, 2010 – S. 12-15.
25. Gorbunov V.S., Elizarov G.S., Eysymont L.K. Ekzaflopsnye superkomp’yutery: dostizheniya i perspektivy //Otkrytye sistemy, N7, 2013 — S.10-14.
26. Dally W., Balfour J. et al. An Energy-Efficient Processor Architecture for Embedded Systems. IEEE Computer Architecture Letters, Vol.7, No 1, January-June 2008, pp.29-32.
27. Abts D. [et al ] Think Fast: A Tensor Streaming Processor (TSP) for Accelerating Deep Learning Workloads // 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 14 pp
28. Toon N. Introducing 2nd generation IPU systems for AI at scale //15 july 2020// https://www.graphcore.ai/posts/introducing-secondgeneration-ipu-systems-for-ai-at-scale
22-39
Voronin, А. N. INTERCONNECTION OF NETWORK CHARACTERISTICS AND SUBJECTIVITY OF NETWORK COMMUNITIES IN THE SOCIAL NETWORK TWITTER / А. N. Voronin, J. B. Kovaleva, A. A. Chepovskiy // Cybersecurity issues. – 2020. – № 3(37). – С. 40-57. – DOI: 10.21681/2311-3456-2020-03-40-57.

Abstract
The purpose of the study: analysis of the graph of interacting objects of social networks based on the selection of implicit communities, assessment of the subjectivity of the selected communities and comparison of the network characteristics of communities and various indicators of their subjectivity.Method: communities detection on the constructed weighted graph of a social network, psycholinguistic analysis of community content using a list of discourse markers of subjectivity, statistical methods for identifying the relationship between network characteristics and the frequency of discourse markers.Results: algorithms to construct a graph and to import user attributes were developed, an algorithm for dividing a weighted graph into implicit user communities was implemented, the subjectivity of the content of the selected network communities in the social network Twitter has was assessed, the relationship and directional shift in the connectivity of the graph and various indicators of the subjectivity of the network community were identified.
Keywords: network community, subjectivity, discourse markers, social network analysis, community detection.
References
1. Pogorskij E`.K. Osobennosti cifrovy`x gumanitarny`x nauk // Znanie. Ponimanie. Umenie. 2014. № 5. ISSN 1998-9873
2. Manovich L. Cultural Data: Possibilities and Limitations of Digitized Archives // Museum and Archive on the Move. Changing Cultural Institutions in the Digital Era. Oliver Grau, ed., with Wendy Coones and Viola Rühse. Berlin, Boston: De Gruyter, 2017. P. 259-276.
3. Thelwall M. Sentiment analysis and time series with Twitter // Weller K., Bruns A., Burgess J. (eds.) Twitter and Society. N.Y.: Peter Lang. 2014. P. 83-95.
4. Procter R., Vis F., Voss A. Reading the riots on Twitter: methodological innovation for the analysis of big data. International Journal of Social Research Methodology. 2013. 16 (3). Pp. 197-214.
5. Burnap P., Williams M.L., Sloan L. Tweeting the terror: Modelling the social media reaction to the Woolwich terrorist attack // Social Network Analysis and Mining. 2014. 4(1). Pp. 1-14.
6. Vicario Del M., Bessi A., Zollo F., Petroni F., Scala A., Stanley H.E., Quattrociocchi W. Echo chambers in the age of misinformation.
7. Cheung C.M.K., Thadani D.R. (2012) The impact of electronic word-of-mouth communication: A literature analysis and integrative model // Decision Support Systems. 2012. 54(1). Pp. 461-470.
8. Dwyer N., Marsh S. What can the hashtag #trust tell us about how users conceptualise trust? // Twelfth Annual International Conference on Privacy, Security and Trust. 2014. P. 398-402.
9. Galuba W., Aberer K., Chakraborty D., Despotovic Z., Kellerer K. (2010) Outtweeting the Twitterers – Predicting Information Cascades in Microblogs // Proceedings of the 3rd Wonference on Online social networks. June 2010. Pp. 3.
10. Zhuravlev A.L. Psixologiya kollektivnogo sub``ekta // Psixologiya individual`nogo i gruppovogo sub``ekta. M.: PER SE`, 2002. S. 51-81.
