№ 2 (42)

Content of 2nd issue of magazine «Voprosy kiberbezopasnosti» at 2021:

Title Pages
Vasilyev, V. I. COGNITIVE MODELING OF THE CYBER ATTACK VECTOR BASED ON CAPEC METHODS / V. I. Vasilyev, A. D. Kirillova, A. M. Vulfin // Cybersecurity issues. – 2021. – № 2(42). – С. 2-16. – DOI: 10.21681/2311-3456-2021-2-2-16.

Abstract
Purpose: automation of complex attack vector modeling based on formalized CAPEC meta-pattern based on fuzzy cognitive maps.
Methods: modeling a tool in the form of a graph with a further form of development in the form of a hierarchical fuzzy cognitive map for analysis using the potential level of detail and quantitative assessment of cybersecurity risks. Practical relevance: a scenario approach to modeling complex multistep targeted cyberattacks is proposed based on the draft Methodology for modeling security threats of the FSTEC of Russia and the base of meta- pattern for attacks CAPEC. The algorithm for “folding” a detailed fuzzy cognitive map of the attack vector is shown using the example of the threat of interception of control of an automated process control system of an oil company with an assessment of the probability of implementation, considering the severity level of exploited vulnerabilities. The main software modules of the system have been developed. Computational experiments were carried out to assess the effectiveness of its application. It is shown that as a result of analyzing the vector of cyberattacks in a fuzzy cognitive basis, an expert can rank possible scenarios of implementation, considering the vulnerabilities used, assess the level of danger of the implementation of each scenario separately and cyberattacks as a whole.
Keywords: fuzzy cognitive map, risk assessment, attack graph, scenario, attack pattern, vulnerabilities, Defense
in depth.
References
1. El Hariri M. et al. A targeted attack for enhancing resiliency of intelligent intrusion detection modules in energy cyber physical systems.
In 19th International Conference on Intelligent System Application to Power Systems (ISAP). IEEE, 2017, pp. 1-6.
2. Alshamrani A. et al. A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities // IEEE Communications Surveys & Tutorials, 2019, No 2 (21), pp. 1851-1877.
3. Yadav T., Rao A.M. Technical aspects of cyber kill chain // International Symposium on Security in Computing and Communication, Springer, Cham, 2015, pp. 438-452.
4. Khan M.S., Siddiqui S., Ferens K. A cognitive and concurrent cyber kill chain model // Computer and Network Security Essentials, Springer, Cham, 2018, pp. 585-602.
5. Melnikov P.V., Eshenko R.A. Problemy formirovanija modeli ugroz informacionnoj bezopasnosti v informacionnyh sistemah // Vestnik nauki, 2020, No 1 (6), pp. 185-189.
6. Strom B.E. et al. Finding cyber threats with ATT&CK-based analytics // The MITRE Corporation, Bedford, MA, Technical Report № MTR170202, 2017.
7. Al-Shaer R., Ahmed M., Al-Shaer E. Statistical Learning of APT TTP Chains from MITRE ATT&CK. In Proc. RSA Conf., 2018, pp. 1-2.
8. Munaiah N. et al. Characterizing Attacker Behavior in a Cybersecurity Penetration Testing Competition. In 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, 2019, pp. 1-6.
9. Kotenko I., Doynikova E. The CAPEC based generator of attack scenarios for network security evaluation. In 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2015, No 1, pp. 436-441.
10. Brazhuk A. Semantic model of attacks and vulnerabilities based on CAPEC and CWE dictionaries // International Journal of Open Information Technologies, 2019, No 3 (7), pp. 38-41.
11. Noel S. Interactive visualization and text mining for the CAPEC cyber attack catalog. In Proceedings of the ACM Intelligent User Interfaces Workshop on Visual Text Analytics, 2015.
12. Zhang Y. et al. Power system reliability evaluation with SCADA cybersecurity considerations // IEEE Transactions on Smart Grid, 2015, No 4 (6), pp. 1707-1721.
13. Dojnikova E.V., Kotenko I.V. Sovershenstvovanie grafov atak dlja monitoringa kiberbezopasnosti: operirovanie netochnostjami, obrabotka ciklov, otobrazhenie incidentov i avtomaticheskij vybor zashhitnyh mer // Informacionnaja bezopasnost’, 2018, No 2 (57), pp. 211-240.
14. Mell P., Harang R. Minimizing Attack Graph Data Structures. In the Tenth International Conference on Software Engineering Advances (Barcelona, Spain), 2015, pp. 376-385.
15. Doynikova E., Kotenko I. CVSS-based probabilistic risk assessment for cyber situational awareness and countermeasure selection. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), IEEE, 2017, pp. 346-353.
16. Doynikova E.V., Fedorchenko A.V., Kotenko I.V. Detection of Weaknesses in Information Systems for Automatic Selection of Security Actions // Automatic Control and Computer Sciences, 2019, No 8 (53), pp. 1029-1037.
17. Bullock J., Parker J.T. Wireshark for Security Professionals: Using Wireshark and the Metasploit Framework // John Wiley & Sons, 2017.
18. Harmati I.A., Koczy L.T. On the Convergence of Fuzzy Grey Cognitive Maps // Information Technology, Systems Research, and Computational Physics, Springer Verlag, 2018, pp. 74-84.
19. Wu K. et al. Online Fuzzy Cognitive Map Learning // IEEE Transactions on Fuzzy Systems. 2020. С. 1
20. Vasilyev V.I., Vulfin A.M., Guzairov M.B., Kartak V.M., Chernjahovskaja L.R. Ocenka riskov kiberbezopasnosti ASU TP promyshlennyh ob#ektov na osnove vlozhennyh nechetkih kognitivnyh kart // Informacionnye tehnologii, 2020, No 4 (26), pp. 213-221.
21. Vasilyev V.I., Vulfin A.M., Chernjahovskaja L.R. Analiz riskov innovacionnyh proektov s ispol’zovaniem tehnologii mnogoslojnyh nechetkih kognitivnyh kart // Programmnaja inzhenerija, 2020, No 3 (11), pp. 142-151.
2-16
Dobryshin, M. M. MODEL OF A “PHISHING” TYPE OF COMPUTER ATTACK ON A LOCAL COMPUTER NETWORK / M. M. Dobryshin, P. V. Zakalkin // Cybersecurity issues. – 2021. – № 2(42). – С. 17-25. – DOI: 10.21681/2311-3456-2021-2-17-25.

