
Content of the 1 issue of magazine «Voprosy kiberbezopasnosti» at 2020:
Title | Pages |
INFORMATION SECURITY OF INFORMATION SYSTEMS WITH ELEMENTS OF CENTRALIZATION AND DECENTRALIZATION / S. V. Kruglikov, V. А. Dmitriev, A. B. Stepanian, E. P. Maksimovich // Cybersecurity issues. – 2020. – № 1(35). – С. 2-7. – DOI: 10.21681/2311-3456-2020-01-2-7.
AbstractThe article is dedicated to the issues of protecting the resources of complex, territorially distributed information systems that incorporate the elements of centralization and decentralization. To protect the resources of distributed centralized and decentralized information systems, methods based on trust relationships, consensus, cryptographic security are widely used. Special attention is given to the mechanisms of logical distinction of subjects’ access to remote objects belonging to other components (segments) of distributed information security. Protection means used to implement the mechanism of managing the access to the resources of the distributed information systems are provided as well as the principles of user authentication. The specifics of the security problems arising in this case and the main approaches to their solutions are discussed taking into consideration a set of local segments (components) that differ by access subjects and objects, criticality of the data processed and access management models. Keywords: access management, event analysis, cryptographic protection, information integrity, information resource segmentation, distributed information systems, entities and access facilities. References1. Haidamakin N.A. Teoreticheskie osnovy komp'juternoy bezopasnosti – Ekaterinburg: Ural’skij gosudarstvennjij universitet imeni Gor’kogo A.M. 2008. 212 s. 2. Itkes A.A. Upravlenie dostupom k resursam raspredelennyh informatsionnyh sistem na osnove otnoshenija doverija: dissertatsiya ... kandidata phiziko-matematicheskih nauk: 05.13.19 / Itkes A.A.; [Mesto zashchity: Mosk. gos. un-t im. M.V.Lomonosova]. M., 2010. 151 s. 3. Itkes A.A. Ob»edinenie modelej logicheskogo razgranichenija dostupa dlja slozhnoorganizovannyh raspredelennyh informatsyonnyh sistem // Problemy informatiki. 2010. № 1. S. 85-95. 4. Itkes A.A. Reljatsyonnaja model’ logicheskogo razgranichenija dostupa // Intellektual’nye sistemy. Teorija I prilozhenija. 2016. Т. 20. № 4. S. 49-54. 5. Vasenin V.A., Itkes A.A., Shapchenko K.A., Buhonov V.Ju. Reljatsyonnaja model’ logicheskogo razgranichenija dostupa na osnove tsepochek otnoshenij // Programmnaja inzhenerija. 2015. № 9. S. 30-31. 6. Hubanov D.A. Obzor onlaynovyh sistem reputatsii/doverija // [Electronic resource]. – URL: http://www.mtas.ru/search/search_results_ubs_new.php?publication_id=18622&IBLOCK_ID=10. 7. Golovan S.V. Effekt zabyvanija v teorii kollektivnoj reputatsii. 1999. М.: Rossijskaja ekonomicheskaja shkola. 38 s. 8. Ermakov N.S., Ivashchenko A.A., Novikov D.A. Modeli reputatsii i norm dejatel’nosti. 2005. М.: IPU RAN. 67 s. 9. Novikov D.A., Chkhartishvili A.G. Prikladnye modeli informatsionnogo upravlenija. 2004. М.: IPU RAN. 130 s. 10. Gerasimov I.Yu., Chizhov I.V. Algoritm konsensusa platformy Tendermint i mehanizm Proof Of Lock Change // International Journal of Open Information Technologies. 2019. Т. 7. № 6. S. 24-29. 11. Ivanova G.S. Analiz algoritmov konsensusa v blokchejn-sistemah // Tehnologija inzhenernyh in informatsionnyh sistem. 2019. № 1. S. 35-44. 12. Muzychenko V.A. Organizatsyja indeksa raspredelennoj poiskovoj sistemy, rabotayushchej po algoritmu konsensusa BFT // Modelirovanie, optimizatsija i informatsionnye tehnologii. 2019. Т. 7. № 3 (26). / [Electronic resource]. URL: https://moit.vivt.ru/?page_id=9992&lang=ru. 13. Can we afford integrity by proof-of-work? Scenarios inspired by the bitcoin currency / J. Becker [et al.] // The economics of information security and privacy. Berlin, Heidelberg: Springer, 2013. P. 135-156. 14. Lamport L., Shostak R., Pease M. The Byzantine generals problem // ACM Transactions on Programming Languages and Systems (TOPLAS). 1982. Vol. 4. No. 3. P. 382–401. 15. Novikov S.P., Miheenko O.V., Kulagina N.A., Kazakov O.D., Tsifrovizatsija ucheta professional’nyh kompetentsij grazhdan na osnove tehnologiy raspredelennyh reestrov i smart-kontractov // Biznes-informatika. 2018. № 4 (46). S. 43-53. |
2-7 |
Kubarev, A. V. INCREASE THE SECURITY OF IMPORTANT CRITICAL INFRASTRUCTURE USING PARAMETRIC MODELS OF EVOLUTION / A. V. Kubarev, A. P. Lapsar, Ya. V. Fedorova // Cybersecurity issues. – 2020. – № 1(35). – С. 8-17. – DOI: 10.21681/2311-3456-2020-01-8-17.