11. Pavlova N.D. Interaktivny`j aspekt diskursa: podxody` k issledovaniyu // Psixologicheskij zhurnal. 2005. T. 26. № 4. S. 66-76.
12. Potter J. Discoursive psychology and the study of Naturally occurring Talk // Qualitative Research / (Ed.) D. Silverman. SAGE Publications, 2011. P. 187-207.
13. Voronin A.N., Grebenschikova T.A., Kubrak T.A., Nestik T.A., Pavlova N.D. THE STUDY OF NETWORK COMMUNITY CAPACITY TO BE A SUBJECT: DIGITAL DISCURSIVE FOOTPRINTS // Behavioral Sciences. 2019. Т. 9. № 12. С. 119.
14. Voronin A.N., Grebenshhikova T.A., Kubrak T.A., Pavlova N.D. Sub``ektnost` setevogo soobshhestva: sravnenie psixometricheskix modelej proyavleniya diskursivny`x markerov v kontente //Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Psixologicheskie nauki. 2019. № 3. S. 6-24.
15. Pavlova N.D., Voronin A.N., Grebenshhikova T.A., Kubrak T.A. Razrabotka podxoda k tipologii setevy`x soobshhestv na osnove diskursivny`x priznakov kollektivnoj sub``ektnosti // Vestnik Rossijskogo universiteta druzhby` narodov. Seriya: Psixologiya i pedagogika. 2019. T. 16. № 3. S. 341-358.
16. Newman M., Girvan M. Finding and evaluating community structure in networks // Physical Review E. 2004. Vol. 69. No 2. P. 1-15.
17. Girvan M., Newman M. Community structure in social and biological networks // Proceedings of the National Academy of Sciences. 2002. Vol. 99. No 12. P. 7821-7826.
18. Wu F., Chen L., Wang J., Alhajj R. Biomolecular Networks and Human Diseases // BioMed Research International. 2014. Vol. 2014. Р. 1-2.
19. Ahuja M.S., Singh J., Neha Practical Applications of Community Detection // International Journal of Advanced Research in Computer Science and Software Engineering. 2016. Vol. 6. No 4. Pp. 412-415.
20. M. Roth, A. Ben-David, D. Deutscher. Suggesting Friends Using the Implicit Social Graph — KDD’10, July 25–28, 2010, Washington, DC, USA., 2010.
21. Rosvall M., Bergstrom C. T. Maps of random walks on complex networks reveal community structure // Proc. Natl. Acad. Sci. USA. 2008. Vol.105. №4. P. 1118–1123.
22. Rosvall M., Bergstrom C. T., Axelsson D. The map equation // The European Physical Journal Special Topics. 2009. Vol. 178. №1. P. 13–23
23. Kolomejchenko M.I. , PolyakovI.V., Chepovskij A.A., Chepovskij A.M. Vy`delenie soobshhestv v grafe vzaimodejstvuyushhix ob``ektov Fundamental`naya i prikladnaya matematika. 2016, tom 21. №3. str. 131-139.
24. Blondel V.D., Guillaume J.L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks // Journal of Statistical Mechanics: Theory and Experiment. 2008. No 10. P10008. 12 p
25. Leshhyov D. A., Suchkov D. V., Xajkova S. P., Chepovskij A. A. Algoritmy` vy`deleniya grupp obshheniya // Voprosy` kiberbezopasnosti. 2019. T. 32. № 4. S. 61-71.
26. Sokolova T.V., Chepovskij A.A. Analiz profilej soobshhestv social`ny`x setej. Sistemy` vy`sokoj dostupnosti. 2018. T. 14, № 3. str. 82-86.
27. Sokolova T.V., Chepovskij A.M. Problema vosstanovleniya profilej pol`zovatelej social`ny`x setej // Voprosy` kiberbezopasnosti. 2019. № 4(32). S. 88-93.
28. Mislove A. et al. You are who you know: inferring user profiles in online social networks //Proceedings of the third ACM international conference on Web search and data mining. – ACM, 2010. – P. 251-260.
