№ 5 (39)

Content of 5th issue of magazine «Voprosy kiberbezopasnosti» at 2020:

Title Pages
Tali, D. I. CRYPTOGRAPHIC RECURSIVE CONTROL OF INTEGRITY OF METADATA ELECTRONIC DOCUMENTS. PART 1. MATHEMATICAL MODEL / D. I. Tali, O. A. Finko // Cybersecurity issues. – 2020. – № 5(39). – С. 2-18. – DOI: 10.21681/2311-3456-2020-5-2-18.

Abstract
The purpose of the research is to increase the level of security of electronic document metadata in the face of destructive influences from authorized users (insiders).Research methods: new scientific results allowed using a combination of data integrity control method based on the «write once» method and of authentication of HMAС messages (hash-based message authentication, as well as graph theory methods. Research result: a method of cryptographic recursive 2-D control of the integrity of electronic documents metadata is proposed. The analysis of the object of the study was carried out, based on the results of which it was concluded that it is necessary to effectively protect the metadata of electronic documents processed by automated information systems of electronic document management. Developed and described a mathematical model of the proposed method, based on graph theory.The developed technical solution makes it possible to implement the functions of cryptographic recursive two-dimensional control of the integrity of the metadata of electronic documents, as well as to provide the possibility of localizing modified (with signs of violation of integrity) metadata records, in conditions of destructive influences of authorized users (insiders). This, in turn, reduces the likelihood of collusion between trusted parties by introducing mutual control over the results of their actions. The proposed solution makes it possible to ensure control of the integrity of data processed by departmental automated information systems of electronic document management, where, due to the peculiarities of their construction, it is impossible to effectively use the currently popular blockchain technology.
Keywords: automated information systems, electronic document management, metadata management, insider, chain data recording, dynamic ledger, hash function, electronic signature.
References
1. Tali D.I., Yeliseyev N.I. Analiz protsessa formirovaniya i zashchity metadannykh elektronnykh dokumentov v sisteme elektronnogo dokumentooborota MO RF // Sostoyaniye i perspektivy razvitiya sovremennoy nauki po napravleniyu «ASU, informatsionnotelekommunikatsionnyye sistemy» sbornik statey konferentsii. Federal’noye gosudarstvennoye avtonomnoye uchrezhdeniye «Voyennyy innovatsionnyy tekhnopolis «ERA»», 2019. S. 129-135.
2. Makarenko S.I. Spravochnik nauchnykh terminov i oboznacheniy. – SPb.: Naukoyemkiye tekhnologii, 2019. 254 s.
3. Kogalovskiy M.R. Elektronnyye biblioteki ekonomiko-matematicheskikh modeley: ekonomiko-matematicheskiye i informatsionnyye modeli // Problemy rynochnoy ekonomiki. 2018. № 4. S. 89-97.
4. Baranov A.V. Sistemy yuridicheski znachimogo elektronnogo dokumentooborota // Aktual’nyye problemy ekonomiki sovremennoy Rossii. 2015. T. 2. № 2. S. 28-31
5. Tali D.I. Model’ ugroz bezopasnosti metadannym v sisteme elektronnogo dokumentooborota voyennogo naznacheniya // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2020. № 139-140. S. 95-101.
6. Hartmann K., Giles K. UAV exploitation: A new domain for cyber power // 8th International Conference on Cyber Conflict (CyCon). 2016. Pp. 205-221.
7. Kuksov I. Kak nevidimyye dannyye elektronnykh dokumentov privodyat k real’nym problemam. https://www.kaspersky.ru/blog/officedocuments-metadata/14277/.
8. Put’kina L.V. Rol’ informatsionnykh sistem i tekhnologiy v upravlenii predpriyatiyami sfery uslug // Nauka-Rastudent.ru. 2016. № 5. S. 13.
9. Dichenko S.A. Kontseptual’naya model’ obespecheniya tselostnosti informatsii v sovremennykh sistemakh khraneniya dannykh // Informatika: problemy, metodologiya, tekhnologii. Sbornik materialov XIX mezhdunarodnoy nauchno-metodicheskoy konferentsii. Pod red. D.N. Borisova. Voronezh, 2019. S. 697-701.
10. Savin S.V., Finko O.A. Kontrol’ tselostnosti dannykh na osnove sovmestnogo ispol’zovaniya khesh-funktsiy i teorii lineynogo kodirovaniya // Informatsionnoye protivodeystviye ugrozam terrorizma. 2015. № 24. S. 353-358.
11. Lakshmanan R., Arumugam S.Construction of a(k,n)-visual cryptography scheme // Designs, Codes and Cryptography. 2017. V. 82. №. 3. Pр. 629–645.
12. Dichenko S.A., Finko O.A. Gibridnyy kripto-kodovyy metod kontrolya i vosstanovleniya tselostnosti dannykh dlya zashchishchonnykh informatsionno-analiticheskikh sistem // Voprosy kiberbezopasnosti. 2019. № 6 (34). S. 17-36.
13. Savin S.V., Finko O.A., Yeliseyev N.I. Sistema kontrolya tselostnosti zhurnalov nepreryvno vedushchikhsya zapisey dannykh // Patent na izobreteniye RU 2637486 C2, opubl. 04.12.2017, byul. № 34.
14. Baushev S.V. Udostoveryayushchiye avtomatizirovannyye sistemy i sredstva. Vvedeniye v teoriyu i praktiku / Pod red. S.V. Bausheva, A.S. Kuz’mina. SPb.: BKHV-Peterburg, 2016. 304 s.
15. Sovetov B.YA. Modelirovaniye sistem / Pod red. B.YA. Sovetova, S.A. Yakovleva. M.: Yurayt, 2016. 343 s.
16. Kurilo A.P. Trudnyy put’ k universumu // BIS Journal №4 (27), 2017. [https://ib-bank.ru/bisjournal/post/602.
17. Tali D.I., Finko O.A., Yeliseyev N.I., Dichenko S.A., Baril’chenko S.A. Sposob kriptograficheskogo rekursivnogo 2-D kontrolya tselostnosti metadannykh faylov elektronnykh dokumentov // Patent na izobreteniye RU 2726930, opubl. 16.07.2020, byul. №20.
18. Zubarev YU.M. Osnovy nadezhnosti mashin i slozhnykh sistem. SPb.: Lan’. 2017. 180 s.
19. Krakovtsev A.A., Skoba A.N. Primeneniye grafovykh baz dannykh dlya resheniya zadachi poiska assotsiativnykh pravil // Znaniye. 2017. № 3-1 (43). S. 82-87.
20. Artyukhov A.V., Kulikov G.G., Rechkalov A.V. Logicheskaya struktura kontseptual’noy modeli informatsionno-analiticheskoy sistemy (IAS), osnovannoy na slabostrukturirovannykhznaniyakh proizvodstvennoy sistemy // Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Komp’yuternyye tekhnologii, upravleniye, radioelektronika. 2018. T. 18. № 4. S. 78-87.