AbstractThe purpose of the article is to develop a method to improve the security of important objects of critical information infrastructure in the conditions of non-standard mode of their operation caused by destructive information impact. Methods: analysis of available methods and mathematical models for assessing the state of complex technical systems and the choice of optimal; synthesis of diffusion Markov model of the object under study in parametric form. The result: the basis of the well-known apparatus of diffusion Markov processes, the paper proposes an original method of rapid assessment of the state of important objects of critical information infrastructure in the process of their functioning to improve the safety of their operation. Increasing the efficiency of evaluation is achieved by dividing the evaluation process into two periods, with the most time-consuming and time-consuming process of obtaining basic solutions of evolutionary equations modeling the behavior of the object under study, carried out in advance. Calculation of stochastic characteristics of the object of critical information infrastructure, characterizing its technical condition, is carried out directly upon detection of destructive impact on the basis of previously obtained basic solutions. The resulting assessment of the technical condition allows you to plan measures to improve the safety of the object. The paper considers the process of synthesis of evolutionary equations describing the behavior of the object of study in parameterized form, obtaining their basic solutions, as well as the algorithm for the implementation of the proposed method. The results of the study can be used in the development of technical specifications (private technical specifications) for the modernization of security systems of critical information infrastructure. Keywords: complex technical object, destructive influence, non-standard operation mode, safety, Markov models, evolutionary equations, basic solutions, condition assessment, score state, speed of assessment. References1. Zegzhda D.P., Vasil`ev Yu.S., Poltavceva M.A., Kefeli I.F., Borovkov A.I. Kiberbezopasnost` progressivny`x proizvodstvenny`x texnologij v e`poxu cifrovoj transformacii // Voprosy` kiberbezopasnosti. 2018. №2. S. 2-15. DOI:10.21681/2311-3456-2018-2-2-15 2. Gos`kova D.A., Massel` A.G. Texnologiya analiza kiberugroz i ocenka riskov kiberbezopasnosti kriticheskoj infrastruktury` // Voprosy` kiberbezopasnosti. 2019. №2. S. 42-49. DOI:10.21681/2311-3456-2019-2-42-49 3. Kolosok I.N., Gurina L.A., Povy`shenie kiberbezopasnosti intellektual`ny`x e`nergeticheskix sistem metodami ocenivaniya sostoyaniya // Voprosy` kiberbezopasnosti. 2018. №3. S. 63-69. DOI:10.21681/2311-3456-2018-3-63-69 4. Vasil`eva V.I., Kirillova A.D., Kuxarev S.N. Kiberbezopasnost` avtomatizirovanny`x sistem upravleniya promy`shlenny`x ob``ektov (sovremennoe sostoyanie, tendencii) // Vestnik UrFO. Bezopasnost` v informacionnoj sfere. 2018. № 4. S. 66-74. 5. Severcev N.A. Sistemny`j analiz i modelirovanie bezopasnosti. M.: Vy`sshaya shkola, 2018. 462 s. 6. Pugachev V.S., Sinicyn I.N. Teoriya stoxasticheskix sistem. M.: Logos, 2000. 1000 s. 7. Viktorova V. S., Stepanyancz. A.S. Modeli i metody` rascheta nadezhnosti texnicheskix sistem. M.: Lenand, 2014. 256 c. 8. Ostrejkovskij V.A. Teoriya nadezhnosti. M.: Vy`sshaya shkola, 2004. 462 s. 9. Danilyuk S.G., Murashko A.A. Primenenie veroyatnostno-lingvisticheskogo podxoda pri reshenii zadach ocenivaniya uyazvimosti sistem obespecheniya bezopasnosti e`kspluatacii vazhny`x texnicheskix ob``ektov // Izvestiya Instituta inzhenernoj fiziki, 2016 № 2. S. 5-10. 10. Gurina L.A., Zerkal`cev V.I., Kolosok I.N., Korkina I.S., Mokry`j I.V. Ocenivanie sostoyaniya e`lektroe`nergeticheskoj sistemy`: algoritmy` i primery` linearizovanny`x zadach. Irkutsk: ISE`M SO RAN, 2016. 37 s. 11. Lifshicz I.I., Fatkieva R.R. Model` integrirovannoj sistemy` menedzhmenta dlya obespecheniya bezopasnosti slozhny`x ob``ektov // Voprosy` kiberbezopasnosti. 2018. №1. S. 64-71. DOI:10.21681/2311-3456-2018-1-64-71 12. Chislo DDoS – atak v 2018 godu snizilos`, no oni stali slozhnee [E`lektronny`j resurs] https://www.itweek.ru/security/news-company/detail. php?ID=205254 (data obrashheniya k resursu: 14.03.2019 g.). 13. Bratchenko A.I., Butusov I.V., Kobelyan A.M., Romanov A.A. Primenenie metoda nechetkix mnozhestv k ocenke riskov narusheniya kriticheski vazhny`x svojstv zashhishhaemy`x resursov avtomatizirovanny`x sistem upravleniya // Voprosy` kiberbezopasnosti. 2019. №1. S. 18-24. DOI:10.21681/2311-3456-2019-1-18-24 14. Andryuxin E.V. , Ridli M.K., Pravikov D.I., Prognozirovanie sboev i otkazov v raspredelenny`x sistemax upravleniya na osnove modelej prognozirovaniya vremenny`x ryadov // Voprosy` kiberbezopasnosti. 2019. №3. S. 24-32. DOI:10.21681/2311-3456-2019-3-24-32 15. Pyatkova N.I., Beresneva N.M. Modelirovanie kriticheskix infrastruktur e`nergetiki s uchetom trebovanij e`nergeticheskoj bezopasnosti. // Informacionny`e i matematicheskie texnologii v nauke i upravlenii. 2017. № 3. S 54-65. 16. Tixonov V.I., Mironov M.A. Markovskie processy`. M.: Sovetskoe radio, 1977. 488s. 17. Kochnev S.V., Lapsar` A.P. Sintez izmeritel`no-upravlyayushhix sistem dlya potencial`no opasny`x slozhny`x texnicheskix ob``ektov na baze parametrizovanny`x markovskix modelej // Problemy` bezopasnosti i chrezvy`chajny`x situacij. 2014. №5. S. 77-85. 18. Kantorovich L.V., Akilov G.P. Funkcional`ny`j analiz. M.: SPb: BHV, 2017. 816 s. 19. Tanana V.P. Metody` resheniya operatorny`x uravnenij. M.: Nauka, 2015. 160 s. 20. Baxvalov N.S., Zhidkov N.P., Kobel`kov G.M. Chislenny`e metody`. M.: Binom, 2011. 640 s. 21. Samarskij A.A., Gulin A.V. Chislenny`e metody` matematicheskoj fiziki. M.: Al`yans, 2016. 432 s. 22. Grishko A.K., Ly`senko A.V., Moiseev S.A. Prognozirovanie i optimizaciya upravleniya processov proektirovaniya slozhny`x sistem v masshtabax real`nogo vremeni // Nadezhnost` i kachestvo slozhny`x sistem. 2018. №1. S. 40-45. 23. Kudinov Yu.I, Kelina A.Yu, Kudinov I.Yu., Pashhenko A.F. Nechetkie modeli i sistemy` upravleniya. M.: Lenard, 2017. 237 s. |
8-17 |
USE OF ADAPTIVE TOUCH INTERFACE IN INFORMATION SECURITY APPLICATIONS / K. N. Zhernova, M. V. Kolomeec, I. V. Kotenko, A. A. Chechulin // Cybersecurity issues. – 2020. – № 1(35). – С. 18-28. – DOI: 10.21681/2311-3456-2020-01-18-28.
AbstractThe purpose of the article: development of an approach to creating adaptive interfaces based on touch screens in information security applications.Research method: analysis of modern “best practices” for creating gestural and graphical interfaces, development of our own approach and its experimental verification. The result obtained: an approach to the formation of adaptive touch interfaces for visual analysis of IoT security is proposed. Algorithms for adapting interfaces for specific tasks of information security and models of user interaction with the interface at the business level and implementation level are proposed. The results of experiments on the perception of gestures by users on the examples of visual analytics of the state of a hierarchical centralized network of embedded devices and a decentralized sensor network are presented.The area of use of the proposed approach is the creation of adaptive touch interfaces that can be used to increase the efficiency of operator interaction with information security applications. Keywords: user interface, graphical user interface, touch interface, adaptive interfaces, predictive interfaces, information security, touch screens. References1. Kotenko I., Levshun D., Chechulin A., Ushakov I., Krasov A. An Integrated Approach to Provide Security of Cyber-Physical Systems Based on Microcontrollers // Cybersecurity issues. 2018. No. 3 (27). P. 29-38. DOI: 10.21681/2311-3456-2018-3-29-38 2. Best D., Bohn S., Love D., Wynne A., Pike W. Real-time visualization of network behaviors for situational awareness // Proceedings of the seventh international symposium on visualization for cyber security. ACM, 2010. P. 79-90. 3. Choi H., Lee H., Kim H. Fast detection and visualization of network attacks on parallel coordinates // Сomputers & security. 2009. Vol. 28. No. 5. P. 276-288. 4. Kotenko I, Stepashkin M., Doynikova E. Security Analysis of Computer-aided Systems taking into account Social Engineering Attacks. Problems of information security. Computer systems. 2011, № 3. P. 40-57. 5. Doynikova E., Kotenko D., Kotenko I. Analysis of the intrusions using attack and service dependency graphs. 21th All-Russian Conference “Methods and technical tools of information security” (MTTIS 2012). Proceedings. St.Petersburg, Russia. June 24-29, 2012. P.45-47. 6. Ingols K., Lippmann R., Piwowarski K. Practical attack graph generation for network defense // 2006 22nd Annual Computer Security Applications Conference (ACSAC’06). IEEE, 2006. P.121-130. 7. Kolomeec M., Chechulin A., Kotenko I. V. Methodological Primitives for Phased Construction of Data Visualization Models // J. Internet Serv. Inf. Secur. 2015. Vol. 5. No. 4. P. 60-84. 8. Heitzmann A., Palazzi B., Papamanthou C., Tamassia R. Effective visualization of file system access-control // International Workshop on Visualization for Computer Security. Springer, Berlin, Heidelberg, 2008. P. 18-25. 9. Bishop M. Conspiracy and information flow in the take-grant protection model // Journal of Computer Security. 1996. Vol. 4. No. 4. P. 331-359. 10. Kim D., Ray I., France R., Li N. Modeling role-based access control using parameterized UML models // International Conference on Fundamental Approaches to Software Engineering. Springer, Berlin, Heidelberg, 2004. P. 180-193. 11. Kolomeets M., Chechulin A., Kotenko I., Saenko I. Access Control Visualization Using Triangular Matrices // 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2019. С. 348-355. 12. Kolomeets M., Chechulin A., Kotenko I., Strecker M. Voronoi Maps for Planar Sensor Networks Visualization // International Symposium on Mobile Internet Security. Springer, Singapore, 2017. P. 96-109. 13. Roberts J. C. Guest editor’s introduction: special issue on coordinated and multiple views in exploratory visualization // Information Visualization. 2003. Vol. 2. No. 4. P. 199-200. 14. Kolomeec M, Chechulin A., Doynikova E., Kotenko I. Technique of Security Metrics Visualization // Journal of Instrument Engineering. 2018. Vol. 61 No. 10. P.873-880. 15. Sarkar M., Brown M. H. Graphical fisheye views // Communications of the ACM. 1994. Vol. 37. No. 12. P. 73-83. 16. Kolenda N. Psychology & Business [online]: A List of UX/UI Best Practices for Websites / URL: https://www.nickkolenda.com/userexperience/# (Access date 05.06.2019) 17. Ananto B. S., Sari R. F., Harwahyu R. Color transformation for color blind compensation on augmented reality system // 2011 International Conference on User Science and Engineering (i-USEr). IEEE, 2011. P. 129-134. 18. Hutchins E. L., Hollan J. D., Norman D. A. Direct manipulation interfaces // Human-computer interaction. 1985. Vol. 1. No. 4. P. 311-338. 19. Apple [online]: Use Multi-Touch gestures on your Mac – Apple Support / URL: https://support.apple.com/en-us/HT204895 (Access date 05.06.2019). 20. Apple Developer [online]: UI Design Do’s and Don’ts – Apple Developer / URL: https://developer.apple.com/design/tips/ (Access date 02.06.2019). 21. Apple Developer [online]: Gestures – User Interaction – iOS – Human Interface Guidelines – Apple Developer / URL: https://developer.apple.com/design/human-interface-guidelines/ios/user-interaction/gestures/ (Access date 05.06.2019). 22. World Usability Congress [online]: Touch Screen Usability Best Practices When Designing Automation User Interfaces (UI) – World Usability Congress / URL: https://worldusabilitycongress.com/touch-screen-usability-best-practices-when-designing-automation-userinterfaces-ui/ (Access date 05.06.2019). 23. Desnitsky V., Levshun D., Chechulin A., Kotenko I. Design Technique for Secure Embedded Devices: Application for Creation of Integrated Cyber-Physical Security System // JoWUA. 2016. Vol. 7. No. 2. P. 60-80. 24. N. Miloslavskaya, A. Tolstoy, A. Birjukov Information visualization in information security management for enterprise’s information infrastructure // Scientific visualization. 2014. V. 6. No. 2. P. 74-91. 25. Boronin P., Kucheryavy A. Internet of things as a new concept for the development of communication networks // Information Technologies and Telecommunications. 2014. No. 3 P. 7. |
18-28 |
Markin, D. O. PROTECTION SYSTEM OF TERMINAL PROGRAMS AGAINST ANALYSIS BASED ON CODE VIRTUALIZATION / D. O. Markin, S. M. Makeev // Cybersecurity issues. – 2020. – № 1(35). – С. 29-41. – DOI: 10.21681/2311-3456-2020-01-29-41.