29. Korula N., Lattanzi S. An efficient reconciliation algorithm for social networks //Proceedings of the VLDB Endowment. – 2014. – Т. 7. – №. 5. – P. 377-388.
30. Voronin A.N., Kovaleva Yu.V. Izmenenie sub``ektnosti setevogo soobshhestva v processe trollinga // Social`naya i e`konomicheskaya psixologiya. Institut psixologii Rossijskoj akademii nauk. 2019. T. 4. № 3 (15). S. 25-61.
40-57
COMPARATIVE ANALYSIS OF SPECIAL TEXT CORPORA FOR SECURITY-RELATED TASKS / A. M. Lavrentiev, D. M. Raybova, E. A. Tikhomirova, A. I. Fokina, A. M. Chepovskiy, T. Yu. Sherstinova // Cybersecurity issues. – 2020. – № 3(37). – С. 58-65. – DOI: 10.21681/2311-3456-2020-03-58-65.

Abstract
The purpose of the study: development of a technique for comparing special text corpora for subsequent use in the identification of extremist texts.Method: frequency methods and a specificity indicator for text analysis of the corpus platform TXM were used.Results: a methodology for comparative analysis of special text corpora has been developed, which makes it possible to identify implicit links between corpora of heterogeneous texts; the relationships between the vocabulary of illegal and literary texts were revealed; the possibility of using the specificity index to compile a “profile” of a text subcorpus was shown; comparative analysis of the corpus of extremist texts and the corpus of Russian stories of the first third of the twentieth century was made; the relationships between the vocabulary of illegal and literary texts were revealed; the possibilities of using corpus linguistics to study the properties of extremist texts in order to detect illegal Internet resources and messages were shown; the possibilities of using both morphological characteristics of words and pseudo-bases of word occurrences in the analysis of specificity on corpus data have been examined; research results showed that the frequency analysis tools provided by the TXM platform are effective for applications when it is necessary to identify implicit lexical matches between different text corpora.
Keywords: corpus linguistics, automated text analysis, corpora analysis platform, specificity score, extremist texts.
References
1. Agarwal, S., et al, 2015, Open source social media analytics for intelligence andsecurity informatics applications. International Conference on Big Data Analytics. Hyderabad, Telangana State, India, pp. 21–37.
2. Scanlon, J.R., Gerber, M.S., Automatic detection of cyber-recruitment by violent extremists. Security Informatics, 2014, Vol. 3, No.1, pp. 1–10.
3. Zurini, M. Stylometry metrics selection for creating a model for evaluating the writing style of authors according to their cultural orientation. Informatica Economica, 2015, Vol. 19, No.3, pp. 107-119.
4. Hawkins, R. C. II, & Boyd, R. L. Such stuff as dreams are made on: Dream language, LIWC norms, and personality correlates. Dreaming, 2017, 27(2), 102-121.
5. Latov Y., Grishchenko L., Gaponenko V., Vasiliеv F. Mechanisms of Countering the Dissemination of Extremist Materials on the Internet // Big Data-driven World: Legislation Issues and Control Technologies. – Springer, 2019. – P. 145-162.
6. Lavrentiev A. M., Smirnov I. V., Solovyev F. N., Suvorova M. I., Fokina A. I., Chepovskiy A. M. Analis korpusov tekstov terroristicheskoi i antipravovoy napravlennosti // Voprosi kiberbezopasnosti. 2019. № 4(32). S. 54-60. DOI: 10.21681/2311-3456-2019-4-54-60
7. Lavrentiev A. M., Smirnov I. V., Solovyev F. N., Suvorova M. I., Fokina A. I., Chepovskiy A. M. Sozdaniye spetsial’nyh korpusov tekstov na osnove rasshirennoy platformy TXM // Sistemy vysokoy dostupnosti. 2018. T. 14. № 3. S. 76-81.
8. Anan’yeva M. I., Devyatkin D. A., Kobozeva M. V., Smirnov I. V., Solov’yev F. N., Chepovskiy A. M. Issledovaniye harakteristik tekstov protivopravnogo soderzhaniya // Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk. 2017 T. 67 № 3 S. 86-97. (in Russian).
