№ 1 (41)

cover_1-141

Content of 1st issue of magazine «Voprosy kiberbezopasnosti» at 2021:

Title Pages
Erokhin, V. V. FLAWS IN THE ANDROID PERMISSION PROTOCOL WITH LIMITED VERIFICATION / V. V. Erokhin // Cybersecurity issues. – 2021. – № 1(41). – С. 2-17. – DOI: 10.21681/2311-3456-2021-1-2-17.

Abstract
Purpose of the article: analysis of the resolution protocol implemented in the Android operating system as the most popular for smartphones and other electronic gadgets; consider a formal model of the Android permission protocol and describe the automatic security analysis of this model; identify potential flaws in the permitting protocol.Research method: A formal model of the Android permission protocol based on C++ using the Java NDK based on first-order relational logic is considered, with an analysis engine that performs limited model validation.Result. Created a formal model of Android permission protocol using C ++ using Java NDK. The model identified flaws in the Android permission protocol, and thus exposed Android security vulnerabilities. The developed Android protocol permission model consists of three parts: an Android device architecture query; Android permission scheme request; system operations. Fixed flaws in Android OS related to custom permissions vulnerability. An experiment is presented to demonstrate the feasibility and prevalence of custom permissions vulnerability in existing Android applications. Examination of real Android applications supports our finding that flaws in the Android permission protocol can have serious security implications for electronic gadget applications, and in some cases allows an attacker to completely bypass permission checks. A study of one of the vulnerabilities showed that it is widespread among many existing Android applications. Most developers do not perform any additional validation to ensure that inbound APIs come from trusted applications or vendors, assuming they may not be aware of a custom permissions vulnerability despite its potential for security breaches. The result will be useful for software developers for operating systems with permissions - Android, iOS and Fire OS.
Keywords:  malware, mobile security, API level, mobile applications, programming, dynamic analysis, source code, modeling, operating system.
References
1. Egelman, S., Felt, A. P., & Wagner, D. Choice architecture and smartphone privacy: There’s a price for that // The economics of information security and privacy. 2013. pp. 211-236. DOI:10.1007/978-3-642-39498-0_10.
2. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan, M. Android security: A survey of issues, malware penetration, and defenses // IEEE Communications Surveys and Tutorials. 2015. 17(2). pp. 998-1022. DOI:10.1109/COMST.2014.2386139.
3. Gao, J., Li, L., Kong, P., Bissyande, T. F., & Klein, J. Understanding the evolution of android app vulnerabilities // IEEE Transactions on Reliability. 2019. pp. 1‑19. DOI:10.1109/TR.2019.2956690.
4. Demissie, B. F., Ceccato, M., & Shar, L. K. Security analysis of permission re-delegation vulnerabilities in android apps // Empirical Software Engineering. 2020. 25(6). pp. 5084-5136. DOI:10.1007/s10664-020-09879-8.
5. Thiyagarajan, J., Akash, A., & Murugan, B. Improved real-time permission based malware detection and clustering approach using model independent pruning. // IET Information Security. 2020. 14(5). pp. 531-541. DOI:10.1049/iet-ifs.2019.0418.
6. Scalas, M., Maiorca, D., Mercaldo, F., Visaggio, C. A., Martinelli, F., & Giacinto, G. On the effectiveness of system API-related information for android ransomware detection // Computers and Security. 2019. 86. pp. 168-182. DOI:10.1016/j.cose.2019.06.004.
7. Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. Intelligent mobile malware detection using permission requests and API calls // Future Generation Computer Systems. 2020. 107. pp. 509-521. DOI:10.1016/j.future.2020.02.002.
8. Moore, S. R., Ge, H., Li, N., & Proctor, R. W. Cybersecurity for android applications: Permissions in android 5 and 6 // International Journal of Human-Computer Interaction. 2019. 35(7). pp. 630-640. DOI:10.1080/10447318.2018.1489580.
9. Yang, X., Lo, D., Li, L., Xia, X., Bissyandé, T. F., & Klein, J. Characterizing malicious android apps by mining topic-specific data flow signatures // Information and Software Technology. 2017. 90. pp. 27-39. DOI:10.1016/j.infsof.2017.04.007.
10. Xiao, J., Chen, S., He, Q., Feng, Z., & Xue, X. An android application risk evaluation framework based on minimum permission set identification // Journal of Systems and Software. 2020. 163. pp. 1-43. DOI:10.1016/j.jss.2020.110533.11. Doǧru, I. A., & Önder, M. AppPerm analyzer: Malware detection system based on android permissions and permission groups // International Journal of Software Engineering and Knowledge Engineering. 2020. 30(3). pp. 427-450. DOI:10.1142/S0218194020500175.
12. De Lorenzo, A., Martinelli, F., Medvet, E., Mercaldo, F., & Santone, A. Visualizing the outcome of dynamic analysis of android malware with VizMal // Journal of Information Security and Applications. 2020. 50. DOI:10.1016/j.jisa.2019.102423.
13. Iadarola, G., Martinelli, F., Mercaldo, F., & Santone, A. Call graph and model checking for fine-grained android malicious behaviour detection // Applied Sciences (Switzerland). 2020. 10(22). pp. 1-20. DOI:10.3390/app10227975.
14. Sharmeen, S., Huda, S., Abawajy, J., & Hassan, M. M. An adaptive framework against android privilege escalation threats using deep learning and semi-supervised approaches // Applied Soft Computing Journal. 2020. 89. pp. 1-20. DOI:10.1016/j.asoc.2020.106089.
15. Nguyen-Vu, L., Ahn, J., & Jung, S. Android fragmentation in malware detection // Computers and Security. 2019. 87. pp. 1-10. DOI:10.1016/j.cose.2019.101573.
16. Bagheri, H., Sadeghi, A., Garcia, J., & Malek, S. COVERT: Compositional analysis of android inter-app permission leakage. // IEEE Transactions on Software Engineering. 2015. 41(9). pp. 866-886. DOI:10.1109/TSE.2015.2419611.
2-17
Leontiev, V. K. ON SOME FEATURES OF THE PROBLEM OF SOLVABILITY OF SYSTEMS OF BOOLEAN EQUATIONS / V. K. Leontiev, E. N. Gordeev // Cybersecurity issues. – 2021. – № 1(41). – С. 18-28. – DOI: 10.21681/2311-3456-2021-1-18-28.

