№ 4 (44)

Content of 4th issue of magazine «Voprosy kiberbezopasnosti» at 2021:

Title Pages
VISUAL ANALYTICS FOR INFORMATION SECURITY: AREAS OF APPLICATION , TASKS, VISUALIZATION MODELS / I. V. Kotenko, M. V. Kolomeec, K. N. Zhernova, A. A. Chechulin // Cybersecurity issues. – 2021. – № 4(44). – С. 2-15. – DOI: 10.21681/2311-3456-2021-4-2-15.

Abstract
The purpose of the article: to identify and systematize the areas and problems of information security that are solved using visual analytics methods, as well as analysis of the applied data visualization models and their properties that affect the perception of data by the operator.Research method: a systematic analysis of the application of visual analytics methods for solving information security problems. Analysis of relevant papers in the field of information security and data visualization. The objects of research are: theoretical and practical solutions to information security problems through visual analysis. Visual analytics in the article is considered from several sides: from the point of view of the areas of application of visual analysis methods in information security, from the point of view of the tasks solved by the security analyst, from the point of view of the visualization models used and the data structures used, as well as from the point of view of the properties of data visualization models.The result: classification of visualization models is proposed, which differs from analogs in that it is based on the analysis of areas and tasks of information security and comparison of visualization models to them.The scope of the proposed approach is the creation of visualization models that can be used to increase the efficiency of operator interaction with information security applications. The proposed article will be useful both for specialists who develop information security systems and for students studying in the direction of training “Information Security”.
Keywords:  information security, visual analytics, data analysis, support and decision making, visualization model, data visualization.
References
1. Javed Y., Shehab M. Visual Analysis of Photo Policy Misconfigurations Using Treemaps //arXiv preprint arXiv:1903.02612. – 2019.
2. Kolomeets М., Chechulin А., Kotenko І., Saenko І. Access Control Visualization Using Triangular Matrices // Proceedings of the 27th Euromicro International Conference оп Parallel, Distributed and network-based Processing (PDP 2019). Pavia, Italy, February 13-15, 2019. Los Alamitos, California. IEEE Computer Society. 2019. P.348-355. DOI: 10.1109/EMPDP.2019.8671578.
3. Morisset С., Sanchez D. Оп building а visualisation tool for access control policies //International Conference оп Information Systems Security and Privacy. ‑ Springer, Cham, 2018. ‑ Р. 215-239.
4. Gove R. V3SPA: А visual analysis, exploration, and diffing tool for SELinux and SEAndroid security policies //2016 IEEE Symposium оп Visualization for Cyber Security (VizSec). — IEEE, 2016. — Р. 1-8.
5. Kotenko І., Ushakov І., Pelevin D., Preobrazhenskiу А., Ovramenko А. Identification of insiders in the corporate network: ап approach based on UBA and UEBA ff Information security. Inside. 2019. по. 5. pp. 26-35.
6. Kolomeec М. Data visualization models usage in DLP systems. Х Saint-Petersburg Interregional conference «Information security of regions of Russia (IBRR-2017) Vo1. 3. Saint-Petersburg, November 1-3, 2017. The proceedings of conference, 2017.
7. Legg P. A. Visualizing the insider threat: challenges and tools for identifying malicious user activity // 2015 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2015. – P. 1-7.
8. Kolomeets M., Chechulin A., Kotenko I., Chevalier Y.A visual analytics approach for the cyber forensics based on different views of the network traffc // Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 2018, vol. 9, No. 2, P. 57-73.
9. Tassone C. F. R., Martini B., Choo K. K. R. Visualizing digital forensic datasets: a proof of concept //Journal of forensic sciences. – 2017. – Vol. 62. – №. 5. – P. 1197-1204.
10. Qazi N., Wong B. Behavioural & tempo-spatial knowledge graph for crime matching through graph theory //2017 European Intelligence and Security Informatics Conference (EISIC). – IEEE, 2017. – P. 143-146.
11. Leschke T. R., Nicholas C. Change-link 2.0: a digital forensic tool for visualizing changes to shadow volume data // Proceedings of the
Tenth Workshop on Visualization for Cyber Security. – 2013. – P. 17-24.
12. Novikova E., Kotenko I. Visual Analytics for Detecting Anomalous Activity in Mobile Money Transfer Services // International Cross
Domain Conference and Workshops (CD-ARES 2014). September 8nd – 12th, 2014. Fribourg, Switzerland. Lecture Notes in Computer
Science (LNCS), vol. 8708. Springer-Verlag. 2014, P.63-78.
13. Oggier F., Phetsouvanh S., Datta A. BiVA: Bitcoin network visualization & analysis //2018 IEEE International Conference on Data Mining
Workshops (ICDMW). – IEEE, 2018. – P. 1469-1474.
14. Webga K., Lu A.Discovery of rating fraud with real-time streaming visual analytics // 2015 IEEE Symposium on Visualization for Cyber
Security (VizSec). – IEEE, 2015. – P. 1-8.
15. Cappers B.C.M., Wijk J.J. Understanding the context of network traffc alerts // 2016 IEEE Symposium on Visualization for Cyber
Security (VizSec). – IEEE, 2016. – P. 1-8.
16. Hao L., Healey C.G., Hutchinson S.E. Ensemble visualization for cyber situation awareness of network security data // 2015 IEEE
Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2015. – P. 1-8.
17. Shi Y., Zhao Y., Zhou F., Shi R., Zhang Y.A novel radial visualization of intrusion detection alerts //IEEE Computer Graphics and
Applications. – 2018. – vol. 38. – No. 6. – P. 83-95.
18. Theron R., Magan-Carrion R., Camacho J., Fernndez G. Network-wide intrusion detection supported by multivariate analysis and
interactive visualization // 2017 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2017. – P. 1-8.
19. Kim U., Kang J., Lee J., Kim H., Jung S. Practical firewall policy inspection using anomaly detection and its visualization // Multimedia
tools and applications. – 2014. – vol. 71. – No. 2. – P. 627-641.
20. Kim H., Ko S., Kim D., Kim HK. Firewall ruleset visualization analysis tool based on segmentation //2017 IEEE Symposium on
Visualization for Cyber Security (VizSec). – IEEE, 2017. – P. 1-8.
21. Angelini М., Aniello L., Lenti Ѕ., Santucci G., Ucci D. The goods, the bads and the uglies: Supporting decisions in malware detection
through visual analytics // 2017 IEEE Symposium оп Visualization for Cyber Security (VizSec). ‑ IEEE, 2017. ‑ Р. 1-8.
22. Ulmer А., Schufrin М., Sessler D., Kohlhammer К. Visual-Interactive Identification of Anomalous IP-Block Behavior Using Geo-IP Data //
2018 Symposium оп Visualization for Cyber Security (VizSec). ‑ IEEE, 2018. ‑ Р. 1-8.
23. Chen Si., Chen Sh., Andrienko N., Andrienko G., Nguyen Р., Turkay С., Thonnard О., Yuan Х. User behavior map: Visual exploration for
cyber security session data // 2018 IEEE Symposium оп Visualization for Cyber Security (VizSec). ‑ IEEE, 2018. ‑ Р. 1-4.
24. Krokos E., Rowden А., Whitley K., Varshney А. Visual Analytics for Root DNS Data //2018 IEГБ Symposium оп Visualization for Cyber
Security (VizSec). — IEEE, 2018. — P.18.
25. Romero-Gomez R., Nadji Y., Antonakakis М. Towards designing effective visualizations for DNS-based network threat analysis // 2017
IEEE Symposium оп Visualization for Cyber Security (VizSec). ‑ IEEE, 2017. ‑ Р. 1-8.