9. Anan’yeva M. I., Kobozeva M. V., Solov’yev F. N., Polyakov I. V., Chepovskiy A. M.. The problem of detection of extremist texts // Vestnik NSU. Series: Information Technologies. 2016. Vol. 14. № 4. S. 5-13.
10. Chepovskiy A., Devyatkin D., Smirnov I., Ananyeva M., Kobozeva M., Solovyev F. Exploring linguistic features for extremist texts detection (on the material of Russian-speaking illegal texts), in: 2017 IEEE International Conference on Intelligence and Security Informatics: Security and Big Data, ISI 2017 Institute of Electrical and Electronics Engineers Inc., 2017 P. 188-190.
11. Martynenko, G., Sherstinova, T., Melnik, A., Popova, T., Zamirailova, E. O principakh sozdaniya korpusa russkogo rasskaza pervoj treti XX veka // Proc. of the XV Int. Conf. on Computer and Cognitive Linguistics ‘TEL 2018’. Kazan. pp. 180–197. (in Russian).
12. Martynenko, G.Ya., Sherstinova, T.Yu., Melnik, A.G., Popova, T.I. (2018) Metodolo-gicheskie problemy sozdaniya Komp’yuternoj antologii russkogo rasskaza kak yazykovogo resursa dlya issledovaniya yazyka i stilya russkoj khudozhestvennoj prozy v ehpokhu revolyucionnykh peremen (pervoj treti XX veka)// Computational linguistics and computational ontologies. Issue 2 (Proceedings of the XXI International United Conference The Internet and Modern Society, IMS-2018, St. Petersburg, May 30 - June 2, 2018 Collection of scientific articles), ITMO University, St. Petersburg. Pp. 99–104. (in Russian).
13. Martynenko, G.Y., Sherstinova, T.Y. Linguistic and Stylistic Parameters for the Study of Literary Language in the Corpus of Russian Short Stories of the First Third of the 20th Century. In: R. Piotrowski’s Readings in Language Engineering and Applied Linguistics, Proc. of the III Int. Conf. on Language Engineering and Applied Linguistics (PRLEAL-2019), Saint Petersburg, Russia, November 27, 2019, CEUR Workshop Proceedings. Vol. 2552. pp. 105–120.
14. Lavrentiev A. M., Solovyev F. N., Suvorova M. I., Fokina A. I., Chepovskiy A. M. Novyy kompleks instrumentov avtomaticheskoy obrabotki teksta dlya platformy TXM i yego aprobatsiya na korpuse dlya analiza ekstremistskih tekstov // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Lingvistika i mezhkul’turnaya kommunikatsiya. 2018 T. 16 № 3 S. 19-31.
15. Soloviev F. N. Embedding Additional Natural Language Processing Tools into the TXM Platform. Vestnik NSU. Series: Information Technologies, 2020, vol. 18, no. 1, p. 74–82. (in Russian)
16. Chepovskiy A. M. Informatsionnyye modeli v zadachah obrabotki tekstov na yestestvennyh yazykah. Vtoroye izdaniye, pererabotannoye. M.: Natsional’nyy otkrytyy universitet “INTUIT”, 2015.
17. Heiden S. The TXM Platorm: Building Open-Source Textual Analysis Software Compatible with the TEI Encoding Scheme // 24th Pacifc Asia Conference on Language, Information and Computation - PACLIC24 / Ed. R. Otoguro, K. Ishikawa, H. Umemoto, K. Yoshimoto and Y. Harada. Institute for Digital Enhancement of Cognitive Development, Waseda University, Sendai, Japan. 2010 P. 389—398. URL: htp://halshs.archiies-ouiertes.fr/halshs-00549764
18. Lafon P. Sur la variabilité de la fréquence des formes dans un corpus // Mots. 1980. № 1. P. 127-165.
58-65
Minakov, S. S. THE MAIN CRYPTOGRAPHIC MECHANISMS FOR PROTECTION OF DATA, TRANSMITTED TO CLOUD SERVICES AND STORAGE AREA NETWORKS / Minakov S. S. // Cybersecurity issues. – 2020. – № 3(37). – С. 66-75. – DOI: 10.21681/2311-3456-2020-03-66-75.