AbstractThe paper proposes a protection system of active data in a distributed computing system. The analysis of existing technical solutions is carried out, the scientific problem consisting in necessity of effective protection of terminal programs against the analysis and restoration of algorithms of functioning is allocated. The object of protection in the presented work are terminal programs or active data functioning in nodes of the distributed computing system. The aim of the work is to increase the security of terminal programs against the analysis and restoration of the algorithm of their functioning. The proposed solution is based on the application of virtual machine technology with a secret architecture. The architecture of the virtual machine in this paper refers to the used alphabet of byte-code and functional objects used in protected terminal programs. The models of threats and software security violator are developed and described. The requirements are formed on the basis of the analysis of the operating conditions, as well as models of threats and security violator. A mathematical model of the active data protection system against analysis based on code virtualization and its software implementation in the form of applications in C/C++ and Java is proposed. The efficiency of the system was experimentally tested according to particular indicators of quality (efficiency) of the proposed system, confirming its effectiveness. The proposed solution makes it possible to effectively complicate the analysis and restoration of algorithms for the functioning of terminal programs in a distributed computer system. Keywords: information security system, active data, obfuscation methods, virtual machine, byte‑code. References1. Petrov A.A. Metodi zashhity programmnogo koda // Informatika i bezopasnost’ sovremennogo obshchestva. 2019. Vol. 1. No 1. P. 24–28. 2. Petrov A.S., Petrov A.A. Tehnologija zashhity programmnogo koda posredstvom primenenija virtual’noi mashini // Vestnik VNU. 2009. № 9 (103), No 1. pp. 117–122. 3. Aranov V.Y. Metod i sredstva zashhity ispolnjaemogo programmnogo koda ot dinamicheskogo i staticheskogo analiza: avtoref. dis. … kand. tehn. nauk : 05.13.19 Sankt-Peterburg, 2014. 18 p. 4. Rechistov G.S., Yulyugin Е.A. Simulation of instruction set extension for transactional memory of modern central processors // Prikladnaya informatika. 2014. No 5 (53). P. 16–24. 5. Kazarin O.V., Shubinskii I.B. Nadegnost’ i bezopasnost’ programmnogo obespechenija / Moscow: Izdatel’stvo Yurait. 2018. 342 p. 6. Varnavskii N.P., Zaharov V.A., Kuzyurin N.N., Shokurov A.V. Sovremennoe sostojanie issledovanii v oblasti obfuskacii programm : opredelenie stoikosti obfuskacii // Trudi ISP RAN. Vol. 26. No 3. 2014. pp. 167–198. DOI: 10.15514/ISPRAS-2014-26(3)-9. 7. Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen, Zheng Wang Enhanced virtual-machine-based code obfuscation security through dynamic bytecode scheduling // Computers & Security. 2018. No 74. P. 202–220. DOI: 10.1016/j.cose.2018.01.008. 8. Barak B., GoldreichO., Impagliazzo R., Rudich S., Sahai A., Vadhan S., Ke Yang On the (im)possibility of obfuscating programs // Advances in Cryptology – CRYPTO’01, Lecture Notes in Computer Science, Vol. 2139, 2001, pp. 1–18. DOI: 10.1145/2160158.2160159. 9. Kuleshov S.V., Cvetkov O.V. Aktivnye dannye v cifrovyh programmno-opredeljaemyh sistemah // Informacionno-izmeritel’nie i upravljayushhie sistemy. 2014. Vol. 12. № 6. pp. 12–19. 10. Aleksandrov V.V., Kuleshov S.V., Cvetkov O.V., Zaiceva A.A. Koncepcija postroenija infotelekommunikacii (prototip SDR) // Trudi SPIIRAN. 2008. No 6. pp. 51–57. DOI: 10.15622/sp.6.5. 11. Markin D.O., Galkin A.S., Arhipov P.A. Organizatsija anonimnogo dostupa s pomosch’ju veb-proksi // Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. 2016. No 8, № 5. pp. 44–49. 12. Markin D.O., Galkin A.S., Arhipov P.A. Issledovanie ustojchivosti anonimnoj seti na osnove tehnologij veb-proksi // Voprosy kiberbezopasnosti. 2016. No 2 (15). pp. 21–28. DOI: 10.21681/2311-3456-2016-2-21-28. 13. Markin D.O, Pavlov D.I., Zvjagintsev S.A. Analiz metodov i sredstv issledovanija programmnogo obespechenija // Aktual’nye napravlenija razvitija sistem ohrany, spetsial’noj svjazi i informatsii dlja nuzhd organov gosudarstvennoj vlasti Rossijskoj Federatsii: XI Vserossijskaja mezhvedomstvennaja nauchnaja konferentsija: materialy i doklady (Orjol, 5–6 feb. 2019) Vol. 10 / pod obsch. red. P. L. Malysheva. Orjol: Akademija FSO Rossii, 2019. 200 p. pp. 34–37. 14. Markin D.O. Makeev S.M., Viharev A.N. Kompleks algoritmov zaschischennyh tumannyh vychislenij na osnove tehnologii aktivnyh dannyh // Izvestija Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2019. No 3. pp. 263–269. 15. Markin D.O., Makeev S.M., Lenchuk V.D., Ohrimenko A.A., Shapkin R.V. Avtomatizirovannaja sistema upravlenija soderzhaniem udalennyh informatsionnyh resursov № 2016617298 ; declared 29.06.2016. 16. Markin D.O., Trohachjov M.A., Zemtsov A.E., Jurkin A.A. Programmnyj agent obespechenija raspredelennyh vychislenij na osnove tehnologii aktivnyh dannyh dlja uzla vychislitel’noj seti na baze mobil’nyh ustrojstv pod upravleniem operatsionnoj sistemy Android № 2018660343 ; declared 22.08.2018 g. 17. Markin D.O., Trohachev M.A. Razrabotka agenta tumannyh vychislenij dlja mobil’nyh ustrojstv pod upravleniem operatsionnoj sistemy Android // Informatsionnaja bezopasnost’ i zaschita personal’nyh dannyh: Problemy i puti ih reshenija: materialy XI Mezhregional’noj nauchno-prakticheskoj konferentsii / pod red. O.M. Golembiovskoj, M.Ju.Rytova. Brjansk: BGTU, 2019. pp. 136–141. 18. Markin D.O., Zemtsov A.E. Algoritm reshenija zadachi faktorizatsii sredstvami tumannyh vychislenij // Informatsionnaja bezopasnost’ i zaschita personal’nyh dannyh. Problemy i puti ih reshenija : materialy XI Mezhregional’noj nauchno-prakticheskoj konferentsii / pod red. O. M. Golembiovskoj, M. Ju. Rytova. Brjansk : BGTU, 2019. p. 126–129. 19. Petrov A.S., Petrov A.A. Tehnologija zaschity programmnogo koda posredstvom primenenija virtual’noj mashiny // Vestnik VNU. 2009. No 9 (103), Vol. 1. pp. 117–122. 20. Sahai A., Waters B. How to Use Indistinguishability Obfuscation: Deniable Encryption, and More // CRYPTO ePrint, 2013. DOI: 10.1145/2591796.2591825. 21. Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, 1883. 22. Interpretatory bajt-kodov svoimi rukami / Blog kompanii Badoo. URL: https://habr.com/company/badoo/blog/425325/. Accessed: 17.09.2019. |
29-41 |
Livshitz, I. I. PRACTICE OF CYBER-RISKS MANAGEMENT IN OIL AND GAS PROJECTS OF HOLDING COMPANIES / I. I. Livshitz // Cybersecurity issues. – 2020. – № 1(35). – С. 42-51. – DOI: 10.21681/2311-3456-2020-01-42-51.