Abstract
The purpose of the article is to inform information security specialists and researchers of the identified analytical dependencies that take into account the parameters that characterize the process of conducting computer attacks of the “Phishing” type. New dependencies provide an increase in the reliability of the results of assessing the security of a local computer network that has access to the global information space from the specified threat. Research method: simulation of computer attacks of the “Phishing” type and determination of the analytical model based on the approximation of the simulation results.The result: a set of tools for engineering and technical personnel has been created to assess the security of a local computer network from a “Phishing” type of computer attack and, if the result is unsatisfactory, determine measures to protect the network.
Keywords: simulation model, analytical model, simulation, computer attack of the “Phishing” type.
References
1. Dobryshin M.M. Model’ raznorodnyh komp’juternyh atak provodimyh odnovremenno na uzel komp’juternoj seti svjazi // Telekommunikacii [Telecommunications] 2019. No 12. pp. 31-35.
2. Starodubcev Ju.I., Zakalkin P.V., Ivanov S.A. Tehnosfernaja vojna kak osnovnoj sposob razreshenija konfliktov v uslovijah globalizacii // Voennaja mysl’ [Military throught]. 2020. No 10. pp.16-21.
3. Starodubcev Ju.I., Buharin V.V., Semenov S.S. Tehnosfernaja vojna // Voennaja Mysl’ [Military throught] 2012. No 7. pp. 22-31.
4. Dylevskij I.N., Bazylev S.I., Zapivahin O.V., Komov S.A. i dr. O vzgljadah administracii SShA na kiberprostranstvo kak novuju sferu vedenija voennyh dejstvij // Voennaja mysl’ [Military throught] 2020. No 10. pp.22-29.
5. Romashkina N.P. Global’nye voenno-politicheskie problemy mezhdunarodnoj informacionnoj bezopasnosti: tendencii, ugrozy, perspektivy // Voprosy kiberbezopasnosti. 2019. No 1(29). pp. 2-8. DOI: 10.21681/2311-3456-2019-1-2-9.
6. Durnev R.A., K.Ju. Krjukov, Deduchenko F.M. Preduprezhdenie tehnogennyh katastrof, provociruemyh v hode voennyh dejstvij // Voennaja mysl’ [Military throught] 2019. No 10. pp. 41-48.
7. Gas’kova D.A., Massel’ A.G. Tehnologija analiza kiberugroz i ocenka riskov narushenija kiberbezopasnosti kriticheskoj infrastruktury // Voprosy kiberbezopasnosti. 2019. No 2 (30). pp. 42-49. DOI: 10.21681/2311-3456-2019-2-42-49.
8. Karchija A.A., Makarenko G.I., Seregin M.Ju. Sovremennye trendy kiberugroz i transformacija ponjatija kiberbezopasnosti v uslovijah cifrovizacii sistemy prava // Voprosy kiberbezopasnosti. 2019. No 3 (31). pp. 18-23. DOI: 10.21681/2311-3456-2019-3-18-23.
9. Begaev A.N., Dobryshin M.M., Zakalkin P.V., Reformat A.N., Rautkin Ju.V. Kompleksnyj algoritm monitoringa zashhishhennosti uzlov VPN ot komp’juternoj razvedki i DDOS-atak // Jelektrosvjaz’ [Telecommunication]. 2018. No 7. pp. 46-52.
10. 10. Grechishnikov E.V., Dobryshin M.M., Zakalkin P.V. Model’ uzla dostupa VPN kak ob’ekta setevoj i potokovoj komp’juternyh razvedok i DDoS-atak // Voprosy kiberbezopasnosti. 2016. No 3 (16). pp. 4-12. DOI:10.21681/2311-3456-2016-3-4-12.
11. Begaev A.N., Grechishnikov E.V., Dobryshin M.M., Zakalkin P.V. Predlozhenie po ocenke sposobnosti uzla komp’juternoj seti funkcionirovat’ v uslovijah informacionno-tehnicheskih vozdejstvij // Voprosy kiberbezopasnosti. 2018. No 3 (27). pp. 2-8. DOI: 10.21681/2311-3456-2018-3-02-08.
12. Drobotun E.B. Teoreticheskie osnovy postroenija sistem zashhity ot komp’juternyh atak dlja avtomatizirovannyh sistem upravlenija. SPb.: «Naukoemkie tehnologii», 2017. 120 p.
13. Parshutkin A.V. Konceptual’naja model’ vzaimodejstvija konfliktujushhih informacionnyh i telekommunikacionnyh sistem // Voprosy kiberbezopasnosti. 2014. No 5 (8). pp. 2-6.
14. Anisimov V.V., Begaev A.N., Starodubcev Ju.I. Model’ funkcionirovanija seti svjazi s neizvestnym urovnem doverija i ocenki ejo vozmozhnostej po predostavleniju uslugi VPN s zadannym kachestvom // Voprosy kiberbezopasnosti. 2017. No 1 (19). pp. 6-15. DOI: 10.21681/2311-3456-2017-1-6-15.
15. Eremeev M.A., Allakin V.V., Budko N.P. Model’ nastuplenija kriticheskogo sobytija informacionnoj bezopasnosti v informacionnokommunikacionnoj sisteme // Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli [Science-Intensive technologies in space research of the Earth]. 2017. Vol. 9. No 6. pp. 52-60.
16. Svidetel’stvo o gosudarstvennoj registracii programmy dlja JeVM № 2019610015. Programma rascheta verojatnosti osushhestvlenija zloumyshlennikom setevoj ataki tipa «Fishing». Dobryshin M. M., Zakalkin P.V., Gucyn R.V.. – opubl. 10.01.2019 g. Bjul. No 1.
17-25
Nashivochnikov, N. V. TOPOLOGICAL METHODS OF ANALYSIS IN BEHAVIORAL ANALYTICS SYSTEMS / N. V. Nashivochnikov, V. F. Pustarnakov // Cybersecurity issues. – 2021. – № 2(42). – С. 26-36. – DOI: 10.21681/2311-3456-2021-2-26-36.

Abstract

Keywords: user and entity behavioral analytics, behavior profile, computational topology, persistent homology, time series, embedology, clusters, cybersecurity.
References
1. Matveev A. Obzor ry`nka sistem povedencheskogo analiza – User and Entity Behavioral Analytics (UBA/UEBA). URL: https://www.antimalware.ru/analytics/Market_Analysis/user-and-entity-behavioral-analytics-ubaueba.
2. Sadowski G., Litan A., Bussa T., Phillips T. Market Guide for User and Entity Behavior Analytics. Published: 23 April 2018. ID: G00349450. Gartner. 2018.