Abstract
The purpose: development of the technology of cryptographic protection of information in third-party cloud services or storage area networks by using standartizated interfaces, protocols and block ciphers algorithms.
Method: system analysis of degradation security information level by data recycling with cloud computing. Research and analysis a science papers of cryptology theory and practice, describe limitations of homomorphic encryption. Cryptosystem synthesis is with analogy methods, hash and block ciphers algorithms. The result: new cryptographic system «Utro» (Eng. - Morrow) for real-time protection of confidential data, transmitted to third-party cloud services or storage area networks. The paper is described main cryptographic mechanisms like unction, logic and encryption scheme for program the cryptosystem. It also gives advices of using the proposed methods with data protocols like iSCSI, FiberChannel, WebDAV and possibility a local using.
Keywords: encryption, cloud storage, computer security, cryptographic system, network protocols.
References
1. Gyunter E.S., Narutta N.N., Shaxov V.G. «Oblachnye» vychisleniya i problemy ih bezopasnosti. // Omskij nauchnyj vestnik № 2 (120), 2013, pp. 278-282
2. Sabanov A.G. Osobennosti autentifikacii pri dostupe k oblachnym servisam. // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2013, № 2 (1), pp. 45–51
3. Bessol`cev V.E., Markov P.N. Uyazvimosti veb servisov, ispol`zuemyh v avtomatizirovannyh sistemax upravleniya // I-methods. 2018, vol. 10, № 3. pp. 23–35.
4. Onoshko D.E., Baxtizin V.V. Model` ocenki kachestva web-prilozhenij, osnovannaya na obnaruzhenii uyazvimostej k SQL-in``ekciyam // Doklady BGUIR. 2016, №3 (97).
5. Vorob`ev V.I., Ryzhkov S.R., Fatkieva R.R. Zashhita perimetra oblachnyh vychislenij. // Programmnye sistemy: teoriya i prilozheniya, 2015, pp. 61 – 71.
6. Bekker M.Ya., Terent`ev A.O., Gatchin Yu.A., Karmanovskij N.S. Ispol`zovanie cifrovyh sertifikatov i protokolov SSL/TLS dlya shifrovaniya dannyh pri oblachnyh vychisleniyax // Nauchno-texnicheskij vestnik informacionnyh texnologij, mexaniki i optiki, 2011, №4 (74). 125-130
7. Gladkij M.V. Bezopasnost` prilozhenij na platformax oblachnyh vychislenij. // Trudy BGTU, 2015, № 6, Fiziko-matematicheskie nauki i informatika, pp. 204–207.
8. Babenko L.K., Burtyka F.B., Makarevich O.B., Trepacheva A.V. Metody polnost`yu gomomorfnogo shifrovaniya na osnove matrichnyh polinomov // Voprosy kiberbezopasnosti, 2015. №1 (9), pp. 14-25
9. Astaxova L.V. Zashhita oblachnoj bazy personal`nyh dannyh s ispol`zovaniem gomomorfnogo shifrovaniya / L.V. Astaxova, D.R. Sultanov, N.A. Ashixmin // Vestnik YuUrGU. Seriya «Komp`yuternye texnologii, upravlenie, radioe`lektronika», 2016, vol.16, №3, pp. 52–61.
10. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai and Vinod Vaikuntanathan. Homomorphic Encryption Standard. // Cryptology ePrint Archive, Report 2019/939, 2019.
11. Egorova V.V., Chechulina D.K. Postroenie kriptosistemy s otkrytym klyuchom na osnove polnost`yu gomomorfnogo shifrovaniya // PDM. Prilozhenie, 2015, № 8, pp. 59–61.
12. Burtyka F.B. Simmetrichnoe polnost`yu gomomorfnoe shifrovanie s ispol`zovaniem neprivodimyh matrichnyh polinomov // Izvestiya YuFU. Texnicheskie nauki, 2014, №8 (157), pp. 107-122
13. Dushkin A.V., Shherbakova Yu.V., Buryak T.S. Analiz podxodov primeneniya sxemy shifrovaniya dannyh cp-abe dlya oblachnyh texnologij // Naukoemkie texnologii v kosmicheskix issledovaniyax Zemli, 2014, №4, pp. 64-67.