26. Sopan А., Berninger М., Mulakaluri М., Katakam R. Building а Machine Learning Model for the SOC, by the Input from the SOC, and
Analyzing it for the SOC // 2018 IEEE Symposium оп Visualization for Cyber Security (VizSec). ‑ IEEE, 2018. ‑ Р. 1-8.
27. Kolomeec М., Gonzalez-Granadillo G., Doynikova Е., Chechulin А., Kotenko I, Debar Н. Choosing models for security metrics
visualization // Computer Network Security. Lecture Notes in Computer Science, Springer-Verlag, vol. 10446. The 2017 7th International
Conference on Mathematical Methods, Models and Architectures for Computer Networks Security (MMM-ACNS-2017). August 28-30,
2017, Warsaw, Poland. P.75-87.
28. Motzek А., Gonzalez-Granadillo G., Debar Н., Garcia-Alfaro Ј., Möller R. Selection of Pareto-efficient response plans based on financial
and operational assessments // EURASIP Journal оп Information Security. — 2017. ‑ vol. 2017. ‑ Nо. 1. ‑ Р. 12.
29. Mrsic L., Zajec S., Kopal R. Appliance of Social Network Analysis and Data Visualization Techniques in Analysis of Information Propagation // Asian Conference on Intelligent Information and Database Systems. – Springer, Cham, 2019. – P. 131-143.
30. Ferrara E. Disinformation and social bot operations in the run up to the 2017 French presidential election // arXiv preprint arXiv:1707.00086. – 2017.
31. Faris R., Roberts H., Etling B., Bourassa N., Zuckerman E., Benkler Y. Partisanship, propaganda, and disinformation: Online media and the 2016 US presidential election // Berkman Klein Center Research Publication. – 2017. – vol. 6.
32. Shu K., Mahudeswaran D., Liu H. FakeNewsTracker: a tool for fake news collection, detection, and visualization // Computational and Mathematical Organization Theory. – 2019. – vol. 25. – No. 1. – P. 60-71.
33. Nataraj L., Karthikeyan S., Jacob G., Manjunath B. Malware images: visualization and automatic classification // Proceedings of the 8th international symposium on visualization for cyber security. – 2011. – P. 1-7.
34. Angelini M., Blasilli G., Borrello P., Coppa E., D’Elia D., Ferracci S., Lenti S., Santucci G. ROPMate: Visually Assisting the Creation of ROPbased Exploits // 2018 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2018. – P. 1-8.
35. Santhanam G. R., Holland B., Kothari S., Mathews J. Interactive visualization toolbox to detect sophisticated android malware // 2017 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2017. – P. 1-8.
36. Assal H., Chiasson S., Biddle R. Cesar: Visual representation of source code vulnerabilities // 2016 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2016. – P. 1-8.
37. Gove R., Saxe J., Gold S., Long A., Labs G., Piper Z. SEEM: a scalable visualization for comparing multiple large sets of attributes for malware analysis // Proceedings of the Eleventh Workshop on Visualization for Cyber Security. – 2014. – P. 72-79.
38. Kartel A., Novikova E., Volosiuk A. Analysis of Visualization Techniques for Malware Detection //2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). – IEEE, 2020. – P. 337-340.
39. Peryt S., Andre Morales J., Casey W., Volkmann A., Mishra B., Cai Y. Visualizing a malware distribution network // 2016 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2016. – P. 1-4.
40. Cappers B., Meessen P., Etalle S., Wijk J. Eventpad: Rapid malware analysis and reverse engineering using visual analytics // 2018 IEEE Symposium on Visualization for Cyber Security (VizSec). – IEEE, 2018. – P. 1-8.
41. Bestley R., Noble I. Visual research: An introduction to research methods in graphic design. – Bloomsbury Publishing, 2016.
42. Angelini M., May T., Santucci G., Schulz HJ. On Quality Indicators for Progressive Visual Analytics //EuroVA@ EuroVis. – 2019. – P. 25-29.
43. Syamkumar M., Durairajan R., Barford, P.Bigfoot: A geo-based visualization methodology for detecting bgp threats // 2016 IEEE Symposium on Visualization forCyber Security (VizSec). – IEEE, 2016. – P. 1-8.
2-15
Starodubtsev, Yu. I. STRUCTURAL AND FUNCTIONAL MODEL OF CYBERSPACE / Yu. I. Starodubtsev, P. V. Zakalkin, S. A. Ivanov // Cybersecurity issues. – 2021. – № 4(44). – С. 16-24. – DOI: 10.21681/2311-3456-2021-4-16-24.

Abstract
The aim of the research is to develop a structural and functional model of cyberspace as an element of its mathematical (analytical and simulation) model, which allows us to study the properties of cyberspace. Formation of the terminological basis of the research area.Research methods: theory of complex systems, synergetics.Research result: a structural and functional model has been developed that describes the process of forming information services based on cyberspace resources. In relation to cyberspace, the concept of “symbiont” is introduced as a universal concept that allows describing any element of cyberspace and its resources. The following terms are defined: cyberspace, information, computing and telecommunications resource. In addition, the formalization of resources and information services provided by cyberspace is presented. An example of forming an information service based on cyberspace resources is shown.
Keywords: information services, information resources, cyberspace resources, information service formation.
References
1. Starodubtsev Y.I., Vershennik E.V., Balenko E.G., Fedorov V.H. Cyberspace: terminology, properties, problems of operation // V sbornike: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020. DOI: 10.1109/FarEastCon50210.2020.9271282.
2. Starodubtcev Iu.I., Zakalkin P.V., Ivanov S.A. Tekhnosfernaia voi`na kak osnovnoi` sposob razresheniia konfliktov v usloviiakh globalizatcii // Voennaia my`sl`. 2020. № 10. S.16–21.
3. Durnev R.A., K.Iu. Kriukov, Deduchenko F.M. Preduprezhdenie tekhnogenny`kh katastrof, provotciruemy`kh v hode voenny`kh dei`stvii` // Voennaia my`sl`. 2019. № 10. S. 41–48.
4. Dy`levskii` I.N., Bazy`lev S.I., Zapivahin O.V., Komov S.A. i dr. O vzgliadakh administratcii SSHA na kiberprostranstvo kak novuiu sferu vedeniia voenny`kh dei`stvii` // Voennaia my`sl`. 2020. № 10. S. 22–29.
5. Romashkina N.P. Global`ny`e voenno-politicheskie problemy` mezhdunarodnoi` informatcionnoi` bezopasnosti: tendentcii, ugrozy`, perspektivy` // Voprosy` kiberbezopasnosti. 2019. № 1(29). S. 2–8. DOI: 10.21681/2311-3456-2019-1-2-9.
6. Starodubtsev Y.I., Balenko E.G., Zakalkin P.V., Fedorov V.H. Change dynamics for forms and opportunities of centers of power under globalization // V sbornike: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020. 2020. S. 9271172. DOI: 10.1109/FarEastCon50210.2020.9271172.
7. Zhilenkov A.A., Cherny`i` S.G. Sistema bezavarii`nogo upravleniia kriticheski vazhny`mi ob``ektami v usloviiakh kiberneticheskikh atak // Voprosy` kiberbezopasnosti. 2020. № 2 (36). S. 58–66. DOI:10.21681/2311-3456-2020-2-58-66.
8. Petrenko S.A., Stupin D.D. Natcional`naia sistema rannego preduprezhdeniia o komp`iuternom napadenii: nauchnaia monografiia // Universitet Innopolis. Innopolis: Izdatel`skii` dom «Afina», 2017. 440 s.