3. Nashivochnikov N.V. Problemny`e voprosy` primeneniya analiticheskix sredstv bezopasnosti kiberfizicheskix sistem predpriyatij TE`K / Nashivochnikov N.V., Bol`shakov A.A., Nikolashin Yu.A., Lukashin A.A. // Voprosy` kiberbezopasnosti №5 (33). 2019. S. 26-33.
4. Chalapathy R., Chawla S. Deep Learning for Anomaly Detection: A Survey. arXiv:1901.03407 [cs.LG]. 2019. URL: https://arxiv.org/pdf/1901.03407.pdf.
5. Carlsson G. Topology and data // Bull. of the Amer. Mathem. Soc. 2009. Vol. 46(2), P. 255–308.
6. Offroy V, Duponchel L, Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry // Analytica chimica acta. 2016. vol. 910. P. 1-11. https://doi.org/10.1016/j.aca.2015.12.037.
7. Wasserman L. Topological Data Analysis. arXiv:1609.08227v1 [stat.ME]. 2016. URL: https://arxiv.org/pdf/1609.08227.pdf.
8. Chazal F., Bertrand M. An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists. arXiv: 1710.04019 [math.ST]. 2017. URL: https://arxiv.org/pdf/1710.04019.pdf.
9. Chazal F., de Silva V., Glisse M., Oudot S. The Structure and Stability of Persistence Modules. Springer International Publishing. 2016. P. 120. DOI: 10.1007/978-3-319-42545-0.
10. Huntsman S., Palladino J., Robinson M. Topology in cyber research. arXiv:2008.03299 [math.AT]. 2020. URL: https://arxiv.org/pdf/2008.03299.pdf.
11. Brüel-Gabrielsson R., Nelson B., Dwaraknath A., Skraba P, Guibas L., Carlsson G. A Topology Layer for Machine Learning. arXiv:1905.12200v2 [cs.LG]. 2020. URL: https://arxiv.org/pdf/1905.12200.pdf.
12. Otter N., Porter M.A., Tillmann U. Grindrod P., Harrington H.A. A roadmap for the computation of persistent homology // EPJ Data Science. 6, 17. 2017. https://doi.org/10.1140/epjds/s13688-017-0109-5.
13. Kerber M., Schreiber H. Barcodes of Towers and a Streaming Algorithm for Persistent Homology // Discrete & Computational Geometry volume. 2019. v.61, P. 852-879. https://doi.org/10.1007/s00454-018-0030-0.
14. Love E.R., Filippenko B., Maroulas V., Carlsson G. Topological Deep Learning. arXiv:2101.05778 [cs.LG]. 2021. URL: https://arxiv.org/pdf/2101.05778.pdf.
15. Bauer U. Ripser: efficient computation of Vietoris-Rips persistence barcodes. arXiv:1908.02518 [math.AT]. 2019. URL: https://arxiv.org/pdf/1908.02518.pdf
16. Arjovsky M., Chintala S., Bottou L. Wasserstein Generative Adversarial Networks // Proceedings of the 34th International Conference on Machine Learning, PMLR. 2017. P. 214-223.
17. Chow Y. Application of Data Analytics to Cyber Forensic Data // Worcester Polytechnic Institute: BS Thesis , 2016. P. 100.
18. Coudriau M., et al., Topological analysis and visualisation of network monitoring data: Darknet case study // IEEE International Workshop on Information Forensics and Security (WIFS). 2016. P. 1-6.
19. Trevor J. Bihl, Robert J. Gutierrez, Kenneth W. Bauer, Bradley C. Boehmke, Cade Saie. Topological Data Analysis for Enhancing Embedded Analytics for Enterprise Cyber Log Analysis and Forensics // Proceedings of the 53rd Hawaii International Conference on System Sciences, 2020. P. 1937-1946. DOI: 10.24251/HICSS.2020.238.
20. Makarenko N.G. E`mbedologiya i nejroprognoz. Chast` 1. – M. MIFI. 2003. 188 s.
21. Fomichev A.V. E`lementy` teorii bifurkacij i dinamicheskix sistem. Chast` II. – M. MFTI. 2019, 50 s.
22. Bary`sheva E.N., Nikishov V.N. Modeli ocenki finansovy`x pokazatelej s uchetom ix stoxastichnosti i xaotichnosti // Vestnik SamGU. 2012. № 4 (95). S. 115 126.
23. Ryue`l` D. Sluchajnost` i xaos. – M. Izdatel`stvo «Regulyarnaya i xaoticheskaya dinamika». 2001. 192 s.
24. Krakovská A., Mezeiová K., Budáčová N. Use of False Nearest Neighbours for Selecting Variables and Embedding Parameters for State Space Reconstruction // Journal of Complex Systems, 2015. P. 1-12. https://doi.org/10.1155/2015/932750.
25. Postovalov S.N. Statisticheskij analiz danny`x, modelirovanie i issledovanie veroyatnostny`x zakonomernostej. Komp`yuterny`j podxod / Lemeshko B.Yu., Lemeshko S.B., Postovalov S.N., Chimitova E.V. – Novosibirsk. Izd-vo NGTU. 2011. 888 s.
26. Podinovskij V.V., Nogin V.D. Pareto optimal`ny`e resheniya mnogokriterial`ny`x zadach. – M. Fizmatlit. 2007. 256 s.
27. Orlov A.I. Metody` prinyatiya upravlencheskix reshenij. – M. KNORUS. 2018. 286 s.
28. Pichkalev A. V. Primenenie krivoj zhelatel`nosti Xarringtona dlya sravnitel`nogo analiza avtomatizirovanny`x sistem kontrolya // Vestnik KGTU. – Krasnoyarsk: KGTU. №1(1). 1997. S. 128 - 132.
26-36
Tali, D. I. CRYPTOGRAPHIC RECURSIVE CONTROL OF INTEGRITY OF METADATA ELECTRONIC DOCUMENTS. PART 4. EVALUATION OF RESULTS / D. I. Tali, O. A. Finko // Cybersecurity issues. – 2021. – № 2(42). – С. 37-50. – DOI: 10.21681/2311-3456-2021-2-37-50.