14. David Chaum. Blind signatures for untraceable payments. // Advances in Cryptology Proceedings of Crypto, №82, 1983: pp. 199–203. 
15. Aulov І.F. Doslіdzhennya mexanіzmіv upravlіnnya osobistimi klyuchami koristuvachіv v xmarі // ScienceRise, vol. 6, № 2 (23), 2016: pp. 51-57.
16. Parashhuk I. B., Saenko I. B., Pantyuxin O. I. Doverennye sistemy dlya razgranicheniya dostupa k informacii v oblachnyh infrastrukturax // Naukoemkie texnologii v kosmicheskix issledovaniyax Zemli, 2018, vol. 10, № 6, pp. 68–75.
17. Arakelov G.G., Gribov A.V., Mixalyov A.V. Prikladnaya gomomorfnaya kriptografiya: primery. // Fundament. i prikl. matematika., 21:3 (2016), pp. 25–38.
18. Trubej A.I. «Gomomorfnoe shifrovanie: bezopasnost` oblachnyh vychislenij i drugie prilozheniya (obzor)». // Informatika, 2015, (1), pp. 90-101.
19. Gentry, C. A Fully homomorphic encryption using ideal lattices / C. Gentry //Symposium on the Theory of Computing (STOC). – Bethesda, USA, 2009, pp.169-178.
20. Varnovskij N.P., Zaxarov V.A., Shokurov A.V., K voprosu o sushhestvovanii dokazuemo stojkix sistem oblachnyh vychislenij. // Vestnik Moskovskogo universiteta, Seriya 15, Vychislitel`naya matematika i kibernetika, 2016, № 2, pp. 32-46.
21. Malinskij A.E., Ocenka kriptostojkosti polnost`yu gomomorfnyh sistem. // Inzhenernyj zhurnal: nauka i innovacii, 2013, (11), URL: http://engjournal.ru/catalig/it/security/995.html
22. Trepacheva A.V. Kriptoanaliz shifrov, osnovannyh na gomomorfizmax polinomial`nyh kolecz // Izvestiya YuFU. Texnicheskie nauki, 2014, №8 (157), pp. 96-107.
23. Trepacheva A.V. Ataka po shifrtekstam na odnu linejnuyu polnost`yu gomomorfnuyu kriptosistemu // PDM. Prilozhenie, 2015, №8, pp. 75-78.
24. Trepacheva A.V. Uluchshennaya ataka po izvestnym otkrytym tekstam na gomomorfnuyu kriptosistemu Domingo-Ferrera. // Trudy ISP RAN, 2014, vol.26, №5, pp. 83-98.
25. Liliya Akhmetzyanova, Evgeny Alekseev, Grigory Karpunin and Vladislav Nozdrunov. Security of Multilinear Galois Mode (MGM) // Cryptology ePrint Archive, Report 2019/123, 2019.
26. Zubov A.Yu. Ob ocenke stojkosti AEAD-kriptosistemy tipa GCM // PDM, 2016, № 2(32). – pp. 49–62.
27. Ferguson N. Authentication weaknesses in GCM. Public Comments to NIST. http://csrc.nist.gov/CryptoToolKit/modes/comments, May 2005.
66-75
Gaifulina, D. A. APPLICATION OF DEEP LEARNING METHODS IN CYBERSECURITY TASKS / D. A. Gaifulina, I. V. Kotenko // Cybersecurity issues. – 2020. – № 3(37). – С. 76-86. – DOI: 10.21681/2311-3456-2020-03-76-86.

Abstract
The purpose of the article: analytical review in the field of deep learning for cybersecurity tasks.Research method: analysis of modern methods of deep learning applied to the issues of cyber security, development of their classification by the used architecture. Analysis of relevant reviews in deep learning. The result obtained: the description of common methods of deep learning and their classification. The definition of the application areas of the described methods in various cybersecurity tasks, including detection of intrusions and malicious software, analysis of network traffic, and some other. Comparative characteristics of relevant reviews in the field of deep learning, which allows you to determine further research directions.The main contribution of the authors to the research of deep learning methods for cybersecurity tasks is the classification of the subject area, conducting a general and comparative analysis of existing approaches that reflect the current state of scientific research.