21. Korablov F.G. Kotsiklicheskiye kvazoidnyye invarianty uzlov // Sibirskiy matematicheskiy zhurnal. 2020. T. 61. № 2. S. 344-366.
2-18
Babenko, L. K. PDA LANGUAGE FOR DYNAMIC ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS / L. K. Babenko, I. A. Pisarev // Cybersecurity issues. – 2020. – № 5(39). – С. 19-29. – DOI: 10.21681/2311-3456-2020-5-19-29.

Abstract
Purpose of the article: development of an algorithm for dynamic analysis of the source codes of cryptographic protocols using the PDA language for the possibility of using your own attack models.Method: a source code generation method was used to simulate the attacker’s side when transmitting messages between legal parties according to the Dolev-Yao model. The method of false termination is also used, which is used in dynamic analysis and allows detecting attacks during simulation.Results: this paper presents the PDA language for dynamic analysis of the source codes of cryptographic protocols. An approach to dynamic analysis based on the principle of false termination is described. The process of modeling an active attack by an intruder is presented. The elements of the PDA language are described and an example of the description of the test protocol in this language is given. A test protocol in the C# programming language has been implemented. The effectiveness of the dynamic analysis was tested by simulating a replay attack. The security verification of the test cryptographic protocol was carried out using the well-known verification tools Scyther and Avispa. The comparison of the main indicators of the known means and the dynamic protocol analyzer proposed by the authors is carried out. The main advantages of the approach proposed by the authors are presented. The further direction of work is described.
Keywords: dynamic analysis, cryptographic protocols, source code, analysis, dpa, modeling, cryptography, verification.
References
1. El Madhoun N., Guenane F., Pujolle G. An online security protocol for NFC payment: Formally analyzed by the scyther tool / 2016 Second International Conference on Mobile and Secure Services (MobiSecServ). IEEE, 2016. Pp. 1-7. DOI:10.1109/MOBISECSERV.2016.7440225
2. Yang H., Oleshchuk V. A., Prinz A. Verifying Group Authentication Protocols by Scyther. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 2016. Т. 7. No. 2. Pp. 3-19.
3. Mir O., van der Weide T., Lee C. C. A secure user anonymity and authentication scheme using AVISPA for telecare medical information systems // Journal of medical systems. 2015. Т. 39. No. 9. Pp. 89. DOI:10.1007/s10916-015-0265-8
4. Amin R. et al. Design of an enhanced authentication protocol and its verification using AVISPA. 2016 3rd International Conference on Recent Advances in Information Technology (RAIT). IEEE, 2016. Pp. 404-409. DOI:10.1109/RAIT.2016.7507899
5. Cheval V., Cortier V., Turuani M. A little more conversation, a little less action, a lot more satisfaction: Global states in ProVerif. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018. Pp. 344-358.
6. Chothia T., Smyth B., Staite C. Automatically checking commitment protocols in proverif without false attacks. International Conference on Principles of Security and Trust // Springer, Berlin, Heidelberg, 2015. Pp. 137-155. DOI:10.1007/978-3-662-46666-7-8
7. Blanchet B. Composition theorems for cryptoverif and application to TLS 1.3. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018. Pp. 16-30. DOI:10.1109/CSF.2018.00009
8. Eswaraiah G., Vishwanathan R., Nedza D. Automated proofs of signatures using bilinear pairings. 2018 16th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2018. Pp. 1-10. DOI:10.1109/PST.2018.8514201
9. Cremers C. Symbolic security analysis using the tamarin prover. 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2017. Pp. 5-5.
10. De Ruiter J., Poll E. Protocol State Fuzzing of {TLS} Implementations. 24th {USENIX} Security Symposium ({USENIX} Security 15). 2015. Pp. 193-206.
11. Cohn-Gordon K. et al. A formal security analysis of the signal messaging protocol. 2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2017. Pp. 451-466.
12. Beringer L. et al. Verified Correctness and Security of OpenSSL {HMAC}. 24th {USENIX} Security Symposium ({USENIX} Security 15). 2015. Pp. 207-221.
13. Kobeissi N., Bhargavan K., Blanchet B. Automated verification for secure messaging protocols and their implementations: A symbolic and computational approach. 2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2017. Pp. 435-450. DOI:10.1109/EuroSP.2017.38
14. Dowling B. et al. A cryptographic analysis of the TLS 1.3 handshake protocol candidates. Proceedings of the 22nd ACM SIGSAC conference on computer and communications security. 2015. Pp. 1197-1210.
15. Garcia R., Modesti P. An IDE for the design, verification and implementation of security protocols. 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 2017. Pp. 157-163. DOI:10.1109/ISSREW.2017.69
16. Modesti P. AnBx: Automatic generation and verification of security protocols implementations. International Symposium on Foundations and Practice of Security. Springer, Cham, 2015. Pp. 156-173. DOI:10.1007/978-3-319-30303-1-10
17. Baskar A., Ramanujam R., Suresh S. P. Dolev-Yao theory with associative blindpair operators. International Conference on Implementation and Application of Automata. Springer, Cham, 2019. Pp. 58-69.
18. Szymoniak S., Siedlecka-Lamch O., Kurkowski M. SAT-based verification of NSPK protocol including delays in the network // 2017 IEEE 14th International Scientific Conference on Informatics. IEEE, 2017. Pp. 388-393.
19. Babenko L., Pisarev I. Translation of Cryptographic Protocols Description from Alice-Bob Format to CAS+ Specification Language // International Conference on Intelligent Information Technologies for Industry. Springer, Cham, 2019. Pp. 309-318.
20. Chandre P. R., Mahalle P. N., Shinde G. R. Machine learning based novel approach for intrusion detection and prevention system: A tool based verification // 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). IEEE, 2018. Pp. 135-140.
21. Bloemen V., van de Pol J. Multi-core SCC-based LTL model checking //Haifa Verification Conference. Springer, Cham, 2016. Pp. 18-33.
19-29
Bykov, A. Yu. THE PROBLEM OF SELECTING COMPUTING PROCESSES THAT PROVIDE INFORMATION PROTECTION FOR SERVERS OF A DISTRIBUTED SYSTEM AND ALGORITHMS FOR ITS SOLUTION / A. Yu. Bykov, I. A. Krygin, M. V. Grishunin // Cybersecurity issues. – 2020. – № 5(39). – С. 30-44. – DOI: 10.21681/2311-3456-2020-5-30-44.