Abstract
He purpose of the study is to obtain a numerical assessment of the results of the application, previously presented by the authors, of the method of cryptographic recursive 2-D control of the integrity of the metadata of electronic documents.Research methods: logical-probabilistic method I.A. Ryabinin.Research result: a necessary condition for maintaining the integrity of electronic documents processed by automated information systems for electronic document management is to ensure the required level of metadata security. To evaluate the research results, the probability of violation of the integrity of electronic documents (through destructive influences of authorized users on metadata) was chosen as an indicator of efficiency.The presented approach to the construction of logical-probabilistic models for assessing the level of security of metadata of electronic documents allows in practice to obtain numerical values of the probabilities of transition of the systems under consideration to a dangerous state (associated with a violation of the integrity of the metadata of electronic documents), taking into account the structure of such systems and the real conditions of their functioning.The effect of using the developed method, under the conditions of destructive influences of authorized users (insiders), in comparison with the known solutions (using a hash function) of such problems, is 67% under the given assumptions.
Keywords:  structurally complex systems, automated information systems, electronic document management, security of metadata, algebra of logic, theory of probability, function of a dangerous state of the system, scenario of
system functioning, hash function.
References
1. Ryabinin I.A., Solozhentseva Ye.D., Karaseva V.V. Putevoditel’ po logiko-veroyatnostnomu ischisleniyu // Modelirovaniye i analiz bezopasnosti i riska v slozhnykh sistemakh. Trudy Mezhdunarodnoy nauchnoy shkoly MABR-2016, 2016. S. 9-25.
2. Demin A.V. Logiko-veroyatnostnyy metod upravleniya modul’nymi robotami // Sistemnaya informatika. 2017. № 11. S. 61-80.
3. Seluyanov M.N. Primeneniye obshchego logiko-veroyatnostnogo metoda pri modelirovanii funktsionirovaniya otvetstvennykh sistem // Vestnik Kontserna VKO Almaz-Antey. 2017. № 2 (21). S. 49-55.
4. Kotsynyak M.A., Lauta O.S., Ivanov D.A., Lukina O.M. Metodika otsenki effektivnosti zashchity informatsionno-telekommunikatsionnoy seti v usloviyakh targetirovannykh kiberneticheskikh atak // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2018. № 11-12 (125-126). S. 71-79.
5. Skobtsov V.YU., Kruglikov S.V., Kim D.S. i dr. Analiz pokazateley nadezhnosti, zhivuchesti i telemetrii bortovoy apparatury malykh kosmicheskikh apparatov // Voprosy kiberbezopasnosti. 2018. № 4 (28). S. 54-69. DOI: 10.21681/2311-3456-2018-4-54-69
6. Glazunov V.V., Kurochkin M.A., Popov S.G. Qualification routes messaging for dynamic systems using a logical-probabilistic method // Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravleniye. 2015. № 1 (212). S. 16-21.
7. Ryabinin I.A. Logiko-veroyatnostnyy metod i yego prakticheskoye ispol’zovaniye // Modelirovaniye i analiz bezopasnosti i riska v slozhnykh sistemakh. Trudy Mezhdunarodnoy nauchnoy shkoly MABR-2015, 2015. S. 19-26.
8. Yeliseyev N.I., Tali D.I., Oblanenko A.A. Otsenka urovnya zashchishchennosti avtomatizirovannykh informatsionnykh sistem yuridicheski znachimogo elektronnogo dokumentooborota na osnove logiko-veroyatnostnogo metoda // Voprosy kiberbezopasnosti. 2019. № 6 (34). S. 7-14. DOI: 10.21681/2311-3456-2019-6-07-16.
9. Tali D.I. Model’ ugroz bezopasnosti metadannym v sisteme elektronnogo dokumentooborota voyennogo naznacheniya // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2020. № 139-140. S. 95-101.
10. Yeliseyev N.I., Finko O.A. Teoreticheskiye aspekty razvitiya sistemy elektronnogo dokumentooborota Ministerstva oborony Rossiyskoy Federatsii // Voyenno-teoreticheskiy zhurnal «Voyennaya mysl’», 2015. № 7. S. 55-63.
11. Yeliseyev N.I. Model’ ugroz bezopasnosti informatsii pri yeye obrabotke v sisteme zashchishchennogo elektronnogo
dokumentooborota // Izvestiya YUFU. Tekhnicheskiye nauki. Tematicheskiy vypusk «Informatsionnaya bezopasnost’», № 12 (137). Taganrog: TTI YUFU, 2012. S. 212-218.
12. Ryabinin I.A., Strukov A.V. Resheniye odnoy zadachi otsenki nadezhnosti strukturno-slozhnoy sistemy raznymi logiko-veroyatnostnymi metodami // Modelirovaniye i analiz bezopasnosti i riska v slozhnykh sistemakh. Trudy Mezhdunarodnoy nauchnoy shkoly MABR-2019 , 2019. S. 159-172.
13. Fin’ko O.A., Sokolovskiy Ye.P. Algoritm otsenki riska informatsionnoy bezopasnosti v sistemakh zashchity informatsii na osnove logiko-veroyatnostnogo metoda I.A. Ryabinina // Izvestiya YUFU. Tekhnicheskiye nauki. Tematicheskiy vypusk «Informatsionnaya bezopasnost’», № 12 (149). Taganrog: TTI YUFU, 2013. S. 172-180.
14. Makarenko A.V., Shipilov A.P. Logiko-veroyatnostnyye metody v raschetakh pokazateley nadezhnosti // Voronezhskiy nauchnotekhnicheskiy Vestnik. 2015. T. 4. № 3-3 (13). S. 122-126.
15. Ryabinin I.A. Nadezhnost’ i bezopasnost’ strukturno-slozhnykh sistem / Politekhnika. Izdatel’stvo Sankt-Peterburgskogo universiteta. SPb, 2012. S. 276.
16. Tali D.I., Fin’ko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 1. Matematicheskaya model’ // Voprosy kiberbezopasnosti. 2020. № 5 (39). S. 2-18. DOI: 10.21681/2311-3456-2020-05-2-18.
17. Tali D.I., Fin’ko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 2. Kompleks algoritmov // Voprosy kiberbezopasnosti. 2020. № 6 (40). S. 32-47. DOI: 10.21681/2311-3456-2020-06-32-47.
18. Tali D.I., Fin’ko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 3. Metodika primeneniya // Voprosy kiberbezopasnosti. 2021. № 1 (41). S. 18-29. DOI: 10.21681/2311-3456-2021-1-18-29
37-50
Poltavtseva, M. A. ACTIVE MONITORING MODEL AS A BASIS FOR SECURITY MANAGEMENT OF INDUSTRIAL CPS / M. A. Poltavtseva // Cybersecurity issues. – 2021. – № 2(42). – С. 51-60. – DOI: 10.21681/2311-3456-2021-2-51-60.