Keywords: data science, machine learning, deep learning, deep neural networks, cybersecurity, intrusion detection,
malware detection.
References
1. Goodfellow I., Bengio Y., Courville A. Deep learning // MIT press. 2016. 800 p.
2. Nielsen M.A. Neural networks and deep learning // San Francisco, CA, USA: Determination press. 2015. 200 p.
3. Nwankpa C., Ijomah W., Gachagan A., Marshall S. Activation functions: Comparison of trends in practice and research for deep learning // arXiv preprint arXiv:1811.03378. 2018. 20 p.
4. Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdino R. Dropout: a simple way to prevent neural networks from overfitting // The journal of machine learning research. 2014. Vol. 15. No. 1. P. 1929-1958.
5. Sutskever I., Martens J., Dahl G., Hinton G. On the importance of initialization and momentum in deep learning // International conference on machine learning, 2013. P. 1139-1147.
6. Le Roux N., Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks // Neural computation. 2008. Vol. 20. No 6. P. 1631-1649.
7. Cilimkovic M. Neural networks and back propagation algorithm // Institute of Technology Blanchardstown, Blanchardstown Road North Dublin. 2015. Vol. 15. P. 1-12.
8. Ranzato M.A., Boureau Y.L., Cun Y.L. Sparse feature learning for deep belief networks // Advances in neural information processing systems. 2008. P. 1185-1192.
9. Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion // Journal of machine learning research. 2010. Vol. 11. No. Dec. P. 3371-3408.
10. Fischer A., Igel C. Training restricted Boltzmann machines: An introduction // Pattern Recognition. 2014. Vol. 47. No. 1. P. 25-39.
11. Guo J. Backpropagation through time // Unpubl. ms., Harbin Institute of Technology. 2013. Vol. 40. P. 1-6.
12. Hochreiter S., Schmidhuber J. Long short-term memory // Neural computation. 1997. Vol. 9. No. 8. P. 1735-1780.
13. Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation // arXiv preprint arXiv:1406.1078. 2014. P. 1-15.
14. LeCun Y., Boser B.E., Denker J.S., Henderson D., Howard R.E., Hubbard W.E., Jackel L.D. Handwritten digit recognition with a backpropagation network // Advances in neural information processing systems. 1990. P. 396-404.
15. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets // Proceedings of the Advances in Neural Information Processing Systems (NIPS), 2014. P. 2672-2680.
16. Xin Y., Kong L., Liu Z., Chen Y., Li Y., Zhu H., Wang C. Machine learning and deep learning methods for cybersecurity // IEEE Access, 2018. Vol. 6. P. 35365-35381.
17. Apruzzese G., Colajanni M., Ferretti L., Guido A., Marchetti M. On the effectiveness of machine and deep learning for cyber security // 2018 10th International Conference on Cyber Conflict (CyCon. IEEE, 2018. P. 371-390.
18. Wickramasinghe C.S., Marino D.L., Amarasinghe K., Manic M. Generalization of deep learning for cyber-physical system security: A survey // IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2018. P. 745-751.
19. Al-Garadi M. A., Mohamed A., Al-Ali A., Du X., Guizani M. A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) security // arXiv preprint arXiv:1807.11023, 2018. P. 1-42.
20. Chalapathy R., Chawla S. Deep Learning for Anomaly Detection: A Survey // arXiv preprint arXiv:1901.03407. 2019. P. 1-50.
21. Berman D.S., Buczak A.L., Chavis J.S., Corbett C.L. A survey of deep learning methods for cyber security // Information, 2019. Vol. 10. No. 4. P. 122.
22. Mahdavifar S., Ghorbani A.A. Application of deep learning to cybersecurity: A survey // Neurocomputing. 2019. Vol. 347. P. 149-176.
23. Sharma B., Mangrulkar R. Deep learning applications in cyber security: a comprehensive review, challenges and prospects // International Journal of Engineering Applied Sciences and Technology. 2019 Vol. 4. Iss 8. P. 148-159.