9. Revenkov P.V., Berdiugin A.A., Makeev P.V. Ocenka riska narusheniia kiberbezopasnosti v kommercheskom banke (na primere atak na bankomaty` “brute force” i “black box”) // Voprosy` kiberbezopasnosti. 2021. № 3 (43). S. 20–30. DOI:10.21681/2311-3456-20213-20-30.
10. Kartchiia A.A., Makarenko G.I., Sergin M.Iu. Sovremenny`e trendy` kiberugroz i transformatciia poniatiia kiberbezopasnosti v usloviiakh tcifrovizatcii sistemy` prava // Voprosy` kiberbezopasnosti. 2019. № 3 (31). S. 18–23. DOI: 10.21681/2311-3456- 2019-3-18-23.
11. Starodubtcev Iu.I., Ivanov S.A., Zakalkin P.V. Kontceptual`ny`e napravleniia resheniia problemy` obespecheniia ustoi`chivosti Edinoi` seti e`lektrosviazi Rossii`skoi` Federatcii // Voennaia my`sl`. 2021. № 4. S. 39–49.
12. Makarenko S.I. Modeli sistemy` sviazi v usloviiakh prednamerenny`kh destabiliziruiushchikh vozdei`stvii` i vedeniia razvedki. Monografiia. SPb.: Naukoemkie tekhnologii, 2020. 337 s.
13. Shneps-Shneppe M.A., Seleznev S.P., Namiot D.E., Coopriianovskii` V.P. O kiberbezopasnosti kriticheskoi` infrastruktury` gosudarstva
// International Journal of Open Information Technologies ISSN: 2307-8162 vol. 4, no. 7. 2016. S.22–31.
14. Dobrinskaia D.E. Kiberprostranstvo: territoriia sovremennoi` zhizni // Vestneyk Moskovskogo Universiteta. Seriia 18. Sotciologiia i politologiia. 2018. T. 24. № 1. S. 52–70. DOI: 10.24290/1029-3736-2018-24-1-52-70.
15. Danel`ian A.A. Mezhdunarodno-pravovoe regulirovanie kiberprostranstva // Obrazovanie i pravo. 2020. № 1. S. 261–269.
16. Starodubtcev Iu.I., Davliatova M.A. E`konomika tcifrovy`kh informatcionny`kh resursov // Sankt-Peterburgskii` politekhnicheskii` universitet Petra Velikogo. Sankt-Peterburg, 2019.
17. Olenichev M.E., Chuliukov V.A. Osnovy` classifikatcii tcifrovy`kh informatcionny`kh resursov // V sbornike: Informatcionny`e tekhnologii v obrazovatel`nom protcesse vuza i shkoly` Materialy` KHIII Vserossii`skoi` nauchno-prakticheskoi` konferentcii. 2019. S. 97–100.
18. Makarenko S.I. Informatcionnoe protivoborstvo i radioe`lektronnaia bor`ba v setecentricheskikh voi`nakh nachala XXI veka. Monografiia. SPb.: Naukoemkie tekhnologii, 2017. 546 s.
16-24
DEVELOPMENT OF A PSEUDO-RANDOM SEQUENCE GENERATION FUNCTION BASED ON THE “KUZNECHIK” CRYPTOGRAPHIC ALGORITHM / S. S. Belyaev, M. B. Budko, M. Y, Budko, A. V. Guirik, V. A. Grozov // Cybersecurity issues. – 2021. – № 4(44). – С. 25-34. – DOI: 10.21681/2311-3456-2021-4-25-34.

Abstract
Purpose: increasing the cryptographic strength level of the pseudo-random sequence generation function based on the «Kuznechik» encryption algorithm.Research methods: methods for constructing pseudo-random sequence generators using a strong cryptographic algorithm as a generation function in accordance with the recommendations of NIST SP 800-90. Methods of probability theory and mathematical statistics (statistical hypothesis testing, Pearson’s criterion), methods for estimating the entropy of a random process.Results: а method for development of the main component of the deterministic generator - the function for generating pseudo-random sequences based on the «Kuznechik» encryption algorithm (Russian encryption standard GOST R 34.12-2015) due to a number of the original algorithm modifications is proposed. Features of the algorithm allow to use it in a mode that combines the advantages of the well-known encryption modes of block ciphers (OFB and CTR encryption modes). A procedure for generating round keys and other modifications of the algorithm that increase its security while maintaining its performance have been developed and implemented. The generator operation was evaluated on the basis of the statistical properties of the output sequences (NIST SP 800-22 tests), Pearson’s χ2 criterion, and min-entropy (NIST 800-90B tests). According to the characteristics mentioned above, the proposed generation function is comparable with the reference version based on GOST 34.12-2015 «Kuznechik», but exceeds it in terms of security
Keywords: random bit generator, pseudo-random sequences, GOST R 34.12-2015 «Kuznechik», SP-network, Feistel network, Pearson’s criterion, min-entropy, NIST 800-90, NIST SP 800-22.
References
1. Herrero-Collantes M., Garcia-Escartin J.C. Quantum random number generators // Review of Modern Physics. 2016. Vol. 89 (1). P. 1-54.
2. Fischer V., Haddad P. Random number generators for cryptography // Circuits and Systems for Security and Privacy. CRC Press. 2016. P. 245-286.
3. Ivanov M.A., Skitev A.A., Starikovskij A.V. Klassifikaciya generatorov psevdosluchajnyh chisel, orientirovannyh na reshenie zadach zashchity informacii // REDS: Telekommunikacionnye ustrojstva i sistemy [Telecommunications devices and systems], 2017, № 7 (4). S. 484-487.
4. Johnston D. Random number generators – principles and practices. A guide for engineers and programmers. DeG Press, 2018. 436 p.
5. Wassenberg J., Obryk R., Alakuijala J., Mogenet E. Randen-fast backtracking-resistant random generator with AES+ Feistel+ Reverie // arXiv preprint arXiv:1810.02227, 2018.
6. Smagin A.A., Klochkov A.E., Grigor’ev A.Yu. Issledovanie vozmozhnosti ispol’zovaniya datchikov mobil’nyh ustrojstv dlya generacii sluchajnyh posledovatel’nostej // Avtomatizaciya processov upravleniya [Automation of control processes], 2017. № 3. S. 103-109.
7. Song P., Zeng Y., Liu Z., Ma J., Liu H. True Random Number Generation Using Process Scheduling of Android Systems. In Proc. of International Conference on Networking and Network Applications (Xi’an, China, October 12-15, 2018). NaNA’2018. P. 304-309. DOI: 10.1109/NANA.2018.8648763.
8. Cho S.-M., Hong E., Seo S.-H. Random number generator using sensor for drones // Computer Science. IEEE Access. 2020. Vol. 8. P. 30343-30354. DOI:10.1109/ACCESS.2020.2972958.
9. Camara C., Martin H., Peris-Lopez P., Aldalaien M. Design and analysis of a true random number generator based on GSR signals for body sensor networks // Sensors. 2019. Vol. 19. P. 2033.
10. Goncharenko J.J. Nesterenko V.R. Ispol’zovanie sluchajnyh biometricheskih obrazov dlya generacii kriptostojkih posledovatel’nostej s primeneniem generativnosostyazatel’nyh nejronnyh setej // Nauchnyj rezul’tat. Informacionnye tekhnologii. T. 4. № 2. 2019. S. 69-74. DOI: 10.18413/2518-1092-2019-4-2-0-8.