Abstract
Purpose of the article - creating a model of active security monitoring that meets the current conditions for industrial cyber-physical systems. Methods of the study. The work concretizes the relationship between monitoring and security management processes in the form of a set of monitoring functions for the management implementation. The active monitoring model is defined using a threefold mapping of security goals, mathematical methods, and security object data. Based on this mapping, the paper formulates the reachability and minimality conditions of monitoring technological components (data and mathematical methods) with respect to security purposes and tasks.Results of the study. The article contains a management and control scheme based on the proposed active monitoring model. The workflow includes steps to evaluate, adjust the set of methods used, adjust the data collected, and verify that the security purpose has been achieved. Active monitoring of information security of digitalized objects, including industrial cyber-physical systems, will increase awareness in security management and provide the required level of protection in changing conditions.
Keywords: information security, security of cyber-physical systems, active monitoring of information security,
adaptive monitoring of information security, security purposes, security tasks, information security management,
compliance predicates, reachability condition, minimality condition .
References
1. Zegzhda, P.D., Zegzhda, D.P. & Stepanova, T.V. Approach to the construction of the generalized functional-semantic cyber security model. Aut. Control Comp. Sci. 49, 627–633 (2015). DOI:10.3103/S0146411615080192
2. Stephen V. Flowerday, Tite Tuyikeze, Information security policy development and implementation: The What, how and who // Computers & Security, Volume 61, 2016, Pages 169-183, DOI:10.1016/j.cose.2016.06.002
3. S. E. Change, A. Y. Liu and Y. J. Jang, “Exploring trust and information monitoring for information security management,” 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, 2017, pp. 1-5, doi: 10.1109/CISP-BMEI.2017.8302319.
4. K. Dempsey R. Niemeyer V. Y. Pillitteri R. Rudman S. Urban Assessing Information Security Continuous Monitoring (ISCM) Programs: Developing an ISCM Program Assessment //National Institute of Standards and Technology Special Publication 800-137A Natl. Inst. Stand. Technol. Spec. Publ. 800-137A, 78 p.– 2020 DOI:10.6028/NIST.SP.800-137A
5. Vatrushkin A. A. Pravovye osnovy obespecheniya kiberbezopasnosti kriticheskoj infrastruktury Rossijskoj Federacii // Evrazijskaya advokatura. 2017. №6 (31). S. 78-84.
6. Zyryanova E.V., Belov V.M., Kosov D.L Primenenie algoritma otsenki kachestva normativnykh pravovykh aktov na primere otsenki kachestva gosudarstvennykh standartov v oblasti informatsionnoi bezopasnosti telekommunikatsionnykh sistem // Sbornik nauchnyh trudov NGTU. – 2019. – № 1 (94). – S. 132–144. – DOI: 10.17212/2307-6879-2019-1-132-144.
7. Kurbatov N.M. Izmeneniya v normativnom pravovom regulirovanii obespecheniya bezopasnosti kriticheskoj informacionnoj infrastruktury Rossijskoj Federacii // Vestnik Udmurtskogo universiteta. Seriya «Ekonomika i pravo». 2019. №3(29). S. 401-409
8. A. A. Jillepalli, F. T. Sheldon, D. C. de Leon, M. Haney and R. K. Abercrombie, “Security management of cyber physical control systems using NIST SP 800-82r2,” 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, 2017, pp. 1864-1870, doi: 10.1109/IWCMC.2017.7986568
9. Björn Leander, Aida Čaušević, and Hans Hansson. 2019. Applicability of the IEC 62443 standard in Industry 4.0 // IIoT. In Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES ‘19). Association for Computing Machinery, New York, NY, USA, Article 101, 1–8. DOI:DOI:10.1145/3339252.3341481
10. I. Jamai, L. Ben Azzouz and L. A. Saïdane, “Security issues in Industry 4.0,” 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020, pp. 481-488, doi: 10.1109/IWCMC48107.2020.9148447.
11. G. Rong-xiao, T. Ji-wei, W. Bu-hong and S. Fu-te, “Cyber-Physical Attack Threats Analysis for UAVs from CPS Perspective,” 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 2020, pp. 259-263, doi: 10.1109/ICCEA50009.2020.00063
12. Lipatnikov V.A., Lozhechkin A.A., SHevchenko A.A. Postroenie kompleksnoj zashchity kiberfizicheskoj sistemy ot destruktivnyh vozdejstvij // Informacionnye sistemy i tekhnologii. 2020. № 6 (122) S. 112-120
13. Levshun D.S., Gajfulina D.A., CHechulin A.A., Kotenko I.V. Problemnye voprosy informacionnoj bezopasnosti kiberfizicheskih sistem // Informatika i avtomatizaciya. T. 19. № 5. 2020. S. 1050-1088. DOI: 10.15622/ia.2020.19.5.6.
14. Vasiliev, Y.S., Zegzhda, P.D. & Zegzhda, D.P. Providing security for automated process control systems at hydropower engineering facilities. Therm. Eng. 63, 948–956 (2016). DOI:10.1134/S0040601516130073
15. Zegzhda, D.P., Lavrova, D.S. & Pavlenko, E.Y. Management of a Dynamic Infrastructure of Complex Systems Under Conditions of Directed Cyber Attacks. J. Comput. Syst. Sci. Int. 59, 358–370 (2020). DOI:10.1134/S1064230720020124
16. Konoplev, A.S., Kalinin, M.O. Tasks of providing information security in distributed computing networks. Aut. Control Comp. Sci. 50, 669–672 (2016). DOI:10.3103/S0146411616080101
17. Zegzhda, D.P., Pavlenko, E.Y. Digital Manufacturing Security Indicators. Aut. Control Comp. Sci. 52, 1150–1159 (2018). DOI:10.3103/S0146411618080333
18. Martins B.F., Serrano L., Reyes J.F., Panach J.I., Pastor O., Rochwerger B. (2020) Conceptual Characterization of Cybersecurity Ontologies. In: Grabis J., Bork D. (eds) The Practice of Enterprise Modeling. PoEM 2020. Lecture Notes in Business Information Processing, vol 400. Springer, Cham. pp 323-338 DOI:10.1007/978-3-030-63479-7_22
19. Il’ina O. P., Sotavov A. K. Arhitekturnoe modelirovanie sistemy informacionnoj bezopasnosti // TTPS. 2019. №2 (48). S. 30-37.