76-86
Kozminykh, S. I. METHODOLOGICAL APPROACH TO ECONOMIC ASSESSMENT IMPLEMENTATION OF TECHNICAL MEANS OF INFORMATION PROTECTION IN CREDIT AND FINANCIAL INSTITUTION / S. I. Kozminykh // Cybersecurity issues. – 2020. – № 3(37). – С. 87-96. – DOI: 10.21681/2311-3456-2020-03-87-96.

Abstract
In this article, measures on introduction on object of CFS of the technical means of protection of the Informatization intended for reduction of existing «high» risks in the organization of CFS to acceptable level are considered. In the result of the analysis was chosen as an additional technical means to protect information resources of the organization, calculated the cost of their implementation, the calculation of economic effectiveness of the recommended protection tools. Analyzed and calculated the damage that can be incurred by the organization of the CFS in the implementation of potential threats to is. According to the results of the analysis, the conclusion was made about the need and expediency of the introduction of these technical means of information protection. A comparison was made between the levels of risk before the introduction of new protection and the level after their introduction. In addition, an economic and mathematical model of choosing the optimal set of technical means of protection for the organization of CFS was constructed. This was originally built economic, mathematical models of the selection of the optimal set of NPV are selected, and the method of solving the task - method fora and Malgrange, formed the algorithm of implementation of the applied method and conducted testing of the method on the example for the select PAK. Additionally, the payback period of the selected projects was estimated and illustrated on the graph.The conclusions of the article say that the formulation and solution of such problems can be used to assess the feasibility of investments in potential projects, taking into account budget constraints, fixed costs and possible future profits of the CFS organizations not only in matters of information security, but also in other areas of activity.

Keywords: technical means of protection of Informatization, information security, economic efficiency, damage to
the CFS organization, risk levels, economic and mathematical model, and Faure and Malgrange method, evaluation
of payback period.
References
1. Atamanov A. N. Dynamic iterative assessment of information security risks in automated systems: author’s thesis for a Ph.D. degree in engineering degree in the specialty 05.13.19. Moscow, 2012. 23 p.
2. Bykov A. Yu., Panfilov F. A., Shmyrev D. V. The problem of choosing the means of protection in automated systems taking into account the classes of protection from unauthorized access to information. Vestnik MGTU. N. E. Bauman. Ser. «Instrument making». 2012. P. 193– 199.
3. Bykov A. Yu., Altukhov N. O., Sosenko A. S. The problem of choosing the means of information protection in automated systems based on the antagonistic game model. // Engineering Bulletin # 04, April 2014. 208 p.
4. Baranova E. K. Methods of analysis and assessment of information security risks / / Educational resources and technologies. No. 1 (9). 2015. Pp. 73-79
5. Jones K. D., Shema M., Johnson B. S., security Tools/K. D. Jones, M. Shema, B. S. Johnson.- INTUIT, 2007.-1028 PP.
6. Zobnin, A.V. Information and analytical work in state and municipal management [Electronic resource]: textbook / - M.: University textbook, 2015. - 120 p.
7. Kozminykh S. I. Organization of information protection in the Russian police. Textbook. - Moscow: UNITY-DANA: Law and law, 2017.- 432 p
8. Kozminykh S. I. providing complex protection of objects of Informatization: a textbook for University students studying in the direction of «Information security» qualification «master» M.: UNITY-DANA, 2019 -543 p.
9. Ovchinnikov A. I., Zhuravlev a.m., Medvedev N. V., Bykov A. Yu. Mathematical model of optimal choice of means of protection against security threats of the enterprise computer network.Vestnik MGTU im. N. E. Bauman. Ser. Instrument making. 2007. No. 3. Pp. 115 - 121.
10. Tishchenko E. N. Methodology of risk assessment of information security of economic information systems of e-Commerce. Rostov-ondon, 2014. Pp. 42-53
11. Chibirov M. O. On a problem arising when using game theory in the field of information security. M.: Problems of information security in the system of higher education, 2013. Pp. 56-58
87-96

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.