Abstract
The purpose of the article is to present new results on combinatorial characteristics of systems of Boolean equations, on which such properties of systems as compatibility, solvability, number of solutions and a number of others depend.The research method is the reduction of applied problems to combinatorial models with the subsequent application of classical methods of combinatorics: the method of generating functions, the method of coefficients, methods for obtaining asymptotics, etc. Obtained result. In this paper, we obtain results concerning the solvability of systems of Boolean equations. The complexity of the problem of “ transformation” of an incompatible system into a joint one is analyzed. An approach to solving the problem of separating the minimum number of joint subsystems from an incompatible system is described and justified. The problem is reduced to the problem of finding the minimum covering set. The system compatibility criterion is obtained. Using the method of coefficients, formulas for finding and estimating the number of solutions for parameterizing the problem on the right-hand sides of equations are derived. The maximum of this number is also investigated depending on the parameter. Formulas for the number of solutions for two special cases are obtained: with a restriction on the number of equations and on the size of the problem parameters.
Keywords:  NP-completeness, Boolean programming problem, joint systems, linear transformation, generating functions, parametric problems. 
References
1. Papadimitriu KH., Stai`glitc S. Kombinatornaia optimizatciia. Algoritmy` i slozhnost`. M.: Mir, 1985. 512 s.
2. Ge`ri M., Johnson D. Vy`chislitel`ny`e mashiny` i trudnoreshaemy`e zadachi M.: Mir, 1982. 416 s.
3. Skhrei`ver A. Teoriia linei`nogo i tcelochislennogo programmirovaniia. M.: Mir.1991. 360 s. 
4. Leont`ev V.K., Gordeev E`.N. Proizvodiashchie funktcii v zadache o rantce // Doclady` Akademii nauk . 2018 . T. 481. № 5. S. 478 – 480. DOI: 10.31857/S086956520002139-5.
5. Leont`ev V.K., Gordeev E`.N. O nekotory`kh kombinatorny`kh svoi`stvakh zadachi o riukzake // Zhurnal vy`chislitel`noi` matematiki i matematicheskoi` fiziki. 2019. T. 59. № 8.S. 1439-1447. DOI: 10.1134/S0044466919080076.
6. Kellerer H., Pferschy U., Pisinger D. Knapsack problems. Berlin: Springer, 2004. 548 p.
7. Leont`ev V.K., Tonoian G.P. Priblizhenny`e resheniia sistem bulevy`kh uravnenii` // Zhurnal vy`chislitel`noi` matematiki i matematicheskoi` fiziki 1993. T. 33. № 9. S. 1383-1390.
8. Leont`ev V.K., Tonoian G.P. O sistemakh bulevy`kh uravnenii` // Zhurnal vy`chislitel`noi` matematiki i matematicheskoi` fiziki. 2013. T. 53. № 5. S. 109-116.
9. Kuziurin N.N., Fomin S.A. E`ffektivny`e algoritmy` i slozhnost` vy`chislenii`. M.: MFTI, 2007. 311 s. ISBN 5-7417-0198-1
10. Leont`ev V.K., Gordeev E`.N. Ob algebraicheskoi` immunnosti sistem kodirovaniia // Voprosy` kiberbezopasnosti, 2019, №1. S. 59-89. DOI: 10.21681/2311-3456-2019-1-59-68.
11. Gordeev E`.N., Leont`ev V.K., Medvedev N.V. O svoi`stvakh bulevy`kh polinomov, aktual`ny`kh dlia kriptosistem // Voprosy` kiberbezopasnosti, 2017, №3. S. 63-69. DOI: 10.21681/2311-3456-2017-3-63-69.
12. Balakin G.V. O reshenii nekotory`kh classov sistem bulevy`kh uravnenii` rekurrentnogo tipa // Matematicheskie voprosy` kriptografii. 2013. T.4. №1. S. 5–25. DOI: 10.4213/mvk71.
13. 13. Balakin G.V. O vozmozhnosti chastichnogo vosstanovleniia nekotory`kh posledovatel`nostei` po nabliudeniiam // Matematicheskie voprosy` kriptografii. 2013. T.4. №4. S. 7–25. DOI: 10.4213/mvk97.
14. Zubkov A.M. Kruglov V.I. Momentny`e harakteristