
Content of 3rd issue of magazine «Voprosy kiberbezopasnosti» at 2021:
Title | Pages |
Babenko, L. K. SCALING DIGITAL IMAGES USING HOMOMORPHIC ENCRYPTION / L. K. Babenko, I. D. Rusalovsky // Cybersecurity issues. – 2021. – № 3(43). – С. 2-10. – DOI: 10.21681/2311-3456-2021-3-2-10.
AbstractSince time immemorial, cryptography has provided secure transmission of information in an insecure environment, keeping the data secret. Not so long ago the homomorphic cryptography began to actively develop. Its distinctive feature is that this type of cryptography allows you to process encrypted data without their preliminary decryption in such a way that the result of operations on encrypted data is equivalent, after decryption, to the result of operations on open data. Because of these features, homomorphic encryption can be effectively used in various cloud services to perform secure computing and secure image processing. At the same time, it is guaranteed that no one will have open data, even the service that performs the calculations.urpose of the work: development of methods and tools for homomorphic encryption that allow performing homomorphic implementation of image processing algorithms. Research methods: analysis of possible implementations of digital image processing using homomorphic encryption, analysis of existing problems of performing a homomorphic implementation for image processing algorithms. Results: a method for homomorphic comparison of bits and numbers presented as an array of bits is proposed; a homomorphic implementation of the EPX image resizing algorithm is proposed; the complexity of the operation is analyzed when one pixel of the original image is enlarged using the proposed method; the analysis results are presented. Keywords: information security, cryptographic protection, homomorphic cryptography, secure computing, cloud computing, methods and algorithms, image processing, image resizing. References1. Babenko L.K., Burty`ka F.B., Makarevich O.B., Trepacheva A.V. Metody` polnost`iu gomomorfnogo shifrovaniia na osnove matrichny`kh polinomov // Voprosy` kiberbezopasnosti. 2015. №1. S. 17–20. 2. Babenko L.K., Burty`ka F.B., Makarevich O.B., Trepacheva A.V. Polnost`iu gomomorfnoe shifrovanie (obzor) // Voprosy` zashchity` informatcii. 2015. №. 3. S. 3–26. 3. Egorova V.V., Chechulina D.K. Postroenie kriptosistemy` s otkry`ty`m cliuchom na osnove polnost`iu gomomorfnogo shifrovaniia // Pricladnaia diskretnaia matematika. Prilozhenie, 2015, vy`pusk 8, S. 59–61. 4. Babenko L.K., Trepacheva A.V. O nestoi`kosti dvukh simmetrichny`kh gomomorfny`kh kriptosistem, osnovanny`kh na sisteme ostatochny`kh classov // Trudy` Instituta sistemnogo programmirovaniia RAN. 2019. T. 18. № 1. S. 230-262. 5. Arakelov G.G. Voprosy` primeneniia pricladnoi` gomomorfnoi` kriptografii // Voprosy` kiberbezopasnosti. 2019. № 5(33). S. 70-74. DOI: 10.21681/2311-3456-2019-5-70-74 6. Trubei` A.I. Gomomorfnoe shifrovanie: bezopasnost` oblachny`kh vy`chislenii` i drugie prilozheniia (obzor) // Informatika, Minsk. 2015. S. 90-101. 7. Burty`ka F.B. Simmetrichnoe polnost`iu gomomorfnoe shifrovanie s ispol`zovaniem neprivodimy`kh matrichny`kh polinomov // Izvestiia IUFU. Tekhnicheskie nauki. 2014. № 8. S.107–122. 8. Trepacheva A.V. Kriptoanaliz simmetrichny`kh polnost`iu gomomorfny`kh linei`ny`kh kriptosistem na osnove zadachi faktorizatcii chisel // Izvestiia IUFU. Tekhnicheskie nauki. 2015. № 5 (166). S. 89–102. 9. C. Gentry, S. Halevi, Implementing gentry’s fully-homomorphic encryption scheme // EUROCRYPT, ser. Lecture Notes in Computer Science, K. G. Paterson, Ed. – vol. 6632. – Springer. 2011. pp. 129–148. 10. Babenko L.K., Rusalovskii` I.D., Biblioteka polnost`iu gomomorfnogo shifrovaniia tcely`kh chisel // Izvestiia IUFU. Tekhnicheskie nauki. 2020. №2. S. 79-88. 11. Babenko L.K., Rusalovskii` I.D., Metod realizatcii gomomorfnogo deleniia // Izvestiia IUFU. Tekhnicheskie nauki. 2020. №4. S. 212-221. 12. Burty`ka F.B. Paketnoe simmetrichnoe polnost`iu gomomorfnoe shifrovanie na osnove matrichny`kh polinomov // Trudy` Instituta sistemnogo programmirovaniia RAN. 2014. T. 26. № 5. S. 99–116. 13. Babenko L.K., Burty`ka F.B., Makarevich O.B., Trepacheva A.V. Zashchishchenny`e vy`chisleniia i gomomorfnoe shifrovanie // Programmny`e sistemy`: teoriia i prilozheniia. 2014. 25 s. 14. Makarevich O. B., Burty`ka F. B. Zashchishchennaia oblachnaia baza danny`kh s primeneniem gomomorfnoi` kriptografii. Tez.docl. 6-i` Ross. mul`tikonferentcii «Informatcionny`e tekhnologii v upravlenii» (ITU–2014). SPb, 2014. S. 567-572. 15. Minakov S.S. Osnovny`e kriptograficheskie mehanizmy` zashchity` danny`kh, peredavaemy`kh v oblachny`e servisy` i seti khraneniia danny`kh // Voprosy` kiberbezopasnosti. 2020. № 3(37). S. 66-75. DOI: 10.21681/2311-3456-2020-05-66-75 16. Varnovskii` N.P., Zaharov V.A., Shokurov A.V. K voprosu o sushchestvovanii dokazuemo stoi`kikh sistem oblachny`kh vy`chislenii` // Vestneyk Moskovskogo universiteta, Seriia 15, Vy`chislitel`naia matematika i kibernetika. 2016. № 2. S. 32-46. 17. Astahova L.V., Sultanov D.R., Ashikhmin N.A. Zashchita oblachnoi` bazy` personal`ny`kh danny`kh s ispol`zovaniem gomomorfnogo shifrovaniia // Vestneyk IUUrGU. Seriia “Komp`iuterny`e tekhnologii, upravlenie, radioe`lektronika”. 2016. T. 16, №3. S. 52-61. 18. Rusalovskii` I.D. Gomomorfnaia realizatciia algoritma Gaussa // Sbornik statei` IV Vserossii`skoi` nauchno-tekhnicheskoi` konferentcii molody`kh ucheny`kh, aspirantov i studentov «Fundamental`ny`e i pricladny`e aspekty` komp`iuterny`kh tekhnologii` i informatcionnoi` bezopasnosti». 2014. S. 364-367. |
2-10 |
Volkova, E. S. PRIVACY-PRESERVING TWO-PARTY COMPUTATION OF PARAMETERS OF A FUZZY LINEAR REGRESSION / E. S. Volkova, V. B. Gisin // Cybersecurity issues. – 2021. – № 3(43). – С. 11-19. – DOI: 10.21681/2311-3456-2021-3-11-19.