AbstractA significant part of the projects for the development of cyber risk management systems in oil and gas projects, either does not lead to the expected results, or in fact requires more resources than planned. One of the reasons for this situation seems to be the lack of reliable and practically tested risk management tools at the disposal of senior management and the project team, especially in the early stages of the life cycle. The presented publication will consider an example of a significant duration of the project for which the development of a risk management system was carried out. Purpose. Analysis of existing approaches to cyber risk management and development of recommendations for information security in oil and gas projects of holding companies.Research methods. Methods of system analysis and methods of theoretical and comparative analysis are used. The risks arising at various stages of preparation of oil and gas projects are investigated. Results. A system of identifying sources, identification and analysis of cyber risks that can affect the implementation of oil and gas projects for holding companies has been developed. The stages of the life cycle are considered and the need to ensure information security with the involvement of consulting companies is noted. It is recommended to pay attention to the degree of maturity of the consulting companies involved. Information security is proposed to be implemented at different levels: in assessing the competencies of specialists used it, culture analysis and preparation of reporting documents. The results of the study were applied in the implementation of oil and gas projects. Keywords: Project, oil and gas project, risks, cyber risks, management system, integrated management system, information security, audit. References1. Teilans A.A., Romanovs A.V., Merkuryev Yu.A., Dorogovs P.P., Kleins A.Ya., Potryasaev S.A. / Assessment of Cyber Physical System Risks with Domain Specific Modelling and Simulation. SPIIRAS Proceedings. 2018. Issue 4(59). 115 -139 / DOI 10.15622/sp.59.5 2. Biro M., Mashkoor A., Sametinger J., Seker R. Software Safety and Security Risk Mitigation in Cyber-physical Systems // IEEE Software. 2018. vol. 35. no. 1. pp. 24–29. DOI: 10.1109/MS.2017.4541050 3. Hu F. Cyber-Physical Systems: Integrated Computing and Engineering Design // New York: CRC Press. 2018. 398 p.. ISBN 9781466577008 4. Eling M. What do we know about cyber risk and cyber risk insurance? // The Journal of Risk Finance. 2017. Іss. 5. Р. 474–491. DOI: 10.1108/JRF-09-2016-0122 5. Subhayu Bandyopadhyay, The Economic Impact of Terrorism on Developing Countries. January 29, 2018 6. Subhayu Bandyopadhyay, Javed Younas. Trade and Terror: The Impact of Terrorism on Developing Countries. December 11, 2017 7. Bandyopadhyay, Subhayu; Sandler, Todd; and Younas, Javed. Foreign Direct Investment, Aid, and Terrorism. Oxford Economic Papers, January 2014, Vol. 66, No. 1, pp. 25-50. 8. James Andrew Lewis. The Economic Impact of Cybercrime — No Slowing Down. CSIS. February 21, 2018 9. Max Metzger. FBI says Ransomware soon becoming a billion dollar business. SC Media UK, January 10, 2017. 10. Arctic Potential: Realizing the Promise of U.S. Arctic Oil and Gas Resources. National Petroleum Council 2015. 11. World Energy Outlook 2017. OECD/IEA, September 14, 2017 12. World Energy Outlook 2018. The gold standard of energy analysis. OECD/IEA, 2018. 13. Livshits I. Podhodi k primeneniy modeli integrirovannoy sistemy memegzhmenta dly provedeniy auditov slozhnyh promishlennyh objectov – aeroportovyh kompleksov // Trydi SPIIRAN. 2014. 6. 72–94 pp. 14. Livshitz I. Metodika vypolneniy kompleksnyh auditov promishlennyh objectov dly obespechenia effectivnigo vnegrenia system energomenegzhmenta // Energobezopasnost’ I Energosberezhenie. 2015. 3. 10-15 pp. 15. Zabaikin Y., Zaernyk V., Soversnenstvovanie mechanism usto’chivogo rezvitiya promyshlennogo predpriyatia. M.: Nauchnie technolii. 2017. 263 p.. ISBN 978-5-4443-0116-6 16. Poletikin A. Formalizovannyi’ metod ocenki I upravleniya riskami dly obespechenia kiberbezopasnosti bol’shih system upravlenia/ Materialy VIII Mezdunarodno’ konferencii “Upravlenie razvitiem krupnomashtabnih sistem” MLSD’2015, Moskva. M. IPU RAN. 2015. 1. 123-129 pp.. MLSD’2015 17. Zairnyk V., Snitko N. Ocenka technogennyh riskov v gornodobivayshei otrasly // Izvestia vysshih uchebnich zavedeni’. Geologia I razvedka. 2016. 5. 73-78 pp. 18. Revenkov P., Bergugin A. Kiberbezopasnost’ v usloviyah internet veshe’ I elektonnogo bankinga // Nacional’nie interesy: prioritety I bezopasnost’. 2016. 11 (344). 158-169 pp.. ISSN 2311-875X 19. Pluchevskay E., Ovinnikova K. Aktual’nost’ processnogo podhoda pri upravlenii proektami v neftegazovoi otrasli // Ekonomika I predprinimatel’stvo. 2014. 12-2 (53). 681-686 pp.. ISSN: 1999-2300 20. Ryabov A. Proekti rukovodstva po bezopasnosti na opasnih proizvodstvennih ob’ektah neftegazovogo kompleksa // Bezopasnost’ truda v promishlennosti. 2014. 12. 68-70 pp. 21. Mastepanov A. Neftegazovye proekty na arkticheskom shel’fe v usloviyah vysokih I nizkih cen na energoresursy // Nauchni’ zhurnal rossi’skogo gazovogo obshestva. ISSN: 2412-6497. 2016. 4. 11-18 pp.. ISSN: 2412-6497 22. Ermolina L., Il’ina L. Osobennosti upravleniya proektami akseleracii razvitiy biznesa neftegazovih predpriyati’ // Izvestiy Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. 2016. 16 (195). 80-84 pp. |
42-51 |
Baev, A. V. THE SOFTWARE COMPLEX ACCESS CONTROL USB DEVICES TO AUTOMATED WORKSTATIONS / A. V. Baev, O. U. Gacenko, A. V. Samonov // Cybersecurity issues. – 2020. – № 1(35). – С. 52-61. – DOI: 10.21681/2311-3456-2020-01-52-61.
AbstractCurrently, to connect to computers any external devices, starting with flash drives, photo and video cameras and ending with office equipment and sophisticated medical devices, more and more actively used serial USB data interface. The wide use of USB devices for data storage and transmission is due to their versatility, reliability, performance, simplicity and convenience. At the same time, USB devices are one of the most dangerous and actively used tools and channels for implementing information security threats. The purpose of the study, the results of which are presented in this article, is to increase the security of autonomous automated workplaces from threats to information security implemented with the help of USB-devices. Research methods: to achieve this goal, the technical characteristics and functionality of USB-devices were investigated, the potential vulnerabilities and ways of their operation for the implementation of information security threats were identified, and the advantages and disadvantages of existing approaches and means of protection were analyzed. The result of research and work: created software complex for access control of USB-devices, which provides protection of autonomous automated workplaces operating under Windows OS by detecting connected devices, checking their legitimacy on a secure database of allowed USB-devices, blocking illegitimate connections, registering events associated with these operations. This software complex can also be used to detect the facts of illegal use of USB-devices, tracking and recording operations performed with their help to identify and analyze insider activity. The description of the composition, structure and functioning algorithms of this software complex is given. The main directions of its development and improvement are defined. Keywords: access control, information security threats, security algorithms and tools, USB devices, USB vulnerabilities. References1. USB Complete: The Developer’s Guide (Complete Guides series) Fifth Edition, Fifth edition. Edition by Jan Axelson. Published by Lakeview Research LLC, March 1, 2015. 524p. 2. Polezhaev P.N., Malahov A.K., Sagitov A.M. «Ahillesova pyata» USB-ustrojstv: ataka i zashchita // Filosofskie problemy informacionnyh tekhnologij i kiber-prostranstva. 2015. № 1(9). C. 106–117. 3. Nir Nissim, Ran Yahalom, Yuval Elovici: USB-based attacks, in Computers & Security, vol. 70, pp. 675-688, 2017. 4. Abhijeet Ramani, Somesh Kumar Dewangan: Auditing Windows 7 Registry Keys to track the traces left out in copying files from system to external USB Device” in International Journal of Computer Science and Information Technologies, vol. 5 ,2, pp.1045-1052, 2014. 5. Angel, S., Wahby, R.S., Howald, M., Leners, J.B., Spilo, M., Sun, Z., Blumberg, A.J., Walfish, M.: Defending against malicious peripherals with Cinch. In: USENIX Security Symposium (2016). 6. Francisco Ramírez Pablo González Carmen Torrano José María Alonso. Discovering and Plotting Hidden Networks created with USB Devices. CDO, Telefónica Madrid, Spain. https://www.exploit-db.com/docs/english/44947-discovering-and-plotting-hidden-networkscreated-with-usb-devices.pdf?rss 7. A.Crenshaw. Plug and Prey: Malicious USB devices. In Proceedings of ShmooCon, Jan. 2011. 8. J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham. Mouse trap: Exploiting firmware updates in USB peripherals. In Proceedings of the USENIX Workshop on Offensive Technologies, Aug. 2014. 9. T.V. Vahnij, S.YU. Kuz’min. Razrabotka apparatno-programmnogo sredstva zashchity ot uyazvimosti BadUSB. Matematicheskie struktury i modelirovanie 2016. №2(38). S. 116–125. 10. Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals. Network and Distributed Systems Security (NDSS) Symposium 2019 24-27 February 2019, San Diego, CA, USA ISBN 1-891562-55-X https://dx.doi.org/10.14722/ndss.2019.23194 www.ndss-symposium.org 11. S. Gallagher, “New WikiLeaks dump: The CIA built Thunderbolt exploit, implants to target Macs,” Mar. 2017. [Online]. Available: https://arstechnica.com/security/2017/03/new-wikileaks-dump-the-ciabuilt-thunderbolt-exploit-implants-to-target-macs. 12. USBlock: Blocking USB-Based Keypress Injection Attacks: 32nd Annual IFIP WG 11.3 Conference, DBSec 2018, Bergamo, Italy, July 16–18, 2018, Proceedings. 13. Tian, Dave & Bates, Adam & Butler, Kevin. (2015). Defending Against Malicious USB Firmware with GoodUSB. 261-270. 10.1145/2818000.2818040. 14. Obzor DLP-sistemy InfoWatch Traffic Monitor 6.7 https://www.anti-malware.ru/reviews/infowatch-traffic-monitor-6-7. 15. Overview of data loss prevention. https://docs.microsoft.com/en-us/office365/securitycompliance/data-loss-prevention-policies. 16. Best data loss prevention service of 2019: Choose the right DLP to protect your assets. https://www.techradar.com/best/best-data-lossprevention-service. 17. López G., Richardson N.; Carvajal J. Methodology for Data Loss Prevention Technology Evaluation for Protecting Sensitive Information. Revista Politécnica – Septiembre 2015, Vol. 36, No. 3. 18. Фергюсон Н. Шнайер Б. Практическая криптография. – М.: Издательский дом «Вильямс». 2005. – 424 с. 19. Э. М. Габидулин, А. С. Кшевецкий, А. И. Колыбельников. «Защита информации: учебное пособие». – М.: МФТИ, 2011. -- 262 с. -- ISBN 5-7417-0377-9. 20. Apple and Microsoft are both making a big bet on the future of USB. https://www.businessinsider.com/apple-microsoft-surfaceusb-c-2018-10. 21. USB flash drive market report.http://thescrippsvoice.com/market-research-news/154618/usb-flash-drive-market-report-a-completeoverview-of-market-segments-and-the-regional-outlook-of-usb-flash-drive-industry |
52-61 |
Kozachok, A. V. UNDETECTABILITY PARAMETERS ESTIMATION OF THE DEVELOPED APPROACH TO TEXT ELECTRON DOCUMENTS MARKING / A. V. Kozachok, S. A. Kopylov, M. V. Bochkov // Cybersecurity issues. – 2020. – № 1(35). – С. 62-73. – DOI: 10.21681/2311-3456-2020-01-62-73.
AbstractThe article describes the analysis and evaluation of undetectability parameters to the developed text electronic documents marking approach. A comparative analysis of existing approaches to steganographic analysis of images is carry out. The potentially best steganalysis methods applicable to the developed approach were identified. The following parameters were quantitatively evaluated: stegoanalysis resistance, data extraction reliability, information embedding ratio, image quality after watermark embedding, and watermark secrecy. In the course of the steganalysis, the embedding parameters, which characterize the developed approach as steganalysis resistant, were determined. The perceptual invisibility boundaries of embedded data to visual analysis are established. The obtained results of quantitative and qualitative estimates made it possible to establish the dependence of embedded data invisibility on data embedding parameters used. Keywords: text information marking, digital watermarking, steganalysis, data classification, ROC-analysis. References1. Cherez bumazhnye dokumenty sluchaetsya kazhdaya devyataya utechka konfidencial’nyh dannyh // Analiticheskij centr InfoWatch. 2019. URL: https:// www.infowatch.ru/ analytics/digest/15511 (accessed 03.06.2019). [In Russ.] 2. Text marking approach for data leakage prevention / A. V. Kozachok [et al.] // Journal of Computer Virology and Hacking Techniques, 2019. URL: https://doi.org/10.1007/s11416-019-00336-9. 3. Podhod k izvlecheniyu robastnogo vodyanogo znaka iz izobrazhenij, soderzhashchih tekst / A. Kozachok [et al.] // Trudy SPIIRAN [SPIIRAS Proceedings], 2018. 5(60). pp. 128-155. [In Russ.] 4. Kozachok A.V., Kopylov S.A., Bochkov M.V. Robastnyj vodyanoj znak kak sposob zashchity tekstovyh dannyh ot utechki // Zashchita informacii. INSIDE, 2018, Vol. 82, no. 4. pp. 26-32. [In Russ.] 5. Kozachok A.V., Kopylov S.A. Podhod k vnedreniyu robastnogo vodyanogo znaka v tekstovye dannye. 2018. URL: http//www.ruscrypto.ru/resource/archive/rc2018/files/11_ Kozachok_Kopylov. pdf (accessed 13.06.2018). [In Russ.] 6. Salomon D. Data privacy and security: encryption and information hiding. // Springer Science & Business Media, 2003. 469 p. 7. Woo C.-S. Digital image watermarking methods for copyright protection and authentication. // Queensland University of Technology,2007. 197 p. 8. Phadikar A. Robust Watermarking Techniques for Color Images. 2009. URL: https://www.isical.ac.in/~scc/seminars/ROBUST%20WATERMARKING%20TECHNIQUES.pdf (accessed. 13.03.2019). 9. Algoritm vstraivaniya informacii v szhatye cifrovye izobrazheniya na osnove operacii zameny s primeneniem optimizacii / O. Evsyutin [et al.] // Komp’yuternaya optika [Computer optics], 2017. Vol. 41, no. 3. pp. 412-421. [In Russ.] 10. Petitcolas F. A., Anderson R. J., Kuhn M. G. Information hiding-a survey // Proceedings of the IEEE, 1999. Vol. 87, no. 7. pp. 1062–1078. 11. Electronic marking and identification techniques to discourage document copying / J. T. Brassil [et al.] // IEEE Journal on Selected Areas in Communications, 1995. Vol. 13, no. 8. pp. 1495-1504. 12. Brassil J. T., Low S., Maxemchuk N. F. Copyright protection for the electronic distribution of text documents // Proceedings of the IEEE, 1999. Vol. 87, no. 7. pp. 1181–1196. 13. Marking text features of document images to deter illicit dissemination / J. T. Brassil [et al.] // Proceedingsof the 12th IARP International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5). Vol. 2. IEEE, 1994. pp. 315-319. 14. Fawcett T. An introduction to ROC analysis // Pattern recognition letters, 2006. Vol. 27, no. 8. pp. 861-874. 15. Powers D. M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation // Journal of Machine Learning Technologies, 2011. Vol. 2, no. 1. pp 37-63. 16. Sammut C., Webb G. I. Encyclopedia of machine learning // Springer Science & Business Media, 2011. 1032 p. 17. Cifrovaya steganografiya i cifrovye vodyanye znaki. CHast’ 1. Cifrovaya steganografiya / V. Korzhik [et al.] // Sankt-Peterburg: SPb GUT, 2016. 226 p. [In Russ.] 18. Steganograficheskie sistemy. Cifrovye vodyanye znaki / V.G. Gribunin [et al.] // Ucheb.-metod. posobie/pod red. d-ra tekh. nauk V.G. Gribunina. Sarov: FGUP “RFYAC-VNIIEF”, 2016. 210 p. [In Russ.] 19. Gribunin V., Okov I., Turincev I. Cifrovaya steganografiya // Moskva: SOLON-Press, 2017. 262 p. [In Russ.] 20. Meghanathan N., Nayak L. Steganalysis algorithms for detecting the hidden information in image, audio and video cover media // International journal of Network Security & Its application (IJNSA), 2010. Vol. 2, no. 1. pp. 43-55. 21. Vyas A. O., Dudul S. V. Study of Image Steganalysis Techniques. // International Journal of Advanced Research in Computer Science, 2015. Vol. 6, no. 8. pp. 7-11. 22. Shvidchenko I. Metody steganoanaliza dlya graficheskih fajlov // Iskusstvennyj intellekt [Artificial intelligence], 2010, no. 50. pp. 697-705. [In Russ.] 23. Bachrach M., Shih F. Y. Image steganography and steganalysis // Wiley Interdisciplinary Reviews: Computational Statistics. 2011. Vol. 3, no. 3. pp. 251-259. 24. Kaur M., Kaur G. Review of various steganalysis techniques // International Journal of Computer Science and Information Technologies, 2014. Vol. 5, no. 2. pp. 1744-1747. 25. ROC curve estimation: An overview / L. Gonçalves [et al.] // REVSTAT–Statistical Journal, 2014. Vol. 12, no. 1. pp. 1–20. 26. Cook J. A. ROC curves and nonrandom data // Pattern Recognition Letters. 2017. Vol. 85. pp. 35-41. |
62-73 |
ABOUT TEXT NOISE BORDERS WITH THE TEXT CONTENT SAVING. APPLICATIONS TO CRYPTOGRAPHY / A. V. Babash, E. K. Baranova, А. А. Lyutina, А. А. Murzakova, Е. А. Murzakova, D. M. Ryabova, E. S. Semis-ool // Cybersecurity issues. – 2020. – № 1(35). – С. 74-86. – DOI: 10.21681/2311-3456-2020-01-74-86.
AbstractPurpose: to introduce mathematical model of a distorted meaningful text and a measure of its distortion, to define a numerical classification of the distortion of meaningful texts, present applications of the model in cryptography. Research methods: a more complex Vigenere cipher decryption that uses an almost periodic key (noisy) is performed as decryption of noisy plaintext on a periodical key (by well-known Vigenere decryption methods), but with a different probability distribution of plaintext characters, with further lead of the task to the acceptable noise level in plaintext determining for understanding this text content.Results: gamming cipher decryption ways with weak keys are presented. A new complexity was obtained and the reliability of the method was improved due to the fact that there k-noisy weak (almost periodic) keys are more than periodic ones. The formula for calculating the probability of occurrence of characters after the k-th noise was obtained. Artificial languages for ease of calculation were introduced and practical examples of text noise (the necessary calculations were made using a written program in the python programming language) were considered. The quality of the distorted plaintext content was assessed by highlighting of two borders of understanding. Keywords: informative text; distorted text; noisy text; measure of text noise; decryption of cipher. References1. Babash A.V. Cryptography: study guide / A.V. Babash, G.P. Shankin. M.: Solon-R, 2002. 512 p. 2. Rubinstein-Salzedo S. The Vigenere Cipher / S. Rubinstein-Salzedo // Cryptography. 2018. №4. p. 41-54. 3. Venkata Subramaniam L. A survey of types of text noise and techniques to handle noisy text key / L. Venkata Subramaniam [and etc.] // Analytics for Noisy Unstructured Text Data. 2009. №3. p. 115-122. 4. Kolchin V.F. Random placement: a tutorial / V.F. Kolchin [and etc.]. M.: Science, 1976. 224 p. 5. Babash A.V. Generalized cipher model / A.V. Babash // Intellectual systemsin the information confrontation. 2015. №1. p.9-14. 6. Aized Amin Soofi. An Enhanced Vigenere Cipher For Data Security / Aized Amin Soofi [and etc.] // International journal of Scientific & Technology research. 2016. №3. p.141 – 145. 7. Kester Q. A. A cryptosystem based on Vigenere cipher with varying key / Q. A. Kester // 8. International Journal of Advanced Research in Computer Engineering & Technology. 2012. №10. p.108 – 113. 9. Maffre S. A Weak Key Test for Braid Based Cryptography / S. Maffre // Designs, Codes and Cryptography. 2006. №3(39). p. 347-373. 10. Berntsen M. C. Automating the cracking of simple ciphers: thesis / M. C. Berntsen. 11. Lewisburg: Bucknell University, 2005. 63 p. 12. Abiodun Esther Omolara. An Enhanced Practical Difficulty of One-Time Pad Algorithm 13. Resolving the Key Management and Distribution Problem / Abiodun Esther Omolara [and etc.] // Proceedings of the International MultiConference of Engineers and Computer Scientists 2018. 2018. №1. p.1 – 7. 14. Kormen T. Algorithms: construction and analysis: a tutorial / T. Kormen [and etc.]. M.: MCCME, 2002. 960 p. 15. Jean-Philippe Aumasson. Serious Cryptography. A Practical Introduction to Modern 16. Encryption: practical guide / Jean-Philippe Aumasson. – San Francisco: no starch press, 2017. 312p. 17. Feng X. Reconstruction of noisy images via stochastic resonance in nematic liquid crystals / X. Feng [and etc.] // Scientific Reports. 2019. №3976. p.1 – 15. 18. Zhao H. H. Adaptive Block Compressive Sensing for Noisy Images / H. H. Zhao [and etc.] // Studies in Computational Intelligence. 2019. №2020. p.389 – 399. 19. Tolstunov V.A. Nonlinear smoothing filter with exponential power scales / V.A. 20. Tolstunov // Technical Sciences. 2015. №2 (15). p.10-18. 21. Krasheninnikov V.R. Pattern noise in the signal detection and recognition tasks with interference / V.R. Krasheninnikov, A.I. Armer // Vestnik of UlSTU. 2004. №2. p.54-57. 22. Ferrand A. Using the NoiSee workflow to measure signal-to-noise ratios of confocal microscopes / A. Ferrand [and etc.] // Scientific Report. 2019. №1165. p.1-28. 23. Roy S. Fundamental noisy multiparameter quantum bounds / S. Roy // Scientific Reports. 2019. №1038. p.1 – 15. 24. Koohian A. Joint channel and phase noise estimation for mmWave full-duplex communication systems / A. Koohian [and etc.] // Eurasip Journal on Advances in Signal Processing. 2019. №18. p.1 – 12. 25. Lira de Queiroz W.J. Signal-to-noise ratio estimation for M-QAM signals in η−μand κ−μfading channels / W.J. Lira de Queiroz [and etc.] // Eurasip Journal on Advances in Signal Processing. 2019. №20. p.1 – 17. 26. Miroshnichenko K.V. Organizational and technical activities aimedon the limited access information protection / K.V. Miroshnichenko, A.I. Kiselev // Law enforcement: theory and practice. 2018. №15. p.66 -70. 27. Dvornikov S.V. Prevention information leakage methods from controlled premises due to Transient Electromagnetic Pulse Emanation / S.V. Janitors // Information technologies. 2018. №7 (22). p.134-136. 28. Khorev A.A. information objects protection from information leakage bytechnical channels ways: spatial electromagnetic noise / A.A. Horev // Automation. Computer Engineering. 2012. №6. p.37-57. 29. Shaaban R. Visible light communication security vulnerabilities in multiuser network: power distribution and signal to noise ratio analysis / R. Shaaban [and etc.] // Lecture Notes in Networks and Systems. 2019. №2020. p.1 – 13. 30. Zapechnikov S.V. Information protecting cryptographic methods: a tutorial / S.V. Baking [and others]. M.: Yurayt, 2017. 309 p. 31. Vasilyeva I.N. Information protecting cryptographic methods: a tutorial / I.N. Vasiliev. M.: Yurayt, 2016. 64 p. 32. Zhdanov O.N. Cryptographic information protection methods and means: educational manual / O.N. Zhdanov, V.V. Zolotarev. – Krasnoyarsk: Sib. GAU, 2007. 217 p. 33. ElSalamouny E. Optimal noise functions for location privacy on continuous regions / E. 34. ElSalamouny, S. Gambs // International Journal of Information Security. 2018. №17(6). p.613 – 630. |
74-86 |
Шерстюк, В. П. «МЕЖДУНАРОДНАЯ ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ: ТЕОРИЯ И ПРАКТИКА» ПОД ОБЩ. РЕД. А.В. КРУТСКИХ / В. П. Шерстюк // Cybersecurity issues. – 2020. – № 1(35). – С. 87-88.
|
87-88 |
Leave a Reply