11. Parker R.J. Entropy justification for metastability based NRB generator // IEEE 2nd International Verification and Security Workshop (IVSW), 2017. DOI: 10.1109/IVSW.2017.8031540.
12. Chugunkov I.V., Novikova O.Y., Perevozchikov V.A., Troitskiy S.S. The development and researching of lightweight pseudorandom number generators. In Proc. of IEEE NORTH WEST RUSSIA Section Young Researchers in Electrical and Electronic Engineering Conf. (St. Petersburg, Russia, February 2-3, 2016). EICONRUSNW’2016. P. 185-189. DOI: 10.1109/EIConRusNW.2016.7448150.
13. Chugunkov I.V., Ivanov M.A., Gridneva E.A., Shestakova N.Y. Classification of pseudo-random number generators applied to information security. In Proc. of IEEE NORTH WEST RUSSIA Section Young Researchers in Electrical and Electronic Engineering Conf. (St. Petersburg, Russia, February 2-3, 2017). EICONRUSNW-2017. P. 370-373. DOI: 10.1109/EIConRus.2017.7910569.
14. Chugunkov I.V., Bitkina M.A., Rumyantseva I.S., F.A. Trofimov. The entropy assessment of modern stochastic algorithms. In Proc. of IEEE NORTH WEST RUSSIA Section Young Researchers in Electrical and Electronic Engineering Conf. (St. Petersburg, Russia, February 2-3, 2017). EICONRUSNW-2017. P. 366-369. DOI: 10.1109/EIConRus.2017.7910568.
15. Chugunkov Ilya V., Gulyaev Vadim A., Baranova Elena A., Chugunkov Vladimir I. Method for Improving the Statistical Properties of Pseudorandom Number Generators. In Proc. of IEEE NORTH WEST RUSSIA Section Young Researchers in Electrical and Electronic Engineering Conf. (St. Petersburg, Russia, January 28, 2019). EICONRUSNW-2017. P. 206-209. DOI: 10.1109/EIConRus.2019.8656699.
16. Zhu S., Ma Y., Jing J. Analysis and improvement of entropy estimators in NIST SP 800-90B for non-IID entropy sources // IACR Trans. Symmetric Cryptol. 2017. Vol. 2017 (3). P. 151-168. DOI:10.13154/tosc.v2017.i3.151-168.
17. Ishchukova E.A., Babenko L.K., Anikeev M.V. Fast implementation and cryptanalysis of GOST R 34.12-2015 block ciphers. In Proc. of 9th Int. Conf. on Security of Information and Networks. (New Jersey, USA, July 20-22, 2016). SIN’2016. P. 104-111. DOI:10.1145/2947626.2947657.
18. Babenko L.K., E.A. Ishchukova. New results in a research of GOST R 34.12-2015. In Proc. of IEEE 11th Int. Conf. on Application of Information and Communication Technologies. (Moscow, Russia, September 20-22, 2017). AICT’2017. P. 8686920. DOI: 10.1109/ICAICT.2017.8686920.
19. Burov D.A., Pogorelov B.A. The influence of linear mapping reducibility on the choice of round constants // Mat. Vopr. Kriptogr. 2017. Vol. 8 (2). P. 51-64. DOI: https://doi.org/10.4213/mvk223.
20. Udaltsov V.A. Issledovanie vliyaniya sokrashcheniya kolichestva raundov kriptograficheskih preobrazovanij na ustojchivost’ k statisticheskim atakam i proizvoditel’nost’ algoritma shifrovaniya «Kuznechik» // Sb. materialov V Mezhdunar. nauchno-praktich. konf. Aktual’nye napravleniya nauchnyh issledovanij: perspektivy razvitiya. 2018. S. 183-185. DOI 10.21661/r-471085.
21. Dorokhin S.V., Kachkov S.S., Sidorenko A.A. Realizaciya blochnogo shifra «Kuznechik» s ispol’zovaniem vektornyh instrukcij // Trudy MFTI. 2018. T. 10. № 4. S. 45-53.
25-34
AUTOMATION OF THE PROCESS OF ANALYSIS OF SECURITY THREATS IN CYBER-PHYSICAL SYSTEMS / E. S. Basan, A. S. Gritsynin, M. G. Shulika, V. S. Kryuchkov // Cybersecurity issues. – 2021. – № 4(44). – С. 35-47. – DOI: 10.21681/2311-3456-2021-4-35-47.

Abstract
Purpose: development of a methodology for automating the process of analyzing security threats in cyber-physical systems, which is based on the study and analysis of the system architecture and possible risks of threat implementation, as well as the capabilities of the intruder.
Method: the developed methodology is based on structuring information about the architectural features of cyber-physical systems. Structuring information and presenting it in the form of directories that are interconnected allows to determine the list of threats, vulnerabilities and attacks that are relevant to it based on structural and functional characteristics. When designing the database, an ontological approach was applied, which allows you to highlight concepts and their properties.
Results: methodological recommendations for analyzing the security of cyber-physical systems have been developed, based on the study and assessment of vulnerabilities and security threats. The analysis of the structural and functional characteristics of the cyber-physical system is carried out and the main features from the point of view of information security are highlighted. Integration of new methods for assessing risks, identifying current threats, and developing effective recommendations for cyber-physical systems made it possible to create a knowledge base about threats, attacks, vulnerabilities of CPS. New threats to CPS have been identified, which are associated with their specific properties: mobility, use of wireless networks, location outside the controlled area. The result of the study is a product presented in the form of a knowledge base that allows you to determine the degree of threat of a threat for a given structural and functional characteristics of a cyber-physical system. Implemented automatic updating of information about vulnerabilities from open databases.
Keywords: methodology, attacks, attack tools, structural and functional characteristics, threat base, ontology,
concepts, risks, damage.
References
1. Makhdoom I., Lipman J., Ni. W. Anatomy of Threats to the Internet of Things // IEEE Communications surveys & Tutorials, vol. 21, no. 2, second quarter. 2019. Pp. 1636-1675.
2. Siboni S., Sachidananda V., Meidan Y., Bohadana M., Mathov Y., Bhairav S., Shabtai A., Elovici Y. Security Testbed for Internet-of-Things Devices. // IEEE transactions on reliability, 2019. №68 (1). Pp. 23-44.
3. Atamli A.W., Martin A. Threat-based Security Analysis for the Internet of Things. In International Workshop on Secure Internet of Things. 2014, pp. 36-43.
4. Zhou W., Yu B. A Cloud-Assisted Malware Detection and Suppression Framework for Wireless Multimedia System in IoT Based on Dynamic Differential Game // China Communications. 2018. Pp. 209-223.
5. Carielli S., Eble M., Hirsch F., Rudina E., Zahavi R. IoT Security Maturity Model // Practitioner’s Guide. Version 1.0. 2019. 129 p.
6. National Institute of Standards and Technology. Framework for Improving Critical Infrastructure Cybersecurity. Version 1.1. 2018. 55 p.
7. Sarfraz А., Mohammad M. R., Chowdhury J.N. Interoperability of Security Enabled Internet of Things // Wireless PersCommun. 2011. № 61. Pp. 567-586.
8. Tao M., Zuo J., Liu Z.; Castiglione A., Palmieri F. Multi-layer cloud architectural model and ontology-based security service framework for IoT-based smart homes. Future Gener // Computer Systems. 2018. № 78. Pp. 1040-1051.
9. Ekelhart A., Fenz S., Neubauer T. AURUM: A Framework for Information Security Risk Management. In Proceedings of the 2009 42nd Hawaii International Conference on System Sciences. IEEE, 2009; pp. 1-10.
10. Mozzaquatro B. А., Agostinho C., Goncalves D., Martins J., Jardim-Goncalves R.. An Ontology-Based Cybersecurity Framework for the Internet of Things //Sensors. 2018. № 18. Pp. 3053 -3055.
11. Abbass W., Bakraouy Z., Baina A., Bellafkih M. Classifying IoT security risks using Deep Learning algorithms. In 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), 2018, pp. 1-10.
12. Fedorchenko A. V., Doynikova E. V., Kotenko I. V. Automated detection of assets and calculation of their criticality for the analysis of information system security // Tr. SPIIRAN. 2019. № 18(5). Pp. 1182-1211.
13. Electronic resource https://threatmodeler.com/ - access mode is free (Date of access 10.05.2021).
14. Bakhshi Z., Balador A., Mustafa J. Industrial IoT security threats and concerns by considering Cisco and Microsoft IoT reference models. In Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2018, pp. 173-178.
15. Basan E., Basan A., Grutsynin A. Analysis of the Security Problems of Robotic Systems. In 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT), 2019, pp. 1200-1214.
16. Electronic resource Facial Recognition Implemented at Beijing Capital International Airport – URL: https://medium.com/@pandaily/facial–recognition–implemented–atbeijing–capital– inter- national–airport–8c0b7cc1b945 (Date of access 12.03.2021).
17. Dieber B., Breiling B., Taurer S., Ka- cianka,S., Rass,S., Schartner P. Security for the Robot Operating System // Robot. Auton. Syst. 2017. № 98(C). Pp. 192–203.
18. National Institute of Standards and Technology, Framework for Improving Critical Infrastructure Cybersecurity, April 16, 2018, version 1.1, P.32-43.
19. Breiling, B., Dieber, B. and Schartner, P. Secure communication for the robot operating system. In Annual IEEE International Systems Conference (Sys- Con). IEEE, 2017, pp. 1-6.
20. Zegzhda D.P., Pavlenko E.Yu. Homeostatic strategy for the security of cyber-physical systems / D. P. Zegzhda, E. Yu. Pavlenko // Problems of information security. Computer systems. 2017. No. 3. S. 9-22.
21. Basan E., Basan A., Grutsynin A. Overview of Information Issues for a Robotic System. In Proceedings of 19th Interantional Conference on Communication Technology. IEEE, 2019, pp. 1275-1280.
22. Shyvakov O. Developing a security framework for robots // 2017. Pp.8-67.
23. Vilches V. M., Kirschgens L. A., et al. Introducing the robot security framework (RSF), a standardized methodology to perform security assessments in robotics.//. Computer Science. 2018. Pp. 1-20.
35-47
CONFLICT OF INTEREST RESOLUTION REGULATORY DOCUMENTATION REQUIREMENTS ANALYSIS IN THE CONTEXT OF INFORMATION SECURITY / A. D. Alekseev, A. A. Vorobeva, I. I. Livshitz, I. V. Yurin // Cybersecurity issues. – 2021. – № 4(44). – С. 48-60. – DOI: 10.21681/2311-3456-2021-4-48-60.

Abstract
Research aim: analysis and assessment of the level of readiness of the requirements for the regulation of conflicts of interest contained in the current standards of the Russian Federation on information security and management systems, for compliance with national legislation, as well as their comparison with the requirements of ISO standards.Research method: a comprehensive analysis of regulating conflicts of interest problem was carried out the regulatory framework of the Russian Federation (273-FZ, Bank of Russia Ordinances No. 5511-U and standards for management systems and information security). The requirements contained in the national standards of the Russian Federation and international ISO standards are analyzed for their mutual correspondence. Results obtained: The research presents the comparison of the requirements of the federal law of the Russian Federation FZ-273 and standards for management systems and information security. Comparative table of requirements for resolving conflicts of interest is presented. The existing software of automated search and analysis of conflicts of interest are analyzed. It is proposed to use of modern automated tools for regulation of conflicts of interest in organizations.
Keywords: conflict of interest, federal law, information security, standard, GOST, ISO, corruption, Bank of Russia, software, conflict of interest analysis.
References
1. Leeholetov V.V., Pestunov M.A. Psevdoinnovatcii i konflikty` interesov v innovatcionnoi` sfere sovremennoi` Rossii kak ugroza natcional`noi` bezopasnosti // Upravlenie v sovremenny`kh sistemakh. 2020. N 4(28). S. 89–99. DOI: 10.24411/2311-1313-2020-10016.
2. Shumkin E.M. Upravlencheskaia deiatel`nost` aktora, kak potentcial konflikta interesov: konvergentny`i` podhod // Vestneyk permskogo universiteta. Filosofiia. Psihologiia. Sotciologiia. 2020. № 1. S. 152–161. DOI: 10.17072/2078-7898/2020-1-152-161.
3. Kapinus O.S. Pravovy`e problemy` preduprezhdeniia konflikta interesov v sisteme gosudarstvennogo upravleniia // Zhurnal zarubezhnogo zakonodatel`stva i sravnitel`nogo pravovedeniia. 2018. № 3. C. 15–19. DOI: 10.12737/art.2018.3.3.
4. Ohotskii` E.V. Poniatie «konflikt interesov» v administrativnom prave Rossii`skoi` Federatcii // Pravo i upravlenie. XXI Vek. 2019. № 4(53). T 19. C. 118–129. DOI: 10.24833/2073-8420-2019-4-53-118-129.
5. Poltavtceva M.A. Model` aktivnogo monitoringa kak osnova upravleniia bezopasnost`iu promy`shlenny`kh kiberfizicheskikh sistem // Voprosy` kiberbezopasnosti. 2021. № 2. C. 51–60. DOI: 10.21681/2311-3456-2021-2-51-60.
6. Kubarev A.V., Lapsar` A.P., Asiutikov A.A. Sintez modeli ob``ekta kriticheskoi` informatcionnoi` infrastruktury` dlia bezopasnogo funktcionirovaniia tekhnicheskoi` sistemy` v usloviiakh destruktivnogo informatcionnogo vozdei`stviia // Voprosy` kiberbezopasnosti. 2020. № 6. C. 48–56. DOI: 10.681/2311-3456-2020-06-48-56.
7. Anosov R.S., Anosov S.S., Shahalov I.Iu. Formalizovannaia risk-orientirovannaia model` sistemy` informatcionny`kh tekhnologii` // Voprosy` kiberbezopasnosti. 2020. № 5. C. 69–76. DOI: 10.21681/2311-3456-2020-05-69-76.
8. Golovkin B.N., Beletckii` A.V. Konflikt interesov kak faktor korruptcii // Norwegian Journal of development of the International Science. 2018. № 2. C. 68–71.
9. Deev I.A. Konflikt interesov: chitatel` reshit sam // Voprosy` sovremennoi` pediatrii. 2016. № 15(6). C. 547. DOI: 1010.15690/vsp.v15i6.1647.
10. Lutckaia N.V. Autsorsing i insorsing kak vzaimodopolniaiushchie instrumenty` menedzhmenta dlia formirovaniia optimal`noi` organizatcionnoi` struktury` predpriiatii` // Ctrategicheskoe planirovanie i razvitie predpriiatii`. 2016. № 2. C. 41–57.
11. Kartceva K.G., Katkova V.A., Tupikova V.A. Konflikt interesov na gosudarstvennoi` sluzhbe kak sotcial`ny`i` konflikt // Aktual`ny`e issledovaniia. 2019. № 3. C. 94–97.
12. Husham A., Manickam S., Alqattan Z. Threats Against Information Privacy and Security in Social Networks: A Review. // Advances in Cyber Security (Part of the CCIS). 2020. S. 358–372. DOI: 10.1007/978-981-15-2693-0_26.
13. Oloomi, Farideh & Masoumi, Razieh & Karimipour, K. & Hosseiny, Ali & Jafari, G. Competitive balance theory: Modeling conflict of interest in a heterogeneous network. Physical Review E. 2021. S. 103. DOI: 10.1103/PhysRevE.103.022307.
14. Baygildin, S. & Musina, L. & Khismatullina, Z. Conflict of interest: the authors declare no conflict of interest // Journal Biomed. 2021. S. 70–81. DOI: 10.33647/2074-5982-17-1-70-81.
15. Curi, F., Nikolopoulos, D. and Araújo, E. A Social Network Model for Integration of Refugees. // Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2019). 2019. S. 165–175. DOI: 10.5220/0007930601650175.
16. Mihai`lov V.I. Konflikt interesov: voprosy` e`tiki i sovershenstvovaniia zakonodatel`nogo oformleniia // Zhurnal zarubezhnogo zakonodatel`stva i sravnitel`nogo pravovedeniia. 2018. № 3. C. 26–31. DOI: 10.12737/ art.2018.3.5.
17. Paulov P.A., Utepkalieva K.KH. Mery` po bor`be s proiavleniem korruptcii skvoz` prizmu konflikta interesov // Iuridicheskaia nauka. 2020. № 5. C. 51–53.
18. Habrieva T.Ia. Konflikt interesov: priroda, preduprezhdenie, sotcial`noe regulirovanie // Zhurnal zarubezhnogo zakonodatel`stva i sravnitel`nogo pravovedeniia. 2018. № 3. C. 5–12. DOI: 10.12737/art.2018.3.1.
19. Chertov V.A., Sigarev S.I. Analiz organizatcionno-upravlencheskoi` struktury` trudovogo kollektiva v interesakh vy`iavleniia prichin vozniknoveniia vnutrifirmenny`kh konfliktov // Vestneyk rossii`skogo novogo universiteta. Seriia: slozhny`e sistemy`: modeli, analiz i upravlenie. 2020. № 2. C. 114–121. DOI: 10.25586/ R№U.V9187.20.02.P.114.
20. Niiazova I.M. Konflikty` interesov kak sostavliaiushchaia chast` konfliktogennosti v organizatcii // Human progress. 2020. № 1. C. 6. DOI: 10.34709/IM.161.6.
21. Krasil`nikova E.O. Riski v sisteme korporativnogo upravleniia // Biznes-obrazovanie v e`konomike znanii`. 2018. № 3. C. 66–70.
22. Triki, Salah & Ben-Abdallah , Hanene & Feki, J. & Harbi, Nouria. (2010). Modeling Conflict of Interest in the Design of Secure Data Warehouses. C. 445–448. URL: https://www.researchgate.net/publication/220802211_Modeling_Conflict_of_Interest_in_the_
Design_of_Secure_Data_Warehouses (data obrashcheniia: 10.03.2021).
23. Pat. 8225218 Soedinenny`e Shtaty` Ameriki, MPK G 06 F 3/00. Methods and systems for identifying, assessing and clearing conflicts of interest / Yuri Danilov; Serge Hug; Alp. zaiavitel` i patenta obladatel` The Frayman Group, Inc. № 43880079; zaiavl. 19.02.10; opubl. 17.07.12. URL: https://patents.google.com/patent/US8225218B2/ en?oq=8225218 (data obrashcheniia: 10.03.2021).
24. Pat. 2697963 Rossii`skaia Federatciia, MPK G 06 Q 50/18. Sposob ocenki sdelki clienta s kontragentom na predmet konflikta
interesov / Podlasov M.S.; zaiavitel` i patenta obladatel` AO “Laboratoriia Kasperskogo”. № 2018111483; zaiavl. 30.03.18; opubl. 21.08.19. URL: https://yandex.ru/patents/doc/RU2697963C1_20190821 (data obrashcheniia: 15.03.2021).
25. Herbert, S. Conflict analysis: Topic guide. Birmingham, UK: GSDRC, University of Birmingham. 2017. // Ofitcial`ny`i` sai`t GSDRC, University of Birmingham – URL: https://gsdrc.org/wp-content/uploads/2017/05/ConflictAnalysis.pdf (data obrashcheniia: 16.03.2021).
48-60
Dobrodeev, A. Yu. CYBERSECURITY IN RUSSIAN FEDERATION. A TRENDY TERM OR THE PRIORITY TECHNOLOGIC AREA OF ENHANCING NATIONAL AND INTERNATIONAL SECURITY OF THE XXI CENTURY / A. Yu. Dobrodeev // Cybersecurity issues. – 2021. – № 4(44). – С. 48-60. – DOI: 10.21681/2311-3456-2021-4-48-60.

Abstract
The purpose of the article: the study of the roleand and meaningof cybersecurity at the present stage of world development as the main factor for ensuring national and international security of the 21st century.Research method: synthesis and scientific forecasting, peer review, comparative analysis of the cybersphere within the system approach.Results: the state and ways of developing cybersecurity of leading foreign countries on the example of the United States, the state and ways of developing cybersecurity and cybersecurity technology in the Russian Federation are presented with justification for discussion proposals on the disclosure of the term and the concept of “cybersecurity.”
Keywords: cloud computing, internet stuff, virtualization, cyberspace, infosphere, information security, functional stability, information warfare, monitoring, computer attack, crypto-system, information protection system, paradigm, eSIM technology.
References
1. Atagimova E`.I., Makarenko G. I., Fedichev A.V. Informatcionnaia bezopasnost`. Terminologicheskii` slovar` v opredeleniiakh dei`stvuiushchego zakonodatel`stva. M., 2016, 448 s., ISBN 978-5-901167-28-1
2. Gattarov R.U. Kontceptciia strategii kiberbezopasnosti // Voprosy` kiberbezopasnosti. 2014. № 1 (29). S. 2-4.
3. Romashkina N.P. Global`ny`e voenno-politicheskie problemy` mezhdunarodnoi` informatcionnoi` bezopasnosti: tendentcii, ugrozy`, perspektivy` // Voprosy` kiberbezopasnosti. 2019. № 1 (29). S. 2-9. DOI:10.21681/2311-3456-201-01-2-9
4. Alekseev G., Smirnov I. Protivoborstvo v kiberprostranstve po vzgliadam voenno-politicheskogo rukovodstva vedushchikh zarubezhny`kh gosudarstv, Zarubezhnoe voennoe obozrenie, №6, 2017 g., S.8-14.
5. Smirnov I., Iakupov V. Protivoborstvo v kiberprostranstve: napravleniia razvitiia sil i sredstv. Zarubezhnoe voennoe obozrenie, №3, 2018 g., S.13-18.
6. Bashkirov N. Vzgliady` voennogo i politicheskogo rukovodstva SSHA na zashchitu infrastruktury` ot kiberugroz. Zarubezhnoe voennoe obozrenie, №12, 2018 g., S.13-17.
7. Parshin S. Vzgliady` nauchnogo komiteta MO SSHA na classifikatciiu ugroz v kiberprostranstve. Zarubezhnoe voennoe prostranstvo, №5, 2017 g., S.12-17.
8. Borodakii` Iu.V., Butusov I.V., Dobrodeev A.Iu. Kiberbezopasnost` kak osnovnoi` faktor natcional`noi` i mezhdunarodnoi` bezopasnosti XXI veka (chast` 1). Voprosy` kiberbezopasnosti, №1 (1), 2013 g., S.2-9.
9. Borodakii` Iu.V., Butusov I.V., Dobrodeev A.Iu. Kiberbezopasnost` kak osnovnoi` faktor natcional`noi` i mezhdunarodnoi` bezopasnosti XXI veka (chast` 2). Voprosy` kiberbezopasnosti, №1 (2), 2014 g., S.5-12.
10. Dobrodeev A.Iu., Emel`ianov G.V. O prioritetnom tekhnologicheskom napravlenii «Tekhnologii kiberbezopasnosti». Sbornik materialov IV Mezhvedomstvennoi` nauchno-prakticheskoi` konferentcii «Sistemy` mezhvedomstvennogo informatcionnogo vzaimodei`stviia pri reshenii zadach v oblasti oborony` Rossii`skoi` Federatcii», Natcional`ny`i` centr upravleniia oboronoi` Rossii`skoi` Federatcii, g. Moskva, 30 noiabria 2018 g., S.90-97.
11. Romashkina N.P., Stefanovich D.V. Strategicheskie riski i problemy` kiberbezopasnosti // Voprosy` kiberbezopasnosti. 2020. № 5(39). DOI:10.21681/2311–3456-2020-05-77-86
12. Zhuravel` V.P. Protivodei`stvie ugroze kiberterrorizma // Zarubezhnoe voennoe obozrenie. 2018. №5. s. 12-16
61-72
Lapshichyov, V. V. METHOD FOR DETECTING AND IDENTIFICATION OF TOR NETWORK DATA BY WIRESHARK ANALYSER / V. V. Lapshichyov, O. B. Makarevich // Cybersecurity issues. – 2021. – № 4(44). – С. 73-80. – DOI: 10.21681/2311-3456-2021-4-73-80.

Abstract
Purpose of the study: development of a method that allows detecting and identifying packets of the Tor network, including obfuscated packets on the local machine of the network user, by a Wireshark sniffer using the filter syntax based on the features of the Tor network packets characteristic of the TLS v1.2 and v1.3 encryption versions; studying the possibility of using the SSL Bump attack (decrypting https traffic on a virtual server using self-signed x.509 certificates) to overcome the obfuscation of Tor network packets.Method: software analysis of transmitted network packets, decomposition of the contents of data packets according to their size and belonging to encryption protocols, a comparative method in relation to different versions of the encryption protocol and resources, synthesis of filtering rules based on the syntax of the analyzer was used.Results: an applied method was developed that allows detecting and identifying packets of the Tor Network, including obfuscated packets on the local machine of the network user, by a Wireshark sniffer based on the filtering syntax based on the signs of encryption packets of the TLS v1.2 and v1.3 versions; data on the impossibility of using the SSL Bump attack to overcome the obfuscation of the Tor network was obtained.
Keywords: sniffer, TLS handshake, legal blocking of access, cybersecurity, deanonymization. 
References
1. Lapshichyov V.V. Makarevich O.B. Nabor priznakov ustanovleniya https-soedineniya TLS v1.3 programmny`m kompleksom «Tor» // Izvestiya YuFU. Texnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020, No 5, pp. 150-158. DOI: 10.18522/2311-3103-2020-5-150-158.
2. Pitpimon Choorod, George Weir. 2021. Tor Traffic Classification Based on Encrypted Payload Characteristics. In Proceedings of the 2021 National Computing Colleges Conference (NCCC), pp. 1-6. DOI: 10.1109/NCCC49330.2021.9428874.
3. Lalitha Chinmayee Hurali, Annapurna Patil. 2020. On the fly classification of traffic in Anonymous Communication Networks using a Machine Learning approach. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1-6, DOI: 10.1109/ANTS50601.2020.9342804.
4. Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society (WPES ‘13). Association for Computing Machinery, New York, NY, USA, 2013, pp. 201–212. DOI: 10.1145/2517840.2517851.
5. Martin Steinebach, Marcel Schäfer, Alexander Karakuz, Katharina Brandl, and York Yannikos. 2019. Detection and Analysis of Tor Onion Services. In Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES ‘19). Association for Computing Machinery, New York, NY, USA, art. 66, pp. 1–10. DOI: 10.1145/3339252.3341486.
6. Florian Platzer, Marcel Schäfer, and Martin Steinebach. 2020. Critical traffic analysis on the tor network. In Proceedings of the 15th International Conference on Availability, Reliability and Security (ARES ‘20). Association for Computing Machinery, New York, NY, USA, art. 77, pp.1–10. DOI: 10.1145/3407023.3409180.
7. Ding Jianwei, Chen Zhouguo. 2021. Watermark Based Tor Cross-Domain Tracking System for Tor Network Traceback. In: Wang D., Meng W., Han J. (eds) Security and Privacy in New Computing Environments. SPNCE 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer, Cham, vol 344, pp. 54-73. DOI: 10.1007/978-3-030-66922-5_4.
8. Bondarenko Y.A., Kizilov G.M. Problemy vyyavleniya i ispol’zovaniya sledov prestupleniy, ostavlyaemyh v seti «Darknet» // Gumanitarnye, sotsial’no-ekonomicheskie i obshchestvennye nauki [Humanitarian, socio-economic and social sciences], 2019, No 5, pp. 97-101. DOI: 10.23672/SAE.2019.5.31422.
9. Batoev V.B. Problemy protivodeystviya ekstremistskoy deyatel’nosti, osushchestvlyaemoy s ispol’zovaniem seti Internet // Vestnik VI MVD Rossii [Gerald of Voronezh Institute of Russian Ministry of Interior], 2016, No 2, pp. 37-43.
10. Volkova O.V., Vysotskiy V.L., Drozdova E.A. Aktual’nye voprosy protivodeystviya narkoprestupleniyam, sovershennym beskontaktnym sposobom // Probely v rossiyskom zakonodatel’stve [Gaps in Russian Legislation], 2018, No 6, pp. 176-178.
11. Usmanov R.A. Harakteristika prestupnoy deyatel’nosti, osushchestvlyaemoy v seti Internet posredstvom servisov-anonimayzerov // Yuridicheskaya nauka i pravoohranitel’naya praktika [Legal Science and Law Enforcement Practice], 2018, No 4 (46), pp. 135-141.
12. Avdoshin S.M., Lazarenko A.V. Metody deanonimizatsii pol’zovateley Tor // Informatsionnye tekhnologii [Information Technology], 2016, b. 22, No 5, pp. 362-372.
13. Avdoshin S.M., Lazarenko A.V. Deep web users deanonimization system // Trudy ISP RAN, [Proceedings of the Institute for System Programming of the Russian Academy of Sciences], 2016, vol. 28, No 3, pp. 21-34. DOI: 10.15514/ISPRAS-2016-28(3)-2.
14. Shcherbinina I.A., Kytmanov N.S., Aleksandrov R.V. Primenenie tekhnologii DNS-Rebinding dlya opredeleniya real’nogo IP-adresa anonimnyh veb-pol’zovateley // Voprosy kiberbezopasnosti [Cybersecurity Issues], 2016, No 1 (14), pp. 31-35.
15. Basynya E.A., Hitsenko V.E., Rudkovskiy A.A. Metod identifikatsii kiberprestupnikov, ispol’zuyushchih instrumenty setevogo analiza informatsionnyh sistem s primeneniem tekhnologiy anonimizatsii // Doklady Tomskogo gosudarstvennogo universiteta sistem
upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems and Radioelectronics], 2019, vol. 22, No 2, pp. 45-51. DOI: 10.21293/1818-0442-2019-22-2-45-51.
16. Lapshichyov V.V., Makarevich O.B. TLS Certificate As A Sign Of Establishing A Connection With The Network Tor. In proceedings of the 12th International Conference on Security of Information and Networks (Sochi, Russian Federation, September 12-15, 2019). SIN’19. ACM New York, NY, USA, 2019, pp. 92-97. DOI: 10.1145/3357613.3357628.
17. Lapshichyov V.V. Makarevich O.B. Metod obnaruzheniya i identifikatsii ispol’zovaniya programmnogo kompleksa «Tor» // Informatizatsiya i svyaz’ [Informatization and communication], 2020, No 3, pp. 17-20. DOI: 10.34219/2078-8320-2020-11-3-17-20.
18. Lapshichyov V.V. Makarevich O.B. Identifikaciya https-soedineniya seti «Tor» versii TLS v1.3 // Voprosy` kiberbezopasnosti [Issues of Cybersecurity], 2020, No 6, pp. 59-62. DOI: 10.21681/2311-3456-2020-06-57-62.
73-80
Karpov, S. S. ENSURING THE INTEGRITY OF DATA TRANSMITTED OVER THE COMMUNICATION CHANNELS OF VIRTUAL PRIVATE NETWORKS / S. S. Karpov, Ju. E. Ryabinin, O. A. Finko // Cybersecurity issues. – 2021. – № 4(44). – С. 81-97. – DOI: 10.21681/2311-3456-2021-4-81-97.

Abstract
A method of ensuring the integrity of data transmitted over communication channels of VPNs of large-scale information systems functioning in the conditions of the destructive influence of the attacker is considered. The proposed method allows to recover data packets subjected to erasure and imitation.The purpose of the research is to increase the stability of data transmission over VPN communication channels by implementing the procedure for recovering erased IP-packets and increasing the level of imitation security of the transmitted data.Research methods: aggregation of methods of cryptographic control of data integrity and methods of redundant coding of data, application of methods of the theory of Markov random processes to determine the probability of providing satisfactory support for applications in conditions of destructive influence of an attacker with various parameters.Research results: analysis of the object of research - VPN of large-scale information systems was carried out. It leads to the conclusion about the need to protect data transmitted through such communication channels for the implementation of national strategies for economic development. A mathematical model of the functioning of a data transmission system over a VPN communication channel under the conditions of a destructive influence of an attacker is presented. A method is proposed to ensure the integrity of transmitted data based on an original scheme for sharing known solutions, generating a synergistic effect. The method allows recovering dmin-1 erased data packets.The proposed solution makes it possible to increase the stability and speed of data transmission over the communication channels of the network in the conditions of the destructive influence of the attacker and the imitation of data by the attacker.
Keywords: information security and protection, VPN, cryptographic insertion, packet erasure, error-correcting
coding, VPN protection against cyber threats, multipath routing, multidimensional route.
References
1. Shvab K. Chetvertaya promyshlennaya revolyuciya. – M: Eksmo, 2021. – 208 s.
2. Gulin K.A. Trendy chetvertoj promyshlennoj revolyucii (recenziruetsya: Shvab K. Chetvertaya promyshlennaya revolyuciya: monografiya: per. s angl. – M.: Izd-vo «E», 2017) / K.A. Gulin, V.S. Uskov // Ekonomicheskie i social’nye peremeny: fakty, tendencii, prognoz. – 2017. – T. 10. – № 5. – S. 216-221.
3. Maslov V.I., Chetvertaya promyshlennaya revolyuciya: istoki i posledstviya / V.I. Maslov, I.V. Lukyanov // Vestn. mosk. un-ta., ser. 27. Globalistika i geopolitika, 2017. № 2. – S. 38–48.
4. Ivanov V.G. Model’ tekhnicheskoj osnovy sistemy upravleniya special’nogo naznacheniya v edinom informacionnom prostranstve na osnove konvergentnoj infrastruktury sistemy svyazi: monografiya. – SPb.: Politekh-press, 2018. – 214 s.
5. Vorobyov S.P., Davydov A.E., Efimov V.V., Kurnosov V.I. Infokommunikacionnye seti. Tom 1: Infokommunikacionnye seti: klassifikaciya, struktura, arhitektura, zhiznennyj cikl, tekhnologii: enciklopediya. – SPb.: Naukoemkie tekhnologii, 2019. – 739 s.
6. Makarenko S.I. Eksperimental’noe issledovanie reakcii seti svyazi i effektov peremarshrutizacii informacionnyh potokov v usloviyah dinamicheskogo izmeneniya signal’no-pomekhovoj obstanovki // Zhurnal radioelektroniki. – 2016. – № 4. – URL: http://jre.cplire.ru/jre/apr16/4/text.html (data obrashcheniya: 01.03.2021).
7. Makarenko S.I. Vremya skhodimosti protokolov marshrutizacii pri otkazah v seti // Sistemy upravleniya, svyazi i bezopasnosti. – 2015. – № 2. – S. 45-98.
8. Olifer V., Olifer N. Komp’yuternye seti. Principy, tekhnologii, protokoly: Yubilejnoe izdanie. – SPb.: Piter, 2020. – 1008 s.
9. Starodubczev U.I. Tekhnosfernaya vojna kak osnovnoj sposob razresheniya konfliktov v usloviyakh globalizaczii / U.I. Starodubczev, P.V. Zakalkin, S.A. Ivanov // Voennaya mysl`. – 2020. – № 10. – S. 16-21.
10. Makarenko S.I. Setecentricheskaya vojna – principy, tekhnologii, primery i perspektivy: monografiya / S.I. Makarenko, M.S. Ivanov. – SPb: Naukoyomkie tekhnologii, 2018. – 898 s.
11. Kawano R., Yasudo R., Matsutani H., Amano H. K-optimized path routing for high-throughput data center networks. // In Proceedings — 2018 6th International Symposium on Computing and Networking, CANDAR 2018 (Takayama, Japan, November 27-30, 2018). IEEE, 2018, pp. 99–105. DOI: 10.1109/CANDAR.2018.00020.
12. Lu Y., Chen G., Li B., Tan K., Xiong Y., Cheng P., Zhang J., Chen E., Moscibroda T. Multi-path transport for RDMA in datacenters. In Proceedings 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18) (Renton, WA, USA, April 9–11, 2018). pages 357–371, 2018.
13. Samoylenko D.V., Eremeev M.A., Finko O.A. A method of providing the integrity of information in the group of robotic engineering complexes based on crypt-code constructions // Automatic control and computer sciences. 2017. vol. 51. № 8. pp. 965-971. doi: 10.3103/S0146411617080181.
14. Samoylenko D.V., Finko O.A., Eremeev M.A. Raspredelyonnaya obrabotka i zashchita informacii v gruppirovke kompleksov s bespilotnymi letatel’nymi apparatami // Teoriya i tekhnika radiosvyazi. – 2017. – № 4. – S. 93-100.
15. Samoylenko D.V., Finko O.A. Pomekhoustojchivaya peredacha dannyh v radiokanalah robototekhnicheskih kompleksov na osnove polinomial’nyh klassov vychetov // Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli. – 2016. – T.8. – № 3. – S. 49-55.
16. Moon T. Error Correction Coding: Mathematical Methods and Algorithms: Second Edition. – Hoboken, New Jersey, USA: Wiley, 2020. — 992 p. 
81-97

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.