AbstractPurpose: describe two-party computation of fuzzy linear regression with horizontal partitioning of data, while maintaining data confidentiality.Methods: the computation is designed using a transformational approach. The optimization problems of each of the two participants are transformed and combined into a common problem. The solution to this problem can be found by one of the participants.Results: A protocol is proposed that allows two users to obtain a fuzzy linear regression model based on the combined data. Each of the users has a set of data about the results of observations, containing the values of the explanatory variables and the values of the response variable. The data structure is shared: both users use the same set of explanatory variables and a common criterion. Regression coefficients are searched for as symmetric triangular fuzzy numbers by solving the corresponding linear programming problem. It is assumed that both users are semi- honest (honest but curious, or passive and curious), i.e. they execute the protocol, but can try to extract information about the source data of the partner by applying arbitrary processing methods to the received data that are not provided for by the protocol. The protocol describes the transformed linear programming problem. The solution of this problem can be found by one of the users. The number of observations of each user is known to both users. The observation data remains confidential. The correctness of the protocol is proved and its security is justified. Keywords: fuzzy numbers, collaborative solution of a linear programming problem, two-way computation, transformational approach, cloud computing, federated machine learning References1. Hastings M. Hemenway, B., Noble, D., & Zdancewic, S. Sok: General purpose compilers for secure multi-party computation // 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019. Pp. 1220-1237. 2. Gascón A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S., & Evans, D. Privacy-preserving distributed linear regression on high-dimensional data // Proceedings on Privacy Enhancing Technologies. 2017. v. 2017. №. 4. Pp. 345-364. 3. Zapechnikov S. V. Modeli i algoritmy konfidencial›nogo mashinnogo obucheniya // Bezopasnost› informacionnyh tekhnologij. 2020. T. 27. №. 1. S. 51-67. 4. Pandit P., Dey P., Krishnamurthy K. N. Comparative assessment of multiple linear regression and fuzzy linear regression models // Springer Nature Computer Science. 2021. v. 76. №. 2. Pp. 1-8. https://doi.org/10.1007/s42979-021-00473-3 5. Zeng W., Feng Q., Li J. Fuzzy least absolute linear regression // Applied Soft Computing. 2017. v. 52. Pp. 1009-1019. https://doi.org/10.1016/j.asoc.2016.09.029 6. Yang Q., Liu, Y., Chen, T., & Tong, Y. Federated machine learning: Concept and applications //ACM Transactions on Intelligent Systems and Technology (TIST). 2019. v. 10. №. 2. Pp. 1-19. 7. Wang C., Ren K., Wang J. Secure optimization computation outsourcing in cloud computing: A case study of linear programming // IEEE transactions on computers. 2016. v. 65. №. 1. Pp. 216-229. 8. Wang Z., Yang L. I. U. Secure Outsourcing of Large-scale Linear Programming // In: 2017 2nd International Conference on Wireless Communication and Network Engineering (WCNE 2017) DEStech Transactions on Computer Science and Engineering. 2017. №. WCNE 2017. Pp. 185-190 DOI:10.12783/dtcse/wcne2017/19821 9. Hong Y. Vaidya, J., Rizzo, N., & Liu, Q. . Privacy-preserving linear programming // World scientific reference on innovation: Volume 4: Innovation in Information Security. 2018. Pp. 71-93. https://doi.org/10.1142/9789813149106_0004 10. Ahire P., Abraham J. Addition of fake variable to enrich secure linear programming computation outsourcing in the cloud // 2016 International Conference on Computing, Analytics and Security Trends (CAST). IEEE, 2016. Pp. 477-482. 11. Kumar R., Pravin A. Data protection and outsourcing in cloud with Linear programming and image based OTP //2017 International Conference on Information Communication and Embedded Systems (ICICES). IEEE, 2017. pp. 1-6. 12. Mohammed N. M., Lomte S. S. Secure computations outsourcing of mathematical optimization and linear algebra tasks: Survey // International Journal for Research in Engineering Application and Management. 2019. Pp. 6-11. DOI : 10.18231/2454-9150.2018.0860 13. Shan Z. Ren, K., Blanton, M., & Wang, C. Practical secure computation outsourcing: A survey //ACM Computing Surveys (CSUR). 2018. v. 51. №. 2. Pp.1-40. https://doi.org/10.1145/3158363 14. Singh S., Sharma P., Arora D. Secure Outsourcing of Linear Programming in Cloud Computing Environment: A Review Int. Journal of Engineering Research and Application v. 7, Issue 4, (Part 6) April 2017. Pp. 64-68 DOI: 10.9790/9622-0704066468 15. Phatangare S., Bhandari G. Secure Outsourcing of Linear Programming Solver in Cloud Computing: A Survey //Asian Journal for Convergence in Technology (AJCT). 2019. pp. 1-5 16. Liu L., Liu Y. A Note on One Outsourcing Scheme for Large-scale Convex Separable Programming //International Journal of Electronics and Information Engineering. 2020. v. 12. №. 4. Pp. 155-161. DOI: 10.6636/IJEIE.202012 12(4).02) |
11-19 |
Revenkov, P. V. ASSESSMENT OF THE RISK OF A CYBERSECURITY BREACH IN A COMMERCIAL BANK (BY THE EXAMPLE OF AN ATTACKS “BRUTE FORCE” AND “BLACK BOX” ON ATMS) / P. V. Revenkov, A. A. Berdyugin, P. V. Makeev // Cybersecurity issues. – 2021. – № 3(43). – С. 20-30. – DOI: 10.21681/2311-3456-2021-3-20-30.
AbstractDuring the XX-XXI century there was a development of technologies, which resulted in the creation of a global financial system that allows you to quickly make money transactions in opposite points of the Earth. The progress of digital transformation of society and, in particular, financial and economic systems leads to the complication of the problems of information security of competing entities. By focusing on scientific research, we can achieve success in these areas. The purpose of the study: to increase the level of security of banking services for individuals and legal entities in accordance with the recommendations of information security standards by analyzing the risk of information security violations in electronic banking technologies (on the example of the “Brute force” and “Black box” attacks). Research methods: empirical methods of scientific knowledge (observation, measurement, experiment), theoretical methods (analysis, synthesis, induction, deduction, abstraction, formalization), graphical interpretation of information, probability theory methods and computer programming. The result of the study: standards for effective management of information security management at the enterprise are considered. The advantage of social engineering methods over the “Brute force” method of PIN codes is shown quantitatively. The time characteristics of its commission and protective measures against attacks of the “Black box” type are analyzed. A method for improving the effectiveness of the response and protection of ATMS from attacks of the “Black box” type is proposed. Keywords: standards, PIN code, probability of selection, ATM, dispenser, cybercriminal, duration of a cyberattack. References1. Skinner Chris. Digital Human: The Fourth Revolution of Humanity Includes Everyone. Marshall Cavendish International (Asia) Pte Ltd, 2018. – 400 p. 2. Sinki Dzh. Finansovyy menedzhment v kommercheskom banke i v industrii finansovykh uslug. M.: Al’pina Biznes Buks, 2017. – 1018 s. 3. Kozminykh S.I. Metodicheskiy podkhod k ekonomicheskoy otsenke vnedreniya tekhnicheskikh sredstv zashchity informatsii v kreditnofinansovoy organizatsii // Voprosy kiberbezopasnosti. 2020. № 3 (37). S. 87–96. DOI: 10.21681/2311-3456-2020-03-87-96. 