Abstract
Purpose: providing information security on servers of various destinations of an automated system based on the formulation of an optimization task setting for selecting auxiliary processes for information protection, developing and researching algorithms for solving this problem.Method: To solve the problem, the authors propose two exact algorithms for incomplete search with exponential computational complexity, based on the ideas of the Balash method. One algorithm starts with a solution consisting of all ones, and the second algorithm starts with a solution consisting of all zeros. Also proposed are two approximate algorithms with polynomial complexity, based on the ideas of the “greedy” algorithm, one algorithm starts the search from a zero solution, the other from all-one solution.Result: Mathematical model and algorithms for solving the problem of selecting processes to protect information in conditions of limited computing resources of servers. The process selection model is a Boolean programming problem with a non-linear quality indicator and linear constraints. The indicator provides an estimate of the damage prevented when using the selected processes, taking into account the probability or possibility of various attacks on servers, the value of stored data, and the probability of protection from attacks using processes. During the experiments, recommendations were developed for choosing one of two algorithms (search starting from the zero solution and search starting from all-one solution) among pairs of exact and approximate algorithms depending on the availability of resources in order to reduce the time to solve the problem.
Keywords: information security, discrete optimization, boolean programming, resource ratio, computational complexity of the algorithm, approximate solution.
References
1. Zangiev T.T., Romanenko A.V., Pozdnyakova E.G. Vybor sredstv zashchity informacii pri mnogih kriteriyah s nechetkim opisaniem. Svidetel’stvo o registracii programmy dlya EVM RU 2019614539, 05.04.2019. (in Russ.)
2. Zangiev T.T., Turkin E.A., CHernecova T.V., Korh I.A. Optimal’nyj vybor sredstv kriptograficheskoj zashchity dlya bankovskih sistem v nechetkoj srede. Svidetel’stvo o registracii programmy dlya EVM RU 2019616070, 17.05.2019. (in Russ.)
3. Zangiev T.T., Postel’nyj E.M. Optimal’nyj vybor sredstv zashchity in-formacii ot nesankcionirovannogo dostupa metodom analiza ierarhij // Himiya, fizika, biologiya, matematika: teoreticheskie i prikladnye issledovaniya: cbornik statej po materialam XI-XII mezhdunarodnoj nauchno-prakticheskoj konfe-rencii, 2018, pp. 33-40. (in Russ.)
4. Kasenov A.A., Kustov E.F., Magazev A.A., Cyrul’nik V.F. Markovskaya model’ optimizacii sredstv zashchity informacii [Markov model for optimization of information security remedies] // Dinamika sistem, mekhanizmov i mashin, 2019, vol. 7, no. 4, pp. 77-84. (in Russ.)
5. Pavlikov S.N., Ubankin E.I., Kolomeec V.YU., Plennik M.D. Razrabotka mnogoparametricheskoj posledovatel’no-parallel’noj matrichnoj sistemy zashchity informacionnoj seti // Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli, 2019, vol. 11, no. 5, pp. 39-47. (in Russ.) DOI: 10.24411/2409-5419-2018-10286
6. Kashchenko A.G. Model’ vybora varianta sistemy zashchity informacii dlya raspredelennoj vychislitel’noj seti predpriyatiya // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Sistemnyj analiz i informacionnye tekhnologii, 2010, no 2, pp. 46-49. (in Russ.)
7. Nilotpal Chakraborty, Ezhil Kalaimannan. Minimum cost security measurements for attack tree based threat models in smart grid // 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). DOI: 10.1109/UEMCON.2017.8249049
8. Zan Li, Shiqi Gong, Chengwen Xing, Zesong Fei, Xinge Yan. Multi-Objective Optimization for Distributed MIMO Networks // IEEE Transactions on Communications 2017, vol. 65, iss. 10, pp. 4247-4259. DOI: 10.1109/TCOMM.2017.2722478
9. Peng Wei, Yufeng Li, Zhen Zhang, Tao Hu, Ziyong Li, Diyang Liu. An Optimization Method for Intrusion Detection Classification Model Based on Deep Belief Network // IEEE Access, 2019, vol. 7, pp. 87593-87605. DOI: 10.1109/ACCESS.2019.2925828
10. Ali Safaa Sadiq, Basem Alkazemi, Seyedali Mirjalili, Noraziah Ahmed, Suleman Khan, Ihsan Ali, Al-Sakib Khan Pathan, Kayhan Zrar Ghafoor. An Efficient IDS Using Hybrid Magnetic Swarm Optimization in WANETs // IEEE Access, 2018, vol. 6, pp. 29041-29053. DOI: 10.1109/ACCESS.2018.2835166
11. Hong Zhang, Yun Cao, Xianfeng Zhao. A Steganalytic Approach to Detect Motion Vector Modification Using Near-Perfect Estimationfor Local Optimality // IEEE Transactions on Information Forensics and Security, 2017, vol. 12, iss. 2, pp. 465-478. DOI: 10.1109/TIFS.2016.2623587
12. Tuan Anh Le, Quoc-Tuan Vien, Huan X. Nguyen, Derrick Wing Kwan Ng, Robert Schober. Robust Chance-Constrained Optimization for Power-Efficient and Secure SWIPT Systems // IEEE Transactions on Green Communications and Networking, 2017, vol. 1, iss. 3, pp. 333-346. DOI: 10.1109/TGCN.2017.2706063
13. Xiaobo Zhou, Qingqing Wu, Shihao Yan, Feng Shu, Jun Li. UAV-Enabled Secure Communications: Joint Trajectory and Transmit Power Optimization // IEEE Transactions on Vehicular Technology, 2019, vol. 68, iss. 4, pp. 4069-4073. DOI: 10.1109/TVT.2019.2900157
14. Jiaxin Yang, Qiang Li, Yunlong Cai, Yulong Zou, Lajos Hanzo, Benoit Champagne. Joint Secure AF Relaying and Artificial Noise Optimization: A Penalized Difference-of-Convex Programming Framework // IEEE Access, 2016, vol. 4, pp. 10076-10095. DOI: 10.1109/ACCESS.2016.2628808
15. Bykov A.Yu., Grishunin M.V., Krygin I.A. Saddle point search algorithm for the problem of site protection level assignment based on search of simplices // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman MSTU. Ser. Instrument Engineering], 2019, no. 2 (125), pp. 22-39. DOI: 10.18698/0236-3933-2019-2-22-39
16. Bykov A.Yu., Krygin I.A., Grishunin M.V. Algoritm poiska sedlovoj tochki v smeshannyh strategiyah na osnove modifikacii metoda BraunaRobinsona dlya resheniya zadachi vybora zashchishchaemyh ob”ektov [The algorithm of saddle point search in mixed strategies based on Brown–Robinson method modification to solve problem of assets to protect selection] // V sbornike: Bezopasnye informacionnye
tehno-logii Sbornik trudov Devjatoj vserossijskoj nauchno-tehnicheskoj konferencii, 2018, pp. 33-38.