20. Putivcev M. E. Analiz sistem upravleniya informacionnoj bezopasnosti s ispol’zovaniem processnogo podhoda // Izvestiya YUFU. Tekhnicheskie nauki. 2008. №8.S. 41-47.
21. Burlov V. G. Razrabotka modeli upravleniya processom obespecheniya informacionnoj bezopasnosti kiberfizicheskih sistem / V. G. Burlov i dr.// Informacionnye tekhnologii i sistemy: upravlenie, ekonomika, transport, pravo.– 2019.– № 4 (36).– S. 94-98
22. X. Lyu, Y. Ding and S. Yang, “Safety and security risk assessment in cyber-physical systems,” in IET Cyber-Physical Systems: Theory & Applications, vol. 4, no. 3, pp. 221-232, 9 2019, DOI: 10.1049/iet-cps.2018.5068.
23. Jean-Paul A. Yaacoub, Ola Salman, Hassan N. Noura, Nesrine Kaaniche, Ali Chehab, Mohamad Malli Cyber-physical systems security: Limitations, issues and future trends // Microprocessors and Microsystems, Volume 77, 2020, 33p DOI: 10.1016/j.micpro.2020.103201.
24. Zegzhda, D.P., Pavlenko, E.Y. Digital Manufacturing Security Indicators. Aut. Control Comp. Sci. 52, 1150–1159 (2018). DOI:10.3103/S0146411618080333
25. V. Belenko, V. Chernenko, V. Krundyshev and M. Kalinin, “Data-driven failure analysis for the cyber physical infrastructures,” 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 2019, pp. 1-5, DOI: 10.1109/ICPHYS.2019.8854888.
51-60
ANALYSIS OF VULNERABILITIES OF KEY MANAGEMENT SYSTEMS IN DISTRIBUTED LEDGER USING THE EXAMPLE OF THE IBM BLOCKCHAIN / A. S. Plotkin, S. A. Kesel, M. M. Repin, N. V. Fedorov// Cybersecurity issues. – 2021. – № 2(42). – С. 61-70. – DOI: 10.21681/2311-3456-2021-2-61-70.

Abstract
Today, one of the most discussed topics in the field of information technology is distributed registry systems. They attract investors and developers with their functionality. Distributed ledger systems are being introduced into business processes in many areas of human activity, which makes their contribution to development irreplaceable. One of the most vulnerable parts of such systems is the process of managing cryptographic keys, an attack on which can destroy the entire security of the distributed registry system.The aim of the research is to identify possible threats to the process of managing cryptographic keys, on the basis of which recommendations and standards for managing cryptographic keys in distributed ledger systems will be developed.Research methods: to achieve this goal, the structure of the life cycle of cryptographic keys was considered, an analysis of possible vulnerabilities in the process of managing cryptographic keys at each stage of the life cycle of a cryptographic key was carried out. In addition, the distributed ledger system was analyzed in the context of the identified vulnerabilities of the key management process using the example of the IBM blockchain and the possibility of outsourcing cryptographic key management systems was considered.Result: a set of possible threats to the process of managing cryptographic keys was proposed, the necessity of assessing the security of the key management system before deciding on the introduction of these systems into distributed registries was proposed, conclusions were drawn about the need to develop recommendations and standards for the process of managing cryptographic keys for such systems, as well as the possibility applicability of the recommendations for assessing the security of the implementation of outsourcing of cryptographic key management systems in distributed ledgers.
Keywords:  information technology, information security threats, information security, life cycle of cryptographic
keys, outsourcing of cryptographic keys, compensating measures, protection of cryptographic keys.
References
1. O. Pal, B. Alam, V. Thakur, S. Singh, Key management for blockchain technology. ICT Express (2019). DOI: 10.1016/j.icte.2019.08.002
2. KHramova N.A. Issledovanie kriptosistemy` RSA dlia shifrovaniia informatcii // Sovremenny`e naukoemkie tekhnologii. 2020. №9. S. 88-93.
3. Lenz, Rainer. Managing Distributed Ledgers: Blockchain and Beyond (March 26, 2019). SSRN Electronic Journal. DOI: 10.2139/ssrn.3360655.
4. W. Licheng, S. Xiaoying, L. Jing, S. Jun, Y. Yixian Cryptographic primitives in blockchains // Journal of Network and Computer Applications. 2019. №127. S. 43-58.
5. M. Mingxin, Y. Xiaotong, S. Guozhen, L. Fenghua Enhanced blockchain based key management scheme against key exposure attack // AIIPCC ‘19: Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. 2019. S. 1-6.
6. Krivonogov A.A., Repin M.M., Fedorov N.V. Metodika analiza uiazvimostei` i opredeleniia urovnia bezopasnosti smart-kontraktov pri razmeshchenii v sistemakh raspredelenny`kh reestrov // Voprosy` kiberbezopasnosti. 2020. №4 (38). S. 56-65.
7. 10.21681/2311-3456-2020-04-56-65
8. Victor Ribeiro, Raimir Holanda, Alex Ramos, Joel J. P. C. Rodrigues Enhancing Key Management in LoRaWAN with Permissioned Blockchain // Sensors. 2020. S. 1-16. DOI: 10.3390/s20113068 
9. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah and Z. Sun, “Blockchain-Based Dynamic Key Management for Heterogeneous Intelligent Transportation Systems,” in IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1832-1843, Dec. 2017, DOI: 10.1109/JIOT.2017.2740569.
10. W. F. Ehrsam, S. M. Matyas, C. H. Meyer and W. L. Tuchman, “A cryptographic key management scheme for implementing the Data Encryption Standard,” in IBM Systems Journal, vol. 17, no. 2, pp. 106-125, 1978, DOI: 10.1147/sj.172.0106.
11. Kuz`menko V.V., Makarov V.L., Razguliaev K.A., Han D.V., Shcherbakov A.Iu. Novy`i` podhod k obespecheniiu bezopasnosti perimetra biznes-protcessov i autentifikatcii pol`zovatelei` v korporativnoi` sisteme // Vestneyk sovremenny`kh tcifrovy`kh tekhnologii`. 2020. №3. S. 10-13.
12. Sathya Priya S, Revathy S, Kamnag R, Yogeswar L, Sajal M, Suparna S Distributed Key Management for IT Infrastructure using Block Chain and Hash Graph // International Journal of Recent Technology and Engineering (IJRTE). 2019. S. 533-537.
13. Razguliaev K.A., Riazanova A.A., Han D.V., Shcherbakov A.Iu. Ob odnom sposobe khraneniia i upravleniia cliuchami v sistemakh kvantovy`kh kommunikatcii` // Vestneyk sovremenny`kh tcifrovy`kh tekhnologii`. 2020. №2. S. 14-20.
14. Rui Zhang, Rui Xue, Ling Liu Security and Privacy on Blockchain // ACM Computing Surveys. 2019. S. 1-35.
15. Pankov K. N. Ispol`zovanie kriptograficheskikh sredstv dlia skvozny`kh tcifrovy`kh tekhnologii` na primere sistem raspredelennogo reestra // Tekhnologii informatcionnogo obshchestva. Materialy` XII Mezhdunarodnoi` otraslevoi` nauchno-tekhnicheskoi` konferentcii. 2018. S. 365-366.
16. Pankova V.V., Mironenko A.D. Cryptographic key management systems // Informatcionno-kommunikativnaia kul`tura: Nauka i Obrazovanie Sbornik statei` Mezhdunarodnoi` nauchno-prakticheskoi` konferentcii studentov, aspirantov i molody`kh ucheny`kh. Ministerstvo obrazovaniia i nauki Rossii`skoi` Federatcii, Donskoi` gosudarstvenny`i` tekhnicheskii` universitet. 2018. S. 191-193.
61-70
Barabanov, A. SECURITY AUDIT LOGGING IN MICROSERVICE-BASED SYSTEMS: SURVEY OF ARCHITECTURE PATTERNS / A. Barabanov, D. Makrushin // Cybersecurity issues. – 2021. – № 2(42). – С. 71-80. – DOI: 10.21681/2311-3456-2021-2-71-80.

Abstract
Objective. Service-oriented architecture increases technical abilities for attacker to move laterally and maintain multiple pivot points inside of compromised environment. Microservice-based infrastructure brings more challenges for security architect related to internal event visibility and monitoring. Properly implemented logging and audit approach is a baseline for security operations and incident management. The aim of this study is to provide helpful resource to application and product security architects, software and operation engineers on existing architecture patterns to implement trustworthy logging and audit process in microservice-based environments.Method. In this paper, we conduct information security threats modeling and a systematic review of major electronic databases and libraries, security standards and presentations at the major security conferences as well as architecture whitepapers of industry vendors with relevant products.Results and practical relevance. In this work based on research papers and major security conferences presentations analysis, we identified industry best practices in logging audit patterns and its applicability depending on environment characteristic. We provided threat modeling for typical architecture pattern of logging system and identified 8 information security threats. We provided security threat mitigation and as a result of 11 high-level security requirements for audit logging system were identified. High-level security requirements can be used by application security architect in order to secure their products.
Keywords: microservices, microservice architectures, security, operations, audit, logging, architecture patterns
survey.
References
1. Adam Shostack. Threat Modeling: Designing for Security. 624 p. Wiley; 1 edition (February 17, 2014)
2. I. Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security evaluation,” 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, 2015, pp. 436-441. DOI: 10.1109/IDAACS.2015.7340774
3. V. Mavroeidis and S. Bromander, “Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), Athens, 2017, pp. 91-98. DOI: 10.1109/EISIC.2017.20
4. Securing DevOps. Security in the Cloud, Julien Vehent. 2018, Manning
5. D. Preuveneers and W. Joosen, “Towards Multi-party Policy-based Access Control in Federations of Cloud and Edge Microservices,” 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 2019, pp. 29-38. DOI: 10.1109/EuroSPW.2019.00010
6. M. Cinque, R. Della Corte and A. Pecchia, “Microservices Monitoring with Event Logs and Black Box Execution Tracing,” in IEEE Transactions on Services Computing. DOI: 10.1109/TSC.2019.2940009
7. S. Amir-Mohammadian, C. Kari, “Correct Audit Logging in Concurrent Systems”, in “Electronic Notes in Theoretical Computer Science”, Volume 351, 2020, pp. 115-141. DOI: https://doi.org/10.1016/j.entcs.2020.08.007
8. Shahar E. (2019) Advanced Logging, Monitoring, and Alerting. In: Project Reliability Engineering. Apress, Berkeley, CA. DOI: 10.1007/978-1-4842-5019-8_8
9. Chaitanya K. Rudrabhatla. Security Design Patterns in Distributed Microservice Architecture. URL: https://arxiv.org/abs/2008.03395
10. A. Pereira-Vale, G. Márquez, H. Astudillo and E. B. Fernandez, “Security Mechanisms Used in Microservices-Based Systems: A Systematic Mapping,” 2019 XLV Latin American Computing Conference (CLEI), Panama, Panama, 2019, pp. 01-10. DOI: 10.1109/CLEI47609.2019.235060
11. Abdelhakim Hannousse, Salima Yahiouche. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. URL: https://arxiv.org/abs/2003.07262
12. Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. A survey on security issues in services communication of microservices-enabled fog applications. Concurrency and Computation: Practice and Experience, 31(22):e4436, 2019. e4436 cpe.4436.
13. A. Nehme, V. Jesus, K. Mahbub and A. Abdallah, “Securing Microservices,” in IT Professional, vol. 21, no. 1, pp. 42-49, Jan.-Feb. 2019. DOI: 10.1109/MITP.2018.2876987
14. Barabanov A., Makrushin D., Authentication and authorization in microservice-based systems: survey of architecture patterns, Voprosy kiberbezopasnosti, №4 (38), 2020. pp 32-43. DOI: 10.21681/2311-3456-2020-04-32-43
15. Sheluhin O.I., Ryabinin V.S., Farmakovskiy M.А., Anomaly detection in computer system by intellectictual analysis of system journals, Voprosy kiberbezopasnosti, №2(26), 2018. pp 36-41. (in Russ.) DOI: 10.21681/2311-3456-2018-2-33-43
16. Butusov I.V., Romanov A.A., Prevention of information security incidents in automated information system, Voprosy kiberbezopasnosti, №5(39), 2020. pp 45-51. (in Russ.) DOI: 10.21681/2311-3456-2020-05-45-51
71-80
Petrenko, S. A. CYBER RESILIENT PLATFORM FOR INTERNET OF THINGS (IIOT/IOT)ED SYSTEMS: SURVEY OF ARCHITECTURE PATTERNS / S. A. Petrenko // Cybersecurity issues. – 2021. – № 2(42). – С. 81-91. – DOI: 10.21681/2311-3456-2021-2-81-91.

Abstract
Purpose of the article: development of tools for building the cyber resilient platform for Internet of things (IIoT/IoT). The urgency of development the cyber resilient platform for Internet of things (IIoT/IoT) is to provide the required security and resilience of critical information infrastructure of the Russian Federation in the face of rising security threats, and imperfection of the known models, methods and means for data collection and processing in IIoT/IoT networks, based on the wireless technology Sigfox, LoRaWaN, “Strij/”Vaviot” (XNB/Nb-Fi), NBIoT.Research methods: It uses the author's models and methods of similarity and dimensions theory of the distributed computing, as well as the domestic technology of wireless communication Logic Inter Node Connection (LINC) (http://aura360.ru/), as well as the domestic FenixOS operating system (https://fenix.link/kontakty/), designed for collecting and processing the telemetry data.
Results: Developed tools for building the cyber resilient platform for Internet of things (IIoT/IoT). The article presents the main scientific and technical results of solving this problem. The research was carried out within the framework of the Federal project “Information security” of the national program “Digital economy of the Russian Federation”. It is important to note that the results allowed designing a prototype of the domestic Internet of things (IIoT/IoT) platform with self-healing data reception and transmission paths between smart devices.
Keywords: Digital transformation, Digital economy, Сritical information infrastructure, Cyber resilience, Self-organization, Domestic Internet of things (IIoT/IoT) platform. 
References
1. Markov, A. Barabanov and V. Tsirlov (2018). Periodic Monitoring and Recovery of Resources in Information Systems. In Book: Probabilistic Modeling in System Engineering, by ed. A. Kostogryzov. IntechOpen, pp. 213–231.
2. A. Barabanov and A. Markov (2015). Modern Trends in the Regulatory Framework of the Information Security Compliance Assessment
in Russia Based on Common Criteria. In Proceedings of the 8th International Conference on Security of Information and Networks
(Sochi, Russian Federation, September 08–10, 2015). SIN ’15. ACM New York, NY, USA, pp. 30–33.
3. Dorofeev A.V., Markov A.S., Tsirlov V.L. APPLICATION OF OPEN DATA IN ACCORDANCE WITH INFORMATION SECURITY REQUIREMENTS:
CEUR Workshop Proceedings. ISTMC 2019 - Selected Papers of the 4th All-Russian Scientific and Practical Conference with International Participation “Information Systems and Technologies in Modeling and Control”. 2019. С. 36-46.
4. P. Goodwin and S. Pike (2018). Five Key Technologies for Enabling a Cyber-Resilience Framework. [Electronic resource] – Access mode: https://cdn2.hubspot.net/hubfs/4366404/QRadar/QRadar%20Content/ Five%20Key%20Technologies%20for%20Enabling%20a%20Cyber% 20Resilience%20Framework.pdf?t=1535932423907.
5. A. Kott and I. Linkov (2019). Cyber Resilience of Systems and Networks, Risk, Systems and Decisions, Springer Nature Switzerland AG, [Electronic resource] – Access mode: https://doi.org/10.1007/978-3- 319-77492-3. References 411
6. A. Kott, J. Ludwig and M. Lange (2017). Assessing mission impact of cyberattacks: Toward a model-driven paradigm. IEEE Security and Privacy, 15(5), pp. 65–74. DOI: 10.1109/MSP.2017.3681068
7. O. Logan Mailloux (2018). Engineering Secure and Resilient CyberPhysical Systems, Systems Engineering Cyber Center for Research, US Air Force. [Electronic resource] – Access mode: https://www.caecommunity.org/sites/default/files/symposium_presentations/
Engineering_Secure_and_Resilient_Cyber-Physical_Systems.pdf.Bodeau D., Graubart R., Heinbockel W. and Laderman E.:Cyber Resiliency Engineering Aid-The Updated Cyber Resiliency Engineering Framework and Guidance on Applying Cyber Resiliency Techniques (MTR140499R1PR 15-1334) (May 2015).
8. Bodeau D., Brtis J., Graubart R. and Salwen J.:Resiliency Techniques for System of Systems: Extending and Applying the Cyber Resiliency Engineering Framework to the Space Domain (MTR 130515, PR 13-3513), (September 2013).
9. Ronald S. Ross: Risk Management Framework for Information Systems and Organiza-tions: A System Life Cycle Approach for Security and Privacy (December 20, 2018).
10. Markov A., Markov G., Tsirlov V. SIMULATION OF SOFTWARE SECURITY TESTS BY SOFT COMPUTATIONAL METHODS: CRITICAL INFRASTRUCTURES: CONTINGENCY MANAGEMENT, INTELLIGENT, AGENT-BASED, CLOUD COMPUTING AND CYBER SECURITY (IWCI 2019).
Proceedings of the VIth International Workshop. Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences. 2019. С. 257-261. 
11. Petrenko Sergei (2018). Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation, ISBN 978-3-319-79035-0 and ISBN 978-3-319-79036-7 (eBook), https://doi.org/10.1007/978-3-319-79036-7 ©2018 Springer Nature Switzerland AG, part of Springer Nature, 1st ed. XXVII, 249 p. 93 illus. 
12. Petrenko Sergei (2018). Cyber Security Innovation for the Digital Economy: A Case Study of the Russian Federation, ISBN: 978- 87-7022-022-4 (Hardback) and 978-87-7022-021-7 (eBook) ©2018 River Publishers, River Publishers Series in Security and Digital Forensics, 1st ed. 490 p. 198 illus.
13. Petrenko, S. A. and Stupin, D. D. (2018). National Early Warning System on Cyber-attack: a scientific monograph [under the general editorship of SF Boev] ©2018 “Publishing House” Athena”, University of Innopolis; Innopolis, Russia, 2 ed. 440 p. 162 illus.
14. Petrenko Sergei (2019). Cyber Resilience, ISBN: 978-87-7022- 116-0 (Hardback) and 877-022-116-2 (Ebook) ©2019 River Publishers, River Publishers Series in Security and Digital Forensics, 1st ed. 2019, 492 p. 207 illus.
15. Petrenko Sergei and Khismatullina Elvira (2019). Cyber-resilience concept for Industry 4.0 digital platforms in the face of growing cybersecurity threats. Software Technology: Methods and Tools 51st International Conference, TOOLS 2019, Innopolis, Russia, October 15–17, 2019, Proceedings. Editors: Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (Eds.), eBook ISBN 978-3-030-29852-4, DOI: 10.1007/978-3-030-29852-4, Softcover ISBN 978-3-030-29851-7, 420 p. (https://www.springer.c om/gp/book/9783030298517).
81-91

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.