4. Harris Sh. Kibervoyn@. Pyatyy teatr voyennykh deystviy. M.: Al’pina non-fikshn, 2016. – 390 s. 5. Zelentsov B.P., Tutynina O.I. Teoriya veroyatnostey v poznavatel’nykh i zabavnykh zadachakh. M.: Knizhnyy dom «Librokom», 2015. – 128 s. 6. Hadnagy C. Social Engineering: The Science of Human Hacking. Wiley publ., 2018. – 320 p. 7. Berdyugin A.A. Reinzhiniring biznes-protsessov kommercheskogo banka v informatsionnom prostranstve // Bezopasnost’ informatsionnykh tekhnologiy. 2021. T. 28, №. 1, s. 62–73 DOI: 10.26583/bit.2021.1.05. 8. Rossinskaya E.R., Ryadovskiy I.A. Sovremennyye sposoby komp’yuternykh prestupleniy i zakonomernosti ikh realizatsii // Lex russica (Russkiy zakon). 2019. № 3 (148). S. 87–99. DOI: 10.17803/1729-5920.2019.148.3.087-099. 9. Aleksey Antonov. Kak zloumyshlenniki ispol’zuyut uyazvimosti ATM // Raschety i operatsionnaya rabota v kommercheskom banke. M.: Reglament, 2018. № 2 (144). S. 47–59. URL: http://futurebanking.ru/reglamentbank/article/4994 (data obrashcheniya 23.02.2021). 10. Catalin Cimpanu. Diebold Nixdorf warns of a new class of ATM ‘black box’ attacks across Europe. Zero Day, 07.2020 URL: https://www.zdnet.com/article/diebold-nixdorf-warns-of-a-new-class-of-atm-black-box-attacks-across-europe/ (accessed on 10.03.2021). 11. Nevalennyy A.V., Revenkov P.V., Silin N.N., Frolov D.B. i dr. Kiberbezopasnost’ v usloviyakh elektronnogo bankinga: prakticheskoye posobiye / [Kollektiv avtorov, pod red. P.V. Revenkova]. M.: Prometey; 2020. – 520 s. 12. Alexey Malgavko. Eksperty v etom godu nablyudayut rost atak na bankomaty v Rossii. AEI «PRAYM», 10.2020. URL: https://1prime.ru/finance/20201027/832223407.html (data obrashcheniya 10.03.2021). 13. Buldas A., Gadyatskaya O., Lenin A., Mauw S., Trujillo-Rasua R. Attribute evaluation on attack trees with incomplete information: a preprint. Computers & Security, 2020. Vol. 88. – 21 p. URL: https://arxiv.org/abs/1812.10754 (accessed on 28.02.2021). 14. Brian Krebs. Thieves Jackpot ATMS With ‘Black Box’ Attack. URL: https://krebsonsecurity.com/2015/01/thieves-jackpot-atms-withblack-box-attack (accessed on 10.02.2021). 15. Samuel Gibbs. Jackpotting: hackers are making ATMS give away cash. Guardian News, 01.2018. URL: https://www.theguardian.com/technology/2018/jan/29/jackpotting-hackers-atm-cash-machine-give-away (accessed on 24.03.2021). 16. Mariya Voronova. Kak mozhno nezametno potroshit’ bankomaty. URL: https://www.securitylab.ru/blog/company/infowatch/253888.php (data obrashcheniya 27.02.2021). 17. Mariya Nefedova. Proizvoditel’ bankomatov Diebold Nixdorf obnaruzhil novuyu formu atak v stranakh Yevropy, 07.2020. URL: https://xakep.ru/2020/07/17/new-jackpotting/ (data obrashcheniya 28.02.2021). 18. Barabanov A., Markov A., Tsirlov V. On systematics of the information security of software supply chains // Advances in Intelligent Systems and Computing (sm. v knigakh). 2020. Т. 1294. Pp. 115–129. 19. Kizdermishov A.A. Analiz vozmozhnosti ispol’zovaniya svobodno rasprostranyayemykh setevykh skanerov // Vestnik Adygeyskogo gosudarstvennogo universiteta. Seriya 4: Yestestvenno-matematicheskiye i tekhnicheskiye nauki. 2014. № 3 (142). S. 201–205. URL: https://www.elibrary.ru/item.asp?id=23055763 (data obrashcheniya 24.02.2021). 20. Gushchina E.A., Makarenko G.I., Sergin M.Y. Obespecheniye informatsionno-tekhnologicheskogo suvereniteta gosudarstva v usloviyakh razvitiya tsifrovoy ekonomiki // Pravo.by. 2018. № 6 (56). S. 59–63. |
20-30 |
Kozminykh, S. I. DEVELOPMENT OF A METHODOLOGY AND MATHEMATICAL MODEL FOR QUALITY ASSURANCE OF AN INTEGRATED SECURITY SYSTEM FOR A CREDIT AND FINANCIAL FACILITY / S. I. Kozminykh // Cybersecurity issues. – 2021. – № 3(43). – С. 31-42. – DOI: 10.21681/2311-3456-2021-3-31-42.
AbstractKeywords: security of credit and financial facilities. the quality of the system functioning process, the theory of qualimetry, Markov processes in quality management, the method of IH-analysis, methods of factor and causal analysis, the Ishikawa diagram. References1. Sandrakova E. V., Sumin E. V. Differentcial`ny`e formy` na gladkikh mnogoobraziiakh / 2-e izd. Moskva : Izdatel`stvo Iurai`t, 2020. 138 s. 2. Ginzburg A., Kachanov S, Kozminykh S. Maintenance of com-prehensive safety of tunnel-type road interchanges FORM-2020 IOP Conf. Series: Materials Science and Engineering 869 (2020) 052030 IOP Publishing. DOI:10.1088/1757-899X/869/5/052030. 3. Koz`miny`kh S. I., Gisin V.B., Dvoriankin S.V., Korolev V.I. [i dr.]; pod red. S.I. Koz`miny`kh. Modelirovanie sistem i protcessov zashchity` informatcii na ob``ektakh kreditno-finansovoi` sfery`. Monografiia: Informatcionnaia bezopasnost` finansovo-kreditny`kh organizatcii` v usloviiakh tcifrovoi` transformatcii e`konomiki / M.: Prometei`, 2020. S. 320-414. 4. Potapov, A. P. Matematicheskii` analiz. Differentcial`noe ischislenie FNP, uravneniia i riady` / A. P. Potapov. Moskva: Iurai`t, 2020. 379 s. 5. Koz`miny`kh S.I., Kachanov S.A. Trekhmernaia model` ocenki uiazvimosti tonnelei` k razlichny`m vidam ugroz // Tekhnologii grazhdanskoi` bezopasnosti. 2020. № 1. S. 31-36. 6. 6. Maksimova, O. D. Osnovy` matematicheskogo analiza: neravenstva i ocenki. Moskva: Iurai`t, 2020. 185 s. 7. Koz`miny`kh S. I. Metodicheskii` podhod k e`konomicheskoi` ocenke vnedreniia tekhnicheskikh sredstv zashchity` informatcii v kreditno-finansovoi` organizatcii // Voprosy` kiberbezopasnosti. 2020. № 4. S. 14-28. DOI: 10.21681/2311-3456-2020-4-14-28 8. Polianin A. D., Manzhirov A. V. Integral`ny`e uravneniia v 2 ch. Chast` 1: spravochnik dlia vuzov / 2-e izd., ispr. i dop. Moskva : Iurai`t, 2020. 369 s. 9. Zai`tcev V. F., Polianin A. D. Oby`knovenny`e differentcial`ny`e uravneniia v 2 ch. Chast` 1: spravochnik dlia vuzov / 2-e izd., ispr. i dop. Moskva: Iurai`t, 2020. 385 s. 10. Koz`miny`kh S. I., Rashevskii` R.B. Metody` vy`iavleniia ugroz informatcionnoi` bezopasnosti posredstvom analiza setevy`kh vzaimodei`stvii` Informatcionnaia bezopasnost` v bankovsko-finansovoi` sfere: sbornik statei` / Kol. avtorov pod red. S. I. Koz`miny`kh. Moskva: RUSAI`NS, 2020. S.159-165. 11. Koz`miny`kh S. I. «Protivodei`stvie kiberprestupnosti i kiberterrorizmu» Sbornik trudov Vserossii`skogo Kruglogo stola «Aktual`ny`e problemy` obespecheniia kiberbezopasnosti» (15 fevralia 2018 g., Moskovskii` universitet MVD Rossii im. Kikotia V.Ia.) S. 43-49. 12. Koz`miny`kh S. I. Modelirovanie obespecheniia informatcionnoi` bezopasnosti ob``ekta kreditno-finansovoi` sfery` // Finansy`: teoriia i praktika». 2018. № 5. S.105-121. 13. Koz`miny`kh S. I. Metodicheskie osnovy` proektirovaniia i vnedreniia integrirovanny`kh sistem bezopasnosti na ob``ektakh informatizatcii toplivno-e`nergeticheskogo kompleksa // Informatcionny`e resursy` Rossii. 2018. 2(162). S. 2-7. 14. Koz`miny`kh S. I. Matematicheskoe modelirovanie obespecheniia kompleksnoi` bezopasnosti ob``ektov informatizatcii kreditnofinansovoi` sfery` // Voprosy` kiberbezopasnosti. 2018. № 1 (25). S.54-63. DOI: 10.21681/2311-3456-2018-1-54-63 15. Beketnova Iu.M., Kry`lov G.O., Larionova S.L. Modeli i metody` resheniia analiticheskikh zadach finansovogo monitoringa. Monografiia. Moskva: Prometei`. 2018. 274 s. ISBN: 978-5-907003-26-2 16. Ai`vazian S. A. Primenenie mnogomernogo statisticheskogo analiza v e`konomike i ocenke kachestva. Trudy` XI-i` mezhdunarodnoi` konferentcii Moskva, 21-23 avgusta 2018 g. Central`ny`i` e`konomiko-matematicheskii` institut RAN, Moskva, 2018 g. 171s. 17. Volkova E.S., Gisin V.B. Nechetkie mnozhestva i miagkie vy`chisleniia v e`konomike i finansakh. Uchebnoe posobie. Moskva. KnoRus. 2019.156 s. 18. Polianin, A. D. Uravneniia i zadachi matematicheskoi` fiziki v 2 ch. Chast` 1 spravochnik dlia vuzov / A. D. Polianin. 2-e izd., ispr. i dop. Moskva: Iurai`t, 2020. 261 s. |
31-42 |
Makarenko, S. I. CRITERIA AND PARAMETERS FOR ESTIMATING QUALITY OF PENETRATION TESTING / S. I. Makarenko // Cybersecurity issues. – 2021. – № 3(43). – С. 43-57. – DOI: 10.21681/2311-3456-2021-3-43-57.
AbstractSecurity issues of information systems in critical infrastructure objects become important now. However, current tasks of information security audit of critical infrastructure objects are mainly limited to checking them for compliance with requirements of standards and documents. With this approach to the audit, security of these objects from real attacks by hackers remains unclear. Therefore, objects are subjected to a testing procedure, namely, penetration testing, in order to objectively verify their security. An analysis of publications in this area shows that there is not mathematical approaches to selection of tests, as well as parameters and criteria for evaluating the effectiveness of penetration testing.The goals of the paper is to form specific parameters of completeness, efficiency, reliability and cost of testing, as well as, in a generalized form, a group of criteria “efficiency/cost”, allowing to estimate the quality of test sets, as well as to compare different penetration testing scenarios with each other.Research methods. Methods of probability theory and mathematical statistics, methods of processing experimental data, as well as the results of other studies in the field of software security testing are used in the paper to achieve the research goals.Results. The general form of the “efficiency/cost” criteria for estimating the quality of penetration testing, as well as formal particular parameters for evaluating separate parameters in the proposed criteria - the parameters of completeness, efficiency, reliability and cost are presented in the paper. The results of the paper can be used by auditors and testers to objectively justify test sets and compare different penetration testing scenarios with each other. The material of the paper can be useful for specialists who make research is such an area as penetration testing. Keywords: penetration testing, information technology impact, testing quality criterion, testing quality, testing completeness, testing efficiency, testing reliability, testing cost. References1. Makarenko S. I. Audit informatcionnoi` bezopasnosti: osnovny`e e`tapy`, kontceptual`ny`e osnovy`, classifikatciia meropriiatii` // Sistemy` upravleniia, sviazi i bezopasnosti. 2018. № 1. S. 1–29. DOI: 10.24411/2410-9916-2018-10101. 2. Makarenko S. I. Audit bezopasnosti kriticheskoi` infrastruktury` spetcial`ny`mi informatcionny`mi vozdei`stviiami. Monografiia. SPb.: Naukoemkie tekhnologii, 2018. 122 s. 3. Markov A. S., Tcirlov V. L., Barabanov A. V. Metody` ocenki nesootvetstviia sredstv zashchity` informatcii / pod red. A.S. Markova. – M.: Radio i sviaz`, 2012. 192 s. 4. Skabtcov N. Audit bezopasnosti informatcionny`kh sistem. SPb.: Peter, 2018. 272 s. 5. Penetration Testing. Procedures & Methodologies. – EC-Council Press, 2011. 237 p. 6. Kennedy D., O’Gorman J., Kearns D., Aharoni M. Metasploit. The Penetration Tester’s Guide. San Francisco: No Starch Press, 2011. 299 p. 7. Makan K. Penetration Testing with the Bash shell. – Birmingham: Pact Publishing, 2014. 133 p. 8. Cardwell K. Building Virtual Pentesting Labs for Advanced Penetration Testing. Birmingham: Pact Publishing, 2016. 518 p. 9. Makarenko S. I., Smirnov G. E. Analiz standartov i metodik testirovaniia na proniknovenie // Sistemy` upravleniia, sviazi i bezopasnosti. 2020. № 4. S. 44–72. DOI: 10.24411/2410-9916-2020-10402. 10. Climov S. M. Imitatcionny`e modeli ispy`tanii` kriticheski vazhny`kh informatcionny`kh ob``ektov v usloviiakh komp`iuterny`kh atak // Izvestiia IUFU. Tekhnicheskie nauki. 2016. № 8 (181). S. 27–36. 11. Climov S. M., Sy`chyov M. P. Stendovy`i` poligon uchebno-trenirovochny`kh i ispy`tatel`ny`kh sredstv v oblasti obespecheniia informatcionnoi` bezopasnosti // Informatcionnoe protivodei`stvie ugrozam terrorizma. 2015. № 24. S. 206–213. 12. Petrenko A. A., Petrenko S. A. Kiberucheniia: metodicheskie rekomendatcii ENISA // Voprosy` kiberbezopasnosti. 2015. № 3 (11). S. 2–14. 13. Baranova E. K., Hudy`shkin A. A. Osobennosti analiza bezopasnosti informatcionny`kh sistem metodom testirovaniia na proniknovenie // Modelirovanie i analiz bezopasnosti i riska v slozhny`kh sistemakh. Trudy` mezhdunarodnoi` nauchnoi` shkoly` MABR - 2015. S. 200–205. 14. Dorofeev A. Testirovanie na proniknovenie: demonstratciia odnoi` uiazvimosti ili ob``ektivnaia ocenka zashchishchennosti? // Zashchita informatcii. Insai`d. 2010. № 6 (36). S. 72–73. 15. Umnitcy`n M. Iu. Podhod k polunaturnomu analizu zashchishchennosti informatcionnoi` sistemy` // Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. № 8 (218). S. 112–116. 16. Borodin M. K., Borodina P. Iu. Testirovanie na proniknovenie sredstva zashchity` informatcii VGATE R2 // Regional`naia informatika i informatcionnaia bezopasnost`. SPb., 2017. S. 264–268. 17. Treshchev I. A., Vorob`ev A. A. O podhode k provedeniiu testirovaniia na nalichie uiazvimostei` informatcionny`kh sistem // Proizvodstvenny`e tekhnologii budushchego: ot sozdaniia k vnedreniiu. Materialy` mezhdunarodnoi` nauchno-prakticheskoi` konferentcii. Komsomol`sk-na-Amure, 2017. S. 175–182. 18. Baloch R. Ethical hacking and penetration testing guide. London: CRC Press, 2017. 492 c. 19. Poltavtceva M. A., Pechenkin A. I. Intellektual`ny`i` analiz danny`kh v sistemakh podderzhki priniatiia reshenii` pri testirovanii na proniknovenie // Problemy` informatcionnoi` bezopasnosti. Komp`iuterny`e sistemy`. 2017. № 3. S. 62–69. 20. Kadan A. M., Doronin A. K. Infrastrukturny`e oblachny`e resheniia dlia zadach testirovaniia na proniknovenie // Ucheny`e zapiski ISGZ. 2016. T. 14. № 1. S. 296–302. 21. Eremenko N. N., Kokoulin A. N. Issledovanie metodov testirovaniia na proniknovenie v informatcionny`kh sistemakh // Master’s Journal. 2016. № 2. S. 181–186. 22. Tumanov S. A. Sredstva testirovaniia informatcionnoi` sistemy` na proniknovenie // Doclady` Tomskogo gosudarstvennogo universiteta sistem upravleniia i radioe`lektroniki. 2015. № 2 (36). S. 73–79. 23. Kravchuk A. V. Model` protcessa udalennogo analiza zashchishchennosti informatcionny`kh sistem i metody` povy`sheniia ego rezul`tativnosti // Trudy` SPIIRAN. 2015. № 1 (38). S. 75–93. 24. Gorbatov V. S., Meshcheriakov A. A. Sravnitel`ny`i` analiz sredstv kontrolia zashchishchennosti vy`chislitel`noi` seti // Bezopasnost` informatcionny`kh tekhnologii`. 2013. T. 20. № 1. S. 43–48. 25. Kosenko M. Iu. Sbor informatcii pri provedenii testirovaniia na proniknovenie // Vestneyk UrFO. Bezopasnost` v informatcionnoi` sfere. 