17. Bykov A.Yu., Grishunin M.V., Krygin I.A. Igrovaya zadacha vybora zashchishchaemyh ob”ektov i issledovanie algoritma poiska sedlovoj tochki na osnove modifikacii metoda Brauna-Robinsona [The game problem of selection of assets to protect and research of saddle point search algorithm based on Brown-Robinson method modification] // Voprosy kiberbezopasnosti [Cybersecurity issues], 2019, no. 2 (30). pp. 2-12. DOI: 10.21681/2311-3456-2019-2-2-12
18. Hachatryan M.G., Klyucharev P.G. Raspoznavanie botov v onlajnovyh social’-nyh setyah pri pomoshchi algoritma “Sluchajnyj les” [Bots recognition in social networks using the Random Forest algorithm] // Mashinostroenie i komp’yuternye tekhnologii, 2019, no. 4, pp. 24-41. DOI: 10.24108/0419.0001473
19. Klyucharyov P.G. Determinirovannye metody postroeniya grafov Ramanudzha-na, prednaznachennyh dlya primeneniya v
kriptograficheskih algoritmah, osnovan-nyh na obobshchyonnyh kletochnyh avtomatah [Deterministic methods of Ramanujan graph construction for use in cryptographic algorithms based on generalized cellular automata] // Prikladnaya diskretnaya matematika, 2018, no. 42, pp. 76-93. DOI 10.17223/20710410/42/6
20. Basarab M.A., Vel’c S.V. Metody optimizacii i issledovanie operacij v oblasti informacionnoj bezopasnosti: Metodicheskie ukazanija k vypolneniju laboratornyh rabot po discipline «Metody optimizacii i issledovanija operacij». M.: MGTU im. N.Je. Baumana, 2015, 64 p. Rezhim dostupa: http://ebooks.bmstu.press/catalog/117/book967.html
21. Koshman A.A. Algoritmy poiska dopustimyh reshenij dlya postroeniya mat-ricy igry v zadache vybora ob”ektov zashchity pri ogranicheniyah na resursy [Algorithms of searching for admissible solutions to construct the matrix of the game in the problem of choice of protection objects under the restrictions on resources] // Politekhnicheskij molodezhnyj zhurnal, 2019, no. 4 (33), pp. 7-17. DOI: 10.18698/2541-8009-2019-4-471
30-44
Butusov, I. V. PREVENTION OF INFORMATION SECURITY INCIDENTS IN AUTOMATED INFORMATION SYSTEM / I. V. Butusov, A. A. Romanov // Cybersecurity issues. – 2020. – № 5(39). – С. 45-51. – DOI: 10.21681/2311-3456-2020-5-45-51.

Abstract
The purpose of the article is to support the processes of preventing information security incidents in conditions of high uncertainty.Method: methods of mathematical (theoretical) computer science and fuzzy set theory.Result: an information security Incident, including a computer incident, is considered as a violation or termination of the functioning of an automated information system and (or) a violation of information stored and processed in this system, including those caused by a computer attack. Information descriptions are presented in the form of structured data about signs of computer attacks. Structured data is the final sequence of strings of symbols in a formal language. The Damerau-Levenstein editorial rule is proposed as a metric for measuring the distance between strings of characters from a particular alphabet. The possibility of presenting the semantics of information descriptions of attack features in the form of fuzzy sets is proved. Thresholds (degrees) of separation of fuzzy information descriptions are defined. The influence of semantic certainty of information descriptions of features (degrees of blurring of fuzzy information descriptions) on the decision-making about their identity (similarity) is evaluated. It is shown that the semantic component of information descriptions of signs of computer attacks presupposes the presence of some semantic metric (for its measurement and interpretation), which, as a rule, is formally poorly defined, ambiguously interpreted and characterized by uncertainty of the type of fuzziness, the presence of semantic information and the inability to directly apply a probabilistic measure to determine the degree of similarity of input and stored information descriptions of signs. An approach is proposed to identify fuzzy information descriptions of computer attacks and to apply methods for separating elements of reference sets on which these information descriptions are defined. It is shown that the results of the procedure for identifying fuzzy information descriptions of computer attacks depend on the degree of separation of the reference sets and on the indicators of semantic uncertainty of these descriptions.
Keywords: signs of a computer attack, information description, semantics, uncertainty, fuzzy set, membership function, degree of separation, information, alphabet, character strings, editorial distance.
References
1. Atagimova E`.I., Makarenko G.I., Fedichev V.A. Informatcionnaia bezopasnost`. Terminologicheskii` slovar` v opredeleniiakh dei`stvuiushchego zakonodatel`stva/Federal`noe biudzhetnoe uchrezhdenie «Nauchny`i` centr pravovoi` informatcii pri Ministerstve iustitcii Rossii`skoi` Federatcii». Moskva. 2017. (Izdanie 3-e). 448 s.
2. Butusov I.V., Romanov A.A. Methodology of security assessment automated systems as object critical information infrastructure // Voprosy` kiberbezopasnosti №1(24). 2018. S. 2-10 DOI: 10.21681/2311-3456-2018-1-2-10
3. Climov S.M., Sy`chev M.P., Astrahov A.V. Protivodei`stvie komp`iuterny`m atakam. Metodicheskie osnovy`: E`lektronnoe uchebnoe izdanie. M.: MGTU imeni N.E`. Baumana, 2013. 108 s . // URL: http://wwwcdl.bmstu.ru/iu10/comp-atak-metod.htm 
4. Markov A.S. Tekhnicheskaia zashchita informatcii. Kurs lektcii` / uchebnoe posobie. M. AISNT. 2020. 234 s., ISBN 978-5-9500695-3-1
5. Nechyotkii` poisk v tekste i slovare. 2011. https://habr.com/ru/post/114997/
6. Rei`uord-Smith V. Dzh. Teoriia formal`ny`kh iazy`kov. Vvodny`i` kurs: per. s angl. M.: Radio i sviaz`, 1988. 128 s.
7. Chechkin A.V. Matematicheskaia informatika. M.: Nauka, 1991. 416s.
8. Averkin A.N., Baty`rshin I.Z. i dr. Nechetkie mnozhestva v modeliakh upravleniia i iskusstvennogo intellekta. M.: Nauka. Gl. red. fiz-mat. lit., 1986. 312 s.
9. Nechetkie mnozhestva i teoriia vozmozhnostei`. Poslednie dostizheniia. Sbornik nauchny`kh statei` / Pod red. R.R. Iagera.–M.: Radio i sviaz`, 1986.– 408 s. 
45-51
Gavrilov, D. A. AUTOMATED OPTOELECTRONIC GROUND–SPACE MONITORING SYSTEM FOR REAL–TIME SECURITY SYSTEMS / D. A. Gavrilov, D. A. Lovtsov // Cybersecurity issues. – 2020. – № 5(39). – С. 52-60. – DOI: 10.21681/2311-3456-2020-5-52-60.

Abstract
Purpose of the article: The main approaches of an effective automated optoelectronic ground-space monitoring system construction provided visual information secure processing in conditions of information rivalry are considered.Research method: solving the main tasks of the AOES NKM - objects of interest stabilization, detection, localization and classification in photo and video data in relation to various background-target environments, the use of a protection measures set and the fight against information and technical impact deliberate destructive disturbing factors by rational directions of their prevention and the consequences of their manifestation timely elimination development.Obtained result: The main approaches provided visual information secure processing in the context of information rivalry in an automated optoelectronic ground-space monitoring system are presented.
Keywords: optoelectronic system, visual information processing, efficiency, secure processing.
References
1. Vizil`ter Iu.V., Zheltov S.Iu. Problemy` tekhnicheskogo zreniia v sovremenny`kh aviatcionny`kh sistemakh // Tekhnicheskoe zrenie v sistemakh upravleniia mobil`ny`mi ob``ektami- 2010: Trudy` nauchno-tekhnicheskoi` konferentcii-seminara. Vy`p. 4 (16–18 marta 2010 g.) / Pod red. R.R. Nazirova.M. 2011. S. 11–45.
2. Anosov R.S., Anosov S.S., Shahalov I.Iu. Kontceptual`naia model` analiza riska bezopasnosti informatcionny`kh tekhnologii` // Voprosy` kiberbezopasnosti. M. 2020. №2. S. 2 – 10. DOI: 10.21681/2311-3456-2020-02-2-10
3. Guyfulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniia v zadachakh kiberbezopasnosti. Chast` 1 // Voprosy` kiberbezopasnosti. M. 2020. №3. S. 76 – 86. DOI: 10.21681/2311-3456-2020-03-76-86
4. Guyfulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniia v zadachakh kiberbezopasnosti. Chast` 2 // Voprosy` kiberbezopasnosti. M. 2020. №4. S. 11 – 21. DOI: 10.21681/2311-3456-2020-04-11-21
5. Lovtcov D.A., Paniukov I.I. Informatcionnaia tekhnologiia avtoma-tizirovannogo planirovaniia opredeleniia navigatcionny`kh parametrov ob``ektov raketnoi` tekhniki // Avtomatika i telemehanika. 1995. № 12. S. 32–46.
6. Kruglikov S.V., Dmitriev V.A., Stepanian A.B., Maksimovich E.P. Informatcionnaia bezopasnost` informatcionny`kh sistem s e`lementami centralizatcii i decentralizatcii // Voprosy` kiberbezopasnosti. M. 2020. №1. S. 2 – 7. DOI: 10.21681/2311-3456-2020-02-2-7
7. Gacenko O.Iu., Mirzabaev A.N., Samonov A.V. Metody` i sredstva ocenivaniia kachestva realizatcii funktcional`ny`kh i e`kspluatatcionno–tekhnicheskikh harakteristik sistem obnaruzheniia i preduprezhdeniia vtorzhenii` novogo pokoleniia // Voprosy` kiberbezopasnosti. M. 2020. №2. S. 24 – 32. DOI: 10.21681/2311-3456-2020-02-24-32
8. Smirnov A.V., Levashova T.V., Ponomarev A.V. Ontologicheskaia model` podderzhki priniatiia reshenii` na osnove cheloveko-mashinnogo kollektivnogo intellekta // Iskusstvenny`i` intellekt i priniatie reshenii`. M: 2020. № 3. S. 48–60.
9. Antonov D. A., Veremeenko K. K., Zharkov M. V., Zimin R. Iu., Kuznetcov I. M., Pron`kin A.N. Otkazoustoi`chivaia integrirovannaia navigatcionnaia sistema dlia bespilotnogo apparata s ispol`zovaniem tekhnicheskogo zreniia // Izvestiia RAN. Teoriia i sistemy` upravleniia. M:2020. № 2. S. 128–142.
10. Sikorskii` O.S. Obzor svyortochny`kh nei`ronny`kh setei` dlia zadachi classifikatcii izobrazhenii` // Novy`e informatcionny`e tekhnologii v avtomatizirovanny`kh sistemakh. M: 2017. № 20. S. 37–42.
11. Bury`i` A.S., Suhov A.V. Optimal`noe upravlenie slozhny`m tekhnicheskim kompleksom v informatcionnom prostranstve // Avtomatika i telemehanika. M:2003. № 8. S. 145–162.
12. Lovtcov D.A., Kniazev K.V. Zashchishchyonnaia biometricheskaia identifikatciia v sistemakh kontrolia dostupa. I. Matematicheskie modeli i algoritmy` // Informatciia i kosmos. 2013. № 1. S. 100 – 103.
13. Matveev I. A., Chigrinskii` V.V. Optimizatciia raboty` sistemy` slezheniia, osnovannoi` na seti kamer // Izvestiia RAN. Teoriia i sistemy` upravleniia. M. 2020. № 4. S. 110–114.
14. Bol`shakov A.S., Rakovskii` D.I. Programmnoe obespechenie modelirovaniia ugroz bezopasnosti informatcii v informatcionny`kh sistemakh. //Pravovaia informatika. M. 2020. № 1. S. 26–39. DOI: 10.21681/1994-1404-2020-01-26-39
15. Dobkach L.Ia. Analiz metodov raspoznavaniia komp`iuterny`kh atak // Pravovaia informatika. M. 2020. № 1. S. 67–75. DOI: 10.21681/1994-1404-2020-01-67-75
16. Gavrilov D.A. Programmno-apparatny`i` kompleks testirovaniia algoritmov detektirovaniia i lokalizatcii ob``ektov v
videoposledovatel`nostiakh // Nauchnoe priborostroenie. SPb.: IAP RAN. 2019. tom 29, № 1. S. 149-156.
17. Beloborodov D., Mestetskiy L. Foreground detection on depth maps using skeletal representation of object silhouettes // Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017. Vol. 42, № 2. P. 7–11.
18. Pun` A.B., Gavrilov D.A., Shchelkunov N.N., Fortunatov A.A. Algoritm adaptivnoi` binarizatcii ob``ektov v videoposledovatel`nosti v rezhime real`nogo vremeni // Uspehi sovremennoi` radioe`lektroniki. M. Radiotekhnika. 2018. № 8. S. 40–48.
19. Gavrilov D.A. Nei`rosetevoi` algoritm avtomaticheskogo obnaruzheniia i soprovozhdeniia ob``ekta interesa v videosignale // Tr. 16–i` Natc. konf. po iskusstvennomu intellektu (24–27 sentiabria 2018 g.) V 2–kh tomakh/ FITC IU RAN. T.2. M. RKP, 2018. S.188 – 190.
20. Zai`tcev A.V., Kanushkin S.V. Optimizatcionny`i` podhod v mnogokriterial`noi` stabilizatcii bespilotny`kh letatel`ny`kh apparatov okhrannogo monitoringa // Pravovaia informatika. M. 2020. № 3. S. 65–77.
21. DOI: 10.21681/1994-1404-2020-03-65-77
52-60
Livshitz, I. I. DESIGNING AN INTERNATIONALLY SIGNIFICANT ELECTRONIC DOCUMENT FLOW FOR HOLDING COMPANIES / I. I. Livshitz, E. O. Sokolov // Cybersecurity issues. – 2020. – № 5(39). – С. 61-68. – DOI: 10.21681/2311-3456-2020-5-61-68.

Abstract
The purpose of the article: study theoretical approaches and practical schemes for implementing international significant electronic document flow and making proposals for designing any electronic services for holding companies.Research method: Systematic analysis of modern approaches and practical schemes for implementing international significant electronic document flow, including methods for ensuring trust for holding companies operating in various jurisdictions.The result obtained: the scheme for ensuring an internationally significant electronic document flow for holding companies operating in various jurisdictions is proposed. Options for ensuring trust in electronic services provided in various locations are shown. The most significant information security risks are identified and countermeasures to reduce them are proposed. This result can be applied in practice to ensure the legal significance of electronic documents for safety cross-border information exchange, including for companies operating in different jurisdictions.
Keywords: international significant electronic document flow, electronic services, electronic signature, certification center, holding company, jurisdiction 
References
1. Kornienko A.A., Kustov V.N., Stankevich T.L. Improving the efficiency of the trusted third party service // information Protection. Insider.
2018. No. 1 (79). Pp. 49-54.
2. Kustov V. N., Stankevich T. L. The Problem of electronic document flow operators // information Protection. Insider. 2017. No. 4 (76). Pp. 20-24.
3. Livshits I. I. On the issue of assessing the compliance of DTS services with information security requirements based on ISO 27001 // Defense complex - scientific and technical progress of Russia. 2016. No. 1 (129). Pp. 7-14.
4. Livshits I. I. On the issue of assessing the compliance of electronic services with information security requirements based on the ISO 27001 standard in the customs Union / Lontsikh P. A., Livshits I. I. // Bulletin of the Irkutsk State Technical University. 2015. No. 11 (106). Pp. 229-234.
5. Livshits I. I. On the issue of evaluating performance in the implementation of information security management systems // Defense complex - scientific and technical progress of Russia. 2015. No. 2 (126). Pp. 3-9.
6. Best regional project in Central and Eastern Europe. 1C:Project of the year https://eawards.1c.ru/projects/vnedrenie-sistemyelektronnogo-dokumentooborota-sed-na-baze-1s-dokumentooborot-8-v-gazprom-ep-international-bv-82950
7. Lobanova A.M. Legal force and legal significance of the document. Methodological aspects of normative and systematic concepts // Bulletin of VNIIAD. 2020. no. 3. Pp. 41-57.
8. Kuznetsov A.K. Change of legislation on electronic signature: Fundamentals // Law and practice. 2020. No. 2. Pp. 188-193.
9. Konarev D.I. Questions of trust in the absence of a third party in the blockchain technology // In the collection: Historical, philosophical, and methodological problems of modern science. Collection of articles of the 1-st International scientific conference of young scientists. Responsible editor A. A. Gorokhov. 2018. Pp. 118-122.
10. Veselitskaya P.D., Krotova E.L. Application of blockchain technology in public key infrastructure / / Innovative technologies: theory, tools, practice. 2017. Vol. 1. Pp. 227-229.
11. Tawfik A.M., Sabbeh S.F., EL-Shishtawy T.A. Secure multiparty computation for privacy preserving range queries on medical records for star exchange topology. International Journal of Computer Network and Information Security. 2018. Т. 10. № 3. С. 8-16.
12. Mubarakali A., Elsier O., Bose S.C., Srinivasan K., Elsir A. Design a secure and efficient health record transaction utilizing block chain algorithm. Journal of Ambient Intelligence and Humanized Computing. 2019.
13. Maslov D.V., Kiryanov A.E., Arefyeva I.E., Badalov A.B. ATD Internet marketing: the management for participants of the flight of a butterfly project. Навигатор в мире науки и образования. 2017. № 2 (35). С. 153.
14. Wang W., Li S., Du R., Dou J. Privacy-Preserving mixed set operations. Information Sciences. 2020. Т. 525. С. 67-81.
15. Tonyali S., Munoz R., Akkaya K., Ozgur U. A realistic performance evaluation of Privacy-Preserving protocols for SMART grid AMI networks. Journal of Network and Computer Applications. 2018. Т. 119. С. 24-41.
16. Giang Do.H., Keong Ng.W. Mult-Dimensional range query on outsourced Database with strong privacy guarantee. International Journal of Computer Network and Information Security. 2017. Т. 9. № 10. С. 13-23.
17. Romanov K.O. Application of the mechanism of a trusted third party when using an electronic signature in international customs electronic document management // In the collection: Actual problems of customs development in the context of modern global changes. Collection of materials of the IX scientific and practical International conference. 2017. Pp. 167-170.
18. Vologdina E.S. Integration of information resources as a tool for interaction between customs authorities of the EAEU member States // Bulletin of the Academy of law and management. 2019. No. 3 (56). Pp. 16-20.
19. Kochkina O.V., Tyabina Y.A. Foreign experience of formation and functioning of electronic notary // Notary. 2020. no. 5. Pp. 42-44.
20. Kostina O.V., Kostin A.A. development of notaries in the Eurasian economic Union: problems and prospects // Notary. 2017. No. 1. Pp. 40-43.
21. Song B., Yan W., Zhang T. Cross-border e-Commerce commodity risk assessment using text mining and fuzzy rue-based reasoning. Advanced Engineering Informatics. 2019. V. 40. Pp. 69-80.
22. Wei K., Li Y., Zha Y., Ma J. Trust, risk and transaction intention in consumer-to-consumer e-marketplace: an empirical comparison between buyer’ and sellers’ perspectives. Industrial Management & Data Systems. 2019. V. 119. № 2. Pp. 331-350.
23. Sahid G.T., Mahendra R., Budi I. E-commerce merchant classification using website information. В сборнике: ACM International Conference Proceeding Series. 9. Сер. “Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics, WIMS 2019” 2019.
24. Aliev T.T., Bit-Shabo I.V. Legal regulation of e-Commerce and other entrepreneurial activities conducted with digital technologies. Advances in Intelligent Systems and Computing. 2020. V. 1100 AISC. Pp. 807-813.
61-68
Anosov, R. S. FORMALIZED RISK-ORIENTED MODEL OF THE INFORMATION TECHNOLOGY SYSTEM / R. S. Anosov, S. S. Anosov, I. Yu. Shakhalov // Cybersecurity issues. – 2020. – № 5(39). – С. 69-76. – DOI: 10.21681/2311-3456-2020-5-69-76.

Abstract
The aim of the study is to systematize the principles of building information technologies that are essential from the point of view of information risk assessment, and to form, on this basis, a model that provides the ability to analyze risk factors when building secure information systems.Methods: when developing the model, the methods of game theory and set theory were used.The result: the model is focused on taking into account the conflicting nature of interaction between information technologies and sources of threats to information security. The information technology system is considered as an interconnected set of technologies of the warring parties, providing the processes of practical activity of one of them, which allows, on a unified methodological basis, to analyze the vulnerabilities of information technologies, scenarios for the implementation of threats, as well as to optimize technological solutions for information protection.The model is characterized by a high degree of generalization, since its main elements are abstract entities: a set of information technologies used by the parties; sets of information operations, implemented by technologies; information and control relationships on sets of technologies and operations. To use the model requires a preliminary development of the list and characteristics of these sets and relations in relation to specific information technologies.
Keywords: information conflict, information operations, information risk, computer architecture, network architecture, risk factors.
References
1. Buslenko N.P., Kalashnikov V.V., Kovalenko I.N. Lekcii po teorii slozhnyh sistem. M.: Sovetskoe radio, 1973. 440 s.
2. Mesarovich M., Takahara YA. Obshchaya teoriya sistem: matematicheskie osnovy. M.: Mir, 1978. 312 s.
3. Cvetkov V.YA. Osnovy teorii slozhnyh sistem. SPb.: Lan’, 2019. 152 s.
4. Anikin I.V., Emaletdinova L.YU., Kirpichnikov A.P. Metody ocenki i upravleniya riskami informacionnoj bezopasnosti v korporativnyh informacionnyh setyah // Vestnik tekhnologicheskogo universiteta. 2015. T. 18. № 6. S. 195-197.
5. Mikov D.A. Analiz metodov i sredstv, ispol’zuemyh na razlichnyh etapah ocenki riskov informacionnoj bezopasnosti // Voprosy kiberbezopasnosti. 2014. № 4(7). S. 49-54.
6. Glushenko S.A. An adaptive neuro-fuzzy inference system for assessment of risks to an organization’s information security. Business Informatics, 2017, no. 1(39), pp. 68-77. DOI: 10.17323/1998-0663.2017.1.68.77.
7. Minaev V.A., Sychev M.P., Vajc E.V., Gracheva YU.V. Risk-orientirovannyj podhod k modelirovaniyu processa protivodejstviya ugrozam informacionnoj bezopasnosti // Voprosy radioelektroniki. 2017. № 6. S. 83-92.
8. Rad’ko M.N., Skobelev I.O. Risk-modeli informacionno-telekommunikacionnyh sistem pri realizacii ugroz udalennogo i neposredstvennogo dostupa. M.: RadioSoft, 2010. 232 s.
9. Emel’yanov A.A. Imitacionnoe modelirovanie v upravlenii riskami. SPb.: Inzhekon, 2000. 375 s.
10. Kostogryzov A.I., Zubarev I.V. Modelirovanie processov dlya effektivnogo upravleniya riskami v obespechenie kachestva i bezopasnosti funkcionirovaniya sovremennyh i perspektivnyh sistem real’nogo vremeni // Radiopromyshlennost’. 2017. № 2. S. 91-100. DOI: 10.21778/2413-9599-2017-2-91-100.
11. Kostogryzov A.I., Lazarev V.M., Lyubimov A.E. Prognozirovanie riskov dlya obespecheniya effektivnosti sistem informacionnoj bezopasnosti v ih zhiznennom cikle // Pravovaya informatika. 2013. № 4. S. 4-16.
12. YUr’ev V.N. Igrovoj podhod k ocenke riska i formirovaniyu byudzheta informacionnoj bezopasnosti predpriyatiya // Prikladnaya informatika. 2015. Tom. 10. № 2(56). S. 121-126.
13. Kurilo A.P., Miloslavskaya N.G., Senatorov M.YU., Tolstoj A.I. Osnovy upravleniya informacionnoj bezopasnost’yu. M.: Goryachaya liniya-Telekom, 2019. 244 s.
14. Petrosyan L.A., Zenkevich N.A., SHevkoplyas E.V. Teoriya igr. SPb.: BHV-Peterburg, 2012. 432 s.
15. CHelnokov A.YU. Teoriya igr. M.: YUrajt, 2018. 223 s.
16. Belousov A.I., Tkachev S.B. Diskretnaya matematika. M.: Izd-vo MGTU im. N.E.Baumana, 2004. 744 s.
17. Zuev YU.A. Sovremennaya diskretnaya matematika: Ot perechislitel’noj kombinatoriki do kriptografii XXI veka. M.: Lenand, 2019. 720 s.
18. Petrenko S.A., Simonov S.V. Upravlenie informacionnymi riskami. Ekonomicheski opravdannaya bezopasnost’. M.: DMK Press, 2004. 400 s.
19. Miloslavskaya N.G., Senatorov M.YU., Tolstoj A.I. Upravlenie riskami informacionnoj bezopasnosti. M.: Goryachaya liniya-Telekom, 2019. 130 s.
69-76
Romashkina, N. P. STRATEGIC RISKS AND PROBLEMS OF CYBER SECURITY / N. P. Romashkina, D. V. Stefanovich // Cybersecurity issues. – 2020. – № 5(39). – С. 77-86. – DOI: 10.21681/2311-3456-2020-5-77-86.

Abstract
Purpose: To identify the current strategic stability problems associated with the destructive impact of information and communication technologies (ICT) on the basis of analysis and systematization according to various parameters of cyber risks and threats to international security and global stability that can reduce the level of strategic stability and to develop relevant proposals that can lay the foundation for creation of a deterrence policy in the ICT domain.Research method: analysis, synthesis and scientific forecasting, expert assessment, comparative analysis of the cyber domain within the framework of a systematic approach.Result: the article presents analysis and systematization risks and threats to international security and global stability emanating from the cyber sphere according to various parameters. The article proves the impact of the accelerated development of information and communication technologies (ICT) on strategic stability, and that ensuring the cybersecurity of nuclear weapons requires special attention. The global problems of strategic stability at the current stage are posed and the conclusions are that the protection of strategic weapons, early warning systems, air and missile defense, communications, command and control over nuclear weapons from harmful ICTs are the pressing global problems of our time. Specific scenarios of cyber threats leading to a decrease in the level of strategic stability below the necessary and sufficient level have been elaborated, and proposals have been formulated to minimize the corresponding escalation threats. Proposed measures can become a basis for a deterrence policy in the ICT domain, as it was done during the period of bipolarity with regard to nuclear weapons, and become the foundation for broader international agreements on arms control in the so-called nuclear information space of the future.
Keywords: Information and communication technology (ICT), information space, cyber weapon, informational threat, cyber threat, cyberattack, strategic stability, command and control system, nuclear weapon, critical national infrastructure (CI). 
References
1. Schwab K. The fourth industrial revolution: What It Means and How to Respond? //Foreign Affairs. December 12, 2015. // https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution.
2. Information Security Threats during Crisis and Conflicts of the XXI Century / Eds.: N.P. Romashkina, A.V. Zagorskii. Moscow: IMEMO, 2016. // https://www.imemo.ru/files/File/en/publ/2016/2016_001.pdf.
3. Nye J. S. Controlling Cyber Conflict // Project Syndicate. Aug. 8, 2017 // https://www.project-syndicate.org/commentary/new-normsto-prevent-cyber-conflict-by-joseph-s--nye-2017-08/russian.
4. Problemy informacionnoj bezopasnosti v mezhdunarodnyh voenno-politicheskih otnosheniyah / Pod red. A.V. Zagorskogo, N.P. Romashkinoj. M.: IMEMO RAN, 2016. // https://www.imemo.ru/files/File/ru/publ/2016/2016_037.pdf.
5. Gareev M.A., Turko N.I. Vojna: sovremennoe tolkovanie teorii i realii praktiki // Vestnik Akademii voennyh nauk. 2017. № 1 (58), p.4-10.
6. Markov A.S., Fadin A.A. Organizacionno-tekhnicheskie problemy zashchity ot celevyh vredonosnyh programm tipa Stuxnet // Voprosy kiberbezopasnosti. 2013. № 1(1), p. 28-36.
7. Romashkina N.P. Vooruzheniya bez kontrolya: sovremennye ugrozy mezhdunarodnoj informacionnoj bezopasnosti // Puti k miru i bezopasnosti. 2018. № 2(55), p. 64-83.
8. Romashkina N.P., Peresypkina O.V. Informacionno-psihologicheskoe vozdejstvie v period krizisa na Ukraine: uroki dlya Rossii // Informacionnye vojny. 2016. № 1 (37), p. 42-54.
9. Markov A.S., SHeremet I.A. Bezopasnost’ programmnogo obespecheniya v kontekste strategicheskoj stabil’nosti // Vestnik akademii voennyh nauk. 2019. - № 2 (67), p. 82-90.
10. SHeremet I.A. Ugrozy tekhnosfere Rossii i protivodejstvie im v sovremennyh usloviyah // Vestnik akademii voennyh nauk. 2014. № 1., p. 27-34.
11. Kravcov D.N. Informacionno-psihologicheskoe oruzhie kak sredstvo obespecheniya zashchity nacional’nyh interesov gosudarstva // Kommunikologiya. 2017. № 3., p. 78-89.
12. Barsenkov A.S., Veselov V.A., Esin V.I., SHeremet I.A. Voprosy obespecheniya strategicheskoj stabil’nosti v sovetsko-amerikanskih i rossijsko-amerikanskih otnosheniyah: teoreticheskie i prikladnye aspekty // Ser. Politiko-voennye problemy sovremennyh mezhdunarodnyh otnoshenij. – M.: Izd-vo MGU im. M.V. Lomonosova, 2019, 144 p.
13. Romashkina N.P. Strategicheskaya stabil’nost’ v sovremennoj sisteme mezhdunarodnyh otnoshenij. M.: Nauchnaya kniga, 2008, 288 p.
14. Stoutland P., Pitts-Kiefer S., Nuclear Weapons in the New Cyber Age // Nuclear Threat Initiative, September 2018. // https://media.nti.org/documents/Cyber_report_finalsmall.pdf.
15. Futter A. Cyber Threats and Nuclear Weapons New Questions for Command and Control // Security and Strategy. London: Royal United Services Institute for Defence and Security Studies, 2016. // https://rusi.org/sites/default/fi les/cyber_threats_and_nuclear_combined.1.pdf.
16. Panda A., North Korea, US ‘Left of Launch’ Cyber Capabilities, and Deterrence // The Diplomat, December 06, 2018 // https://thediplomat.com/2018/12/north-korea-us-left-of-launch-cyber-capabilities-and-deterrence/.
17. Balybin V.A., Vystorobskij S.G., El’cov O.N., Syrbu I.A. Robotizirovannye kompleksy REB: perspektivy sozdaniya i primeneniya // Radioelektronnaya bor’ba v Vooruzhennyh Silah Rossijskoj Federacii – 2018, 31 p Materialy ot vojsk radioelektronnoj bor’by VS RF. 2018. // https://reb.informost.ru/2018/pdf/1-5.pdf.
18. Stefanovich D.V. Iskusstvennyj intellekt i yadernoe oruzhie // Rossijskij sovet po mezhdunarodnym delam. 6 maya 2019 // https://russiancouncil.ru/analytics-and-comments/analytics/iskusstvennyy-intellekt-i-yadernoe-oruzhie/.
19. Stefanovich, D. Artificial intelligence advances in Russian strategic, The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk, vol. III, South Asian Perspectives, SIPRI: Stockholm, April 2020. // https://www.sipri.org/publications/2020/otherpublications/impact-artificial-intelligence-strategic-stability-and-nuclear-risk-volume-iii-south-asian.
20. Vtyurina A. G., Eliseev V. L., ZHilyaev A. E., Nikolaeva A. S., Sergeev V. N., Urivskij A. V. Realizaciya sredstva kriptograficheskoj zashchity informacii, ispol’zuyushchego kvantovoe raspredelenie klyuchej // Doklady TUSUR. 2018. № 2, p. 15-21.
21. Gorbachev YU.E. Radioelektronnaya bor’ba v slozhnoj elektromagnitnoj obstanovke. // Radioelektronnaya bor’ba v Vooruzhennyh Silah Rossijskoj Federacii. 2017.
22. Romashkina N. P. Global’nye voenno-politicheskie problemy mezhdunarodnoj informacionnoj bezopasnosti: tendencii, ugrozy, perspektivy //Voprosy kiberbezopasnosti. 2019. №. 1 (29)., p.2-9, DOI: 10.21681/2311-3456-2019-1-2-9.
23. Rakov YU. A., SHelest A. B., Nepochatyh A. A. Protivosputnikovoe oruzhie: kiberneticheskie sistemy //Nauchnaya mysl’. 2019. T. 9. №. 3., p. 98-102.
24. Stefanovich D., Russia’s Basic Principles and the Cyber-Nuclear Nexus // European Leadership Network, July 14, 2020 // https://www.europeanleadershipnetwork.org/commentary/russias-basic-principles-and-the-cyber-nuclear-nexus/.
77-86

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.