2013. № 3 (9). S. 11–15. 26. Makarenko S. I. Spravochnik nauchny`kh terminov i oboznachenii`. SPb.: Naukoemkie tekhnologii, 2019. 254 s. 27. Boi`ko A. A., D`iakova A. V. Sposob razrabotki testovy`kh udalenny`kh informatcionno-tekhnicheskikh vozdei`stvii` na prostranstvenno raspredelenny`e sistemy` informatcionno-tekhnicheskikh sredstv // Informatcionno-upravliaiushchie sistemy`. 2014. № 3 (70). S. 84–92. 28. Boi`ko A. A., D`iakova A. V., KHramov V. Iu. Metodicheskii` podhod k razrabotke testovy`kh sposobov udalennogo informatcionnotekhnicheskogo vozdei`stviia na prostranstvenno raspredelenny`e sistemy` informatcionno-tekhnicheskikh sredstv // Kibernetika i vy`sokie tekhnologii XXI veka XV Mezhdunarodnaia nauchno-tekhnicheskaia konferentciia. Voronezh: NPF «SAKVOEE», 2014. S. 386–395. 29. Boi`ko A. A., Obushchenko E. Iu., Shcheglov A. V. Osobennosti sinteza polnogo mnozhestva testovy`kh sposobov udalennogo informatcionno-tekhnicheskogo vozdei`stviia na prostranstvenno raspredelenny`e sistemy` informatcionno-tekhnicheskikh sredstv // Vestneyk Voronezhskogo gosudarstvennogo universiteta. Seriia: Sistemny`i` analiz i informatcionny`e tekhnologii. 2017. № 2. S. 33–45. 30. Shcheglov A. V., KHramov V. Iu. Sposob razrabotki testovy`kh udalenny`kh informatcionno-tekhnicheskikh vozdei`stvii` na prostranstvenno-raspredelenny`e sistemy` informatcionno-tekhnicheskikh sredstv // Sbornik studencheskikh nauchny`kh rabot fakul`teta komp`iuterny`kh nauk VGU FGBOU VO «Voronezhskii` gosudarstvenny`i` universitet». Voronezh, 2016. S. 203–210. 31. Moeller R. R. IT Audit, Control, and Security. Hoboken: John Wile & Sons, Inc., 2010. 667 p. 32. McDermott J. P. Attack net penetration testing // NSPW. 2000. S. 15-21. 33. Klevinsky T. J., Laliberte S., Gupta A. Hack IT: security through penetration testing. Addison-Wesley Professional, 2002. 512 c. 34. Pfleeger C. P., Pfleeger S. L., Theofanos M. F. A methodology for penetration testing // Computers & Security. 1989. T. 8. № 7. S. 613–620. 35. Alisherov F., Sattarova F. Methodology for penetration testing // International Journal of Grid and Distributed Computing. 2009. S. 43–50. 36. Ami P., Hasan A. Seven phrase penetration testing model // International Journal of Computer Applications. 2012. T. 59. № 5. S. 16–20. 37. Holik F., Horalek J., Marik O., Neradova S., Zitta S. Effective penetration testing with Metasploit framework and methodologies // 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2014. S. 237–242. 38. Herzog P. Open-source security testing methodology manual // Institute for Security and Open Methodologies (ISECOM). 2003. 39. Engebretson P. The Basics of Hacking and Penetration Testing. Ethical Hacking and Penetration Testing Made Easy. Amsterdam: Syngress, Elsevier, 2011. 159 c. 40. Baranova E. K., Chernova M. V. Sravnitel`ny`i` analiz programmnogo instrumentariia dlia analiza i ocenki riskov informatcionnoi` bezopasnosti // Problemy` informatcionnoi` bezopasnosti. Komp`iuterny`e sistemy`. 2014. № 4. S. 160–168. 41. Begaev A. N., Begaev S. N., Fedotov V. A. Testirovanie na proniknovenie. SPb: Universitet ITMO, 2018. 45 s. 42. Bogoraz A. G., Peskova O. Iu. Metodika testirovaniia i ocenki mezhsetevy`kh e`kranov // Izvestiia IUFU. Tekhnicheskie nauki. 2013. № 12 (149). S. 148–156. 43. Spirin N. A., Lavrov V. V. Metody` planirovaniia i obrabotki rezul`tatov e`ksperimenta / pod red. N.A. Spirina. – Ekaterinburg: GOU VPO UGTU-UPI, 2004. 257 s. 44. Horol`skii` V. Ia., Taranov M. A., Shemiakin V. N., Anikuev S. V. E`ksperimental`ny`e issledovaniia v e`lektroe`nergetike i agroinzhenerii. Stavropol`: AGRUS, 2013. 106 s. 45. Makarenko S. I. Tekhniko-e`konomicheskii` analiz tcelesoobraznosti vnedreniia novy`kh tekhnologicheskikh reshenii` // Sistemy` upravleniia, sviazi i bezopasnosti. 2016. № 1. S. 278–287. DOI: 10.24411/2410-9916-2016-10112.31. Moeller R. R. IT Audit, Control, and Security. Hoboken: John Wile & Sons, Inc., 2010. 667 p. 32. McDermott J. P. Attack net penetration testing // NSPW. 2000. S. 15-21. 33. Klevinsky T. J., Laliberte S., Gupta A. Hack IT: security through penetration testing. Addison-Wesley Professional, 2002. 512 c. 34. Pfleeger C. P., Pfleeger S. L., Theofanos M. F. A methodology for penetration testing // Computers & Security. 1989. T. 8. № 7. S. 613–620. 35. Alisherov F., Sattarova F. Methodology for penetration testing // International Journal of Grid and Distributed Computing. 2009. S. 43–50. 36. Ami P., Hasan A. Seven phrase penetration testing model // International Journal of Computer Applications. 2012. T. 59. № 5. S. 16–20. 37. Holik F., Horalek J., Marik O., Neradova S., Zitta S. Effective penetration testing with Metasploit framework and methodologies // 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 2014. S. 237–242. 38. Herzog P. Open-source security testing methodology manual // Institute for Security and Open Methodologies (ISECOM). 2003. 39. Engebretson P. The Basics of Hacking and Penetration Testing. Ethical Hacking and Penetration Testing Made Easy. Amsterdam: Syngress, Elsevier, 2011. 159 c. 40. Baranova E. K., Chernova M. V. Sravnitel`ny`i` analiz programmnogo instrumentariia dlia analiza i ocenki riskov informatcionnoi` bezopasnosti // Problemy` informatcionnoi` bezopasnosti. Komp`iuterny`e sistemy`. 2014. № 4. S. 160–168. 41. Begaev A. N., Begaev S. N., Fedotov V. A. Testirovanie na proniknovenie. SPb: Universitet ITMO, 2018. 45 s. 42. Bogoraz A. G., Peskova O. Iu. Metodika testirovaniia i ocenki mezhsetevy`kh e`kranov // Izvestiia IUFU. Tekhnicheskie nauki. 2013. № 12 (149). S. 148–156. 43. Spirin N. A., Lavrov V. V. Metody` planirovaniia i obrabotki rezul`tatov e`ksperimenta / pod red. N.A. Spirina. – Ekaterinburg: GOU VPO UGTU-UPI, 2004. 257 s. 44. Horol`skii` V. Ia., Taranov M. A., Shemiakin V. N., Anikuev S. V. E`ksperimental`ny`e issledovaniia v e`lektroe`nergetike i agroinzhenerii. Stavropol`: AGRUS, 2013. 106 s. 45. Makarenko S. I. Tekhniko-e`konomicheskii` analiz tcelesoobraznosti vnedreniia novy`kh tekhnologicheskikh reshenii` // Sistemy` upravleniia, sviazi i bezopasnosti. 2016. № 1. S. 278–287. DOI: 10.24411/2410-9916-2016-10112. |
43-57 |
Kubarev, A. B. PARAMETRIC MODELING OF THE STATE OF CRITICAL INFORMATION INFRASTRUCTURE OBJECT UNDER DESTRUCTIVE IMPACT CONDITIONS / A. B. Kubarev, A. P. Lapsar’, S. A. Nazaryan // Cybersecurity issues. – 2021. – № 3(43). – С. 58-67. – DOI: 10.21681/2311-3456-2021-3-58-67.
AbstractThe purpose of the study: development of a method for obtaining parameterized values of local characteristics of a diffusion Markov process. It is used to simulate the state of a critical information infrastructure object under off-normal operating conditions caused by a destructive information impact.Methods: synthesis of local characteristics of evolutionary equations which describe the state of a critical information infrastructure object, using the Markov theory for estimating multidimensional diffusion processes as well as the apparatus for studying moment functions.Results: the problems of parametric modeling of the state of critical information infrastructure objects are analyzed on the basis of diffusion Markov processes in the process of synthesis of evolutionary equations which describe the behavior of such objects. The study reveals features of the functioning of objects, which implement the management of complex technical systems in the conditions of normal operation as well as off-normal operation, caused by destructive information impact.A method has been developed for the synthesis of local characteristics of the diffusion process, which simulates the behavior of critical information infrastructure objects during off-normal operation. An example of the formation of a domain for determining the characteristics of a destructive information impact, used as a parameter of synthesized models for assessing the state of objects of critical information infrastructure, is given.The proposed method can be used as the basis for specifying technical requirements for critical information infrastructure objects that perform the functions of automated control at promising and modernized complex technical facilities. Keywords: critical information infrastructure object, modeling, evolution equations, drift coefficient, diffusion coefficient, state assessment, moment functions. References1. Korchagin A. B., Serdiuk V. S., Bokarev A. I. Nadezhnost` tekhnicheskikh sistem i tekhnogenny`i` risk. Omsk : Izd-vo OmGTU, 2011. 228 s. 2. Abramov A.N. E`kspluatatcionnaia nadezhnost` tekhnicheskikh sistem. M.: MADI, 2019. 120 s. 3. Mel`nikov V. P., Shirtladze A. G. Issledovanie sistem upravleniia M.: Iurai`t2, 2016. 447 s. 4. Trifonova G.O., Burenin V.V., Trifonova O.I. Upravlenie tekhnicheskimi sistemami. M.: MADI, 2019. 192 s. 5. Antonov S. G., Climov S. M. Metodika ocenki riskov narusheniia ustoi`chivosti funktcionirovaniia programmno-apparatny`kh kompleksov v usloviiakh informatcionno-tekhnicheskikh vozdei`stvii` // Nadezhnost`. 2017. T. 17. №. 1. S. 32-39. 6. Kochnev S.V., Lapsar` A.P. Sintez izmeritel`no-upravliaiushchikh sistem dlia potentcial`no opasny`kh slozhny`kh tekhnicheskikh ob``ektov na baze parametrizovanny`kh markovskikh modelei` // Problemy` bezopasnosti i chrezvy`chai`ny`kh situatcii`. 2014. № 5. C. 77-85. 7. Guz S.A., Sviridov M.V. Teoriia stohasticheskikh sistem, nahodiashchikhsia pod dei`stviem shirokopolosnogo statcionarnogo shuma, fil`trovannogo v oblasti nizkikh chastot. M.: Universitetskaia kniga. 2016. 224 s. 8. Ry`bakov K. A. Optimal`noe upravlenie stohasticheskimi sistemami pri impul`sny`kh vozdei`stviiakh, obrazuiushchikh e`rlangovskie potoki soby`tii` // Programmny`e sistemy`: teoriia i prilozheniia. 2013. № 2. S. 3-20. 9. Kalashnikov A.O., Anikina A.V., Ostapenko G.A., Borisov V.I. Vliianie novy`kh tekhnologii` na informatcionnuiu bezopasnost` kriticheskoi` informatcionnoi` infrastruktury` // Informatciia i bezopasnost`. 2019. T. 22. №. 2. S.156-169. 10. Iskol`ny`i` B. B., Maksimov R. V., Sharifullin S. R. Ocenka zhivuchesti raspredelenny`kh informatcionno-telekommunikatcionny`kh setei` // Voprosy` kiberbezopasnosti. 2017..№.5. S.72-82. DOI: 10.21681/2311-3456-2017-5-72-82 11. Dolbin R. A., Minin Iu.V., Nuritdinov G.N., Vy`sotckii` A. V. Protcedura opredeleniia kriticheskikh e`lementov setevoi` informatcionnoi` sistemy` // Informatciia i bezopasnost`. 2019. T. 22. №. 1. S. 108-111. 12. Zaharchenko R. I., Korolev I. D. Metodika ocenki ustoi`chivosti funktcionirovaniia ob``ektov kriticheskoi` informatcionnoi` infrastruktury` funktcioniruiushchei` v kiberprostranstve // Naukoemkie tekhnologii v kosmicheskikh issledovaniiakh Zemli. 2018. T. 10. №. 2. S.52-61. 13. Butusov I., Romanov A. A. Preduprezhdenie intcidentov informatcionnoi` bezopasnosti v avtomatizirovanny`kh informatcionny`kh sistemakh // Voprosy` kiberbezopasnosti. 2020. №. 5. S. 45-51. DOI:10.21681/2311-3456-2020-05-45-51. 14. Gacenko O. Iu., Mirzabaev A. N., Samonov A. V. Metody` i sredstva ocenivaniia kachestva realizatcii funktcional`ny`kh i e`kspluatatcionno-tekhnicheskikh harakteristik sistem obnaruzheniia i preduprezhdeniia vtorzhenii` novogo pokoleniia // Voprosy` kiberbezopasnosti. 2018. №.2. S.24-32. DOI: 10.21681/2311-3456-2018-2-24-32. 15. Gas`kova D. A., Massel` A. G. Tekhnologiia analiza kiberugroz i ocenka riskov narusheniia kiberbezopasnosti kriticheskoi` infrastruktury` // Voprosy` kiberbezopasnosti. 2019. № 2. S. 42-49 DOI: 10.21681/2311-3456-2019-2-42-49. 16. Lavrova D. S., Zegzhda D. P., Zai`tceva E. A. Modelirovanie setevoi` infrastruktury` slozhny`kh ob``ektov dlia resheniia zadachi protivodei`stviia kiberatakam // Voprosy` kiberbezopasnosti. 2019.№2. S. 13-20. DOI: 10.21681/2311-3456-2019-2-13-20. 17. Kondakov S. E., Meshcheriakova T.V., Skry`l` S. V., Stadnik A. N., Suvorov A. A. Veroiatnostnoe predstavlenie uslovii` svoevremennogo reagirovaniia na ugrozy` komp`iuterny`kh atak // Voprosy` kiberbezopasnosti. 2019. № 6. S. 59-68. DOI: 10.21681/2311-3456-2019-6-59-68. 18. Zhilenkov A. A., Cherny`i` S. G. Sistema bezavarii`nogo upravleniia kriticheski vazhny`mi ob``ektami v usloviiakh kiberneticheskikh atak // Voprosy` kiberbezopasnosti. 2020. №. 2. S.58-66. DOI:10.21681/2311-3456-2020-2-58-66. 19. Kubarev A.V., Lapsar` A.P., Fedorova Ia.V. Povy`shenie bezopasnosti e`kspluatatcii znachimy`kh ob``ektov kriticheskoi` infrastruktury` s ispol`zovaniem parametricheskikh modelei` e`voliutcii // Voprosy` kiberbezopasnosti. 2020. №1. S. 8-17. DOI: 10.21681/2311-3456-2020-1-8-17. 20. Kalashnikov A. O., Sakrutina E. A. Model` prognozirovaniia riskovogo potentciala znachimy`kh ob``ektov kriticheskoi` informatcionnoi` infrastruktury` // Informatciia i bezopasnost`. 2018. T. 21. №. 4. S. 466-471. 21. Kubarev A.V., Lapsar` A.P., Asiutikov A.A. Sintez modeli ob``ekta kriticheskoi` informatcionnoi` infrastruktury` dlia bezopasnogo funktcionirovaniia tekhnicheskoi` sistemy` v usloviiakh destruktivnogo informatcionnogo vozdei`stviia // Voprosy` kiberbezopasnosti. 2020. №6. S. 48-56. DOI: 10.681/2311-3456-2020-6-48-56. 22. Fedorov A.Ia., Melent`eva T.A., Melent`eva M.A. Stohasticheskaia dinamika sistem // Fundamental`ny`e issledovaniia. 2008. № 2. S. 112-113. 23. Pugachev V.S., Sinitcy`n I.N. Teoriia stohasticheskikh sistem. M.: Logos. 2004. 999 s. 24. Bekman I.N. Matematika diffuzii. M.: «OntoPrint», 2016. 400 s. |
58-67 |
Garbuk, S. V. TASKS OF TECHNICAL REGULATION OF INTELLIGENT INFORMATION SECURITY SYSTEMS / S. V. Garbuk // Cybersecurity issues. – 2021. – № 3(43). – С. 68-83. – DOI: 10.21681/2311-3456-2021-3-68-83.
AbstractResearch aim. Improving the efficiency of solving information security tasks by eliminating standard technical barriers that prevent the application of artificial intelligence technologies in advanced information security systems.Research method. The article applies the method of functional decomposition of intelligent tasks of information security, based on the analogy of artificial and natural intelligence. With respect to the proposed functional structure, the intelligent information security system is decomposed according to the processes of its life cycle with the specific tasks of technical regulation identification, that is specific to each of the processes, and the subsequent aggregation of tasks into groups corresponding to the main areas of standardization of such systems is performed.Results obtained. The research presents a structured list of information security tasks, the solution quality of which can be improved with the use of artificial intelligence technologies. It is shown that the main standard technical barriers to the effective creation and application of intelligent information security systems are associated with the shortcomings of metrological support for intelligent systems, also with the peculiarities of ensuring the confidentiality of information processed in such systems. The analysis of the current state of work on the preparation of national and international standards governing the creation and application of intelligent information security systems is carried out, and it is indicated that the work in this direction is of an initial, staged nature. The list of specific standardization tasks aimed at overcoming the identified standard technical barriers in the implementation of individual processes of the intelligent systems life cycle is justified. Specific tasks are grouped by the main standardization areas, for each of which the proposals for the adjustment of existing and the development of new standard technical documents in the field of artificial intelligence and information security are prepared. Keywords: artificial intelligence, applied tasks of artificial intelligence, intelligent tasks of information security, system life cycle, evaluation of the functional characteristics of intelligent systems, intellometry, quality of intelligent systems, information security of intelligent systems. References1. Garbuk S.V., Gubinskii` A.M. Iskusstvenny`i` intellekt v vedushchikh stranakh mira: strategii razvitiia i primenenie v sfere oborony` i bezopasnosti. M.: «Znanie». 2020. 590 s. 2. Cherviakov N.I., Evdokimov A.A., Galushkin A.I. i dr. Primenenie iskusstvenny`kh nei`ronny`kh setei` i sistemy` ostatochny`kh classov v kriptografii. – M.: FIZMATLIT, 2012. – 280 s. 3. Garbuk S.V., Greeniaev S.N., Pravikov D.Iu., Polianskii` A.V. Obespechenie informatcionnoi` bezopasnosti ASU TP s ispol`zovaniem metoda prediktivnoi` zashchity` // Voprosy` kiberbezopasnosti. 2019. №2(30). S.38-45. DOI: 10.21681/2311-3456-2019-2-38-45. 4. Solov`yov V.S., Iazov Iu.K. Informatcionnoe obespechenie deiatel`nosti po tekhnicheskoi` zashchite informatcii. Voprosy` kiberbezopasnosti. 2021. №1(41). S.69-79. DOI: 10.21681/2311-3456-2021-1-69-79. 5. Garbuk S.V. Intellektual`ny`e avtomatizirovanny`e sredstva tematicheskoi` obrabotki informatcii v sistemakh bezopasnosti // Iskusstvenny`i` intellekt i priniatie reshenii`. 2017. №1. S.95-104. 6. Haier, Richard J. The neuroscience of intelligence / Richard J. Haier, University of California, Irvine. New York, NY: Cambridge University Press, 2017. 7. Francois Chollet – On the Measure of Intelligence. arXiv:1911.01547v2 [cs.AI] 25 Nov 2019. 8. Matteo E. Bonfanti, Kevin Kohler. Artificial Intelligence for Cybersecurity/CSS Analyses in Security Policy. №. 265, June 2020. 9. Kostogryzov A., Korolev V. Probabilistic Methods for Cognitive Solving of Some Problems in Artificial Intelligence Systems. 2019. DOI: 10.5772/intechopen.89168 10. Garbuk S.V. Intellimetry as a way to ensure AI trustworthiness//The Proceedings of the 2018 International Conference on Artificial Intelligence Applications and Innovations (IC-AIAI). Limassol, Cyprus, 6-10.10.2018. S.27-30. DOI 10.1109/IC-AIAI.2018.00012. 11. Kuz`menko A.N. Tekhnologiia polimorfnoi` modifikatcii programmnogo koda dlia povy`sheniia nadezhnosti funktcionirovaniia programmnogo obespecheniia v nedoverennoi` srede // Voprosy` bezopasnosti. 2018. № 4. S.64-77. 12. Garbuk S.V., Bakeev R.N. Konkurentnaia ocenka kachestva tekhnologii` intellektual`noi` obrabotki danny`kh // Problemy` upravleniia. 2017, №6. S.50-62. 13. Mihai`lov Iu. B. Nauchno-metodicheskie osnovy` obespecheniia bezopasnosti zashchishchaemy`kh ob``ektov. Goriachaia liniiaTelekom. 2015. 322 s. ISBN: 978-5-9912-0485-9 14. Par`ev S.E., Pravikov D.I., Karantaev V.G. Osobennosti primeneniia risk-orientirovannogo podhoda dlia obespecheniia kiberbezopasnosti promy`shlenny`kh ob``ektov // Bezopasnost` informatcionny`kh tekhnologii`. Tom 27, №4(2020). DOI: http://dx.doi.org/10.26583/bit.2020.4.04. 15. Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu – Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment // World Academy of Science, Engineering and Technology. International Journal of Economics and Management Engineering Vol:8, No:4, 2014. C.583-589. |
68-83 |
Ivanov, A. I. DRAFT OF THE THIRD NATIONAL STANDARD OF RUSSIA FOR FAST AUTOMATIC LEARNING OF LARGE CORRELATION NEURAL NETWORKS ON SMALL TRAINING SAMPLES OF BIOMETRIC DATA / A. I. Ivanov, A. E. Sulavko // Cybersecurity issues. – 2021. – № 3(43). – С. 84-93. – DOI: 10.21681/2311-3456-2021-3-84-93.
AbstractThe aim of the study is to show that a biometrics-to-access code converter based on large networks of correlation neurons makes it possible to obtain an even longer key at the output while ensuring the protection of biometric data from compromise.The research method is the use of large «wide» neural networks with automatic learning for the implementation of the biometric authentication procedure, ensuring the protection of biometric personal data from compromise.Results of the study - the first national standard GOST R 52633.5 for the automatic training of neuron networks was focused only on a physically secure, trusted computing environment. The protection of the parameters of the trained neural network converters biometrics-code using cryptographic methods led to the need to use short keys and passwords for biometric-cryptographic authentication. It is proposed to build special correlation neurons in the meta-space of Bayes-Minkowski features of a higher dimension. An experiment was carried out to verify the patterns of kkeystroke dynamics using a biometrics-to-code converter based on the data set of the AIConstructor project. In the meta-space of features, the probability of a verification error turned out to be less (EER = 0.0823) than in the original space of features (EER = 0.0864), while in the protected execution mode of the biometrics-to-code converter, the key length can be increased by more than 19 times. Experiments have shown that the transition to the mat space of Bayes- Minkowski features does not lead to the manifestation of the “curse of dimension” problem if some of the original features have a noticeable or strong mutual correlation. The problem of ensuring the confidentiality of the parameters of trained neural network containers, from which the neural network converter biometrics-code is formed, is relevant not only for biometric authentication tasks. It seems possible to develop a standard for protecting artificial intelligence based on automatically trained networks of Bayesian-Minkowski correlation neurons. Keywords: machine learning, pattern recognition, analysis of correlations between features, meta-space of BayesMinkowski features, protection of confidential information in knowledge bases from compromise, secure execution of artificial intelligence, highly reliable authentication. References1. Catak, F. O. Privacy-Preserving Fully Homomorphic Encryption and Parallel Computation Based Biometric Data Matching : rreprints / F. O. Catak, S. Yildirim Yayilgan, M. Abomhara, 2020. 2020070658. DOI: 10.20944/preprints202007.0658.v1. 2. Multi-biometric template protection based on Homomorphic Encryption / M. Gomez-Barrero [et al.] // Pattern Recognition. 2017. Vol. 67. R. 149–163. 3. A secure face-verification scheme based on homomorphic encryption and deep neural networks / Y. Ma, L. Wu, X. Gu [et al.] // IEEE Access. 2017. Vol. 5. P. 16532–16538. 4. A. O. Zhirov, O. V. Zhirova, S. F. Krendelev. Bezopasny`e oblachny`e vy`chisleniia s pomoshch`iu gomomorfnoi` kriptografii // Zhurnal BIT (bezopasnost` informatcionny`kh tekhnologii`), tom 1, 2013. str. 6-12. 5. Marshalko, G. B. On the security of a neural network-based biometric authentication scheme / G. B. Marshalko. DOI: https://doi.org/10.4213/mvk120 // Matematicheskie. Voprosy. Kriptografii. 2014. Vol. 5, № 2. P. 87–98. 6. Sulavko, A.E. Vy`sokonadezhnaia dvukhfaktornaia biometricheskaia autentifikatciia po rukopisny`m i golosovy`m paroliam na osnove gibkikh nei`ronny`kh setei` // Komp`iuternaia optika. 2020. T. 44, № 1. S. 82-91. – DOI: 10.18287/2412-6179-CO-567. 7. Ivanov, A. I. Sreda modelirovaniia «BioNei`roAvtograf» : programmny`i` produkt sozdan laboratoriei` biometricheskikh i nei`rosetevy`kh tekhnologii` / A. I. Ivanov, O. S. Zaharov. 2009 // AO «PNIE`I»: ofitc. sai`t – URL: http://pnie`i.rf/activity/science/noc/bioneuroautograph.zip (data obrashcheniia: 07.04.2021). 8. On the Reconstruction of Face Images from Deep Face Templates / Guangcan Mai, Kai Cao, Pong C. Yuen, Anil K. Jain // IEEE Transactions on Pat-tern Analysis and Machine Intelligence. 2019. Vol. 41, no. 5. P. 1188–1202. 9. Hafemann, Luiz G. Writer-independent Feature Learning for Offline Signature Verification using Deep Convolu-tional Neural Networks / Luiz G. Hafemann, Robert Sabourin, Luiz S. Oliveira. DOI: 10.1109/IJCNN.2016.7727521 // International Joint Conference on Neural Networks (IJCNN). 2016. URL: https://ieeexplore.ieee.org/abstract/document/7727521 (date accessed: 07.04.2021) 10. Torfi, Amirsina. Text-independent speaker verification using 3d convolutional neural networks / Amirsina Torfi, Jeremy Dawson, Nasser M. Nasrabadi. DOI: 10.1109/ICME.2018.8486441 // IEEE International Conference on Multimedia and Expo (ICME). 23–27 July 2018. URL: https://ieeexplore.ieee.org/abstract/document/8486441 (date accessed: 07.04.2021) 11. Deep secure encoding for face template protection / R. K. Pandey, Y. Zhou, B. U. Kota, V. Govindaraju. DOI:10.1109/CVPRW.2016.17 // IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA 2016. R. 77–83 12. Kumar Jindal, A. Face template protection using deep convolutional neural network / A. Kumar Jindal, S. Chalamala, S. Kumar Jami // IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, UT, USA, 2018. R. 462–470 13. Ivanov A. I., Beziaev A. V., Maly`gina E. A., Serikova Iu. I. Vtoroi` natcional`ny`i` standart Rossii po by`stromu avtomaticheskomu obucheniiu bol`shikh iskusstvenny`kh nei`ronny`kh setei` na maly`kh vy`borkakh biometricheskikh danny`kh // Sbornik nauchny`kh statei` po materialam I Vserossii`skoi` nauchno-tekhnicheskoi` konferentcii «Bezopasnost` informatcionny`kh tekhnologii`», 24 aprelia, Penza 2019, s. 174-177. 14. Lozhnikov, P. S. Biometricheskaia zashchita gibridnogo dokumentooborota: monogr. / P. S. Lozhnikov // Novosibirsk : Izd-vo SO RAN, 2017. 129 s. ISBN 978-5-7692-1561-2. 15. Sulavko A.E. Testirovanie nei`ronov dlia raspoznavaniia biometricheskikh obrazov pri razlichnoi` informativnosti priznakov // Pricladnaia informatika. 2018. №1. S. 128-143. 16. Sulavko A.E. Bayes-Minkowski measure and building on its basis immune machine learning algorithms for biometric facial identification // Journal of Physics: Conference Series. - Vol. 1546. - IV International Scientific and Technical Conference “Mechanical Science and Technology Update” (MSTU-2020) 17-19 March, 2020, Omsk, Russian Federation. DOI: 10.1088/1742-6596/1546/1/012103 17. Sulavko, A.E. Abstraktnaia model` iskusstvennoi` immunnoi` seti na osnove komiteta classifikatorov i ee ispol`zovanie dlia raspoznavaniia obrazov claviaturnogo pocherka // Komp`iuternaia optika. 2020. T. 44, № 5. S. 830-842. DOI: 10.18287/2412-6179-CO-717 18. Lozhnikov P.S., Sulavko A.E., Buraia E.V., Pisarenko V.Iu. Autentifikatciia pol`zovatelei` komp`iutera na osnove claviaturnogo pocherka i osobennostei` litca // Voprosy` kiberbezopasnosti. 2017. №3. S. 24–34. DOI: 10.21681/2311-3456-2017-3-24-34 19. Ivanov, A. I. Comparable Estimation of Network Power for Chisquared Pearson Functional Networks and Bayes Hyperbolic Functional Networks while Processing Biometric Data / A. I. Ivanov, S. E. Vyatchanin, P. S. Lozhnikov. DOI: 10.1109/SIBCON.2017.7998435 // International Siberian Conference on Control and Communications (SIBCON), 29–30 June 2017. Astana, 2017. 20. Sulavko, A. E. Vy`sokonadezhnaia autentifikatciia po rukopisny`m paroliam na osnove gibridny`kh nei`ronny`kh setei` s obespecheniem zashchity` biometricheskikh e`talonov ot komprometatcii. Informatcionno-upravliaiushchie sistemy`, (4), 2020. 61-77. DOI: 10.31799/1684-8853-2020-4-61-77 21. Bogdanov, D. S. Data recovery for a neural network-based biometric authentication scheme / D. S. Bogdanov, V. O. Mironkin // Matematicheskie voprosy` kriptografii. 2019. Vol. 10, № 2. S. 61–74 |
84-93 |
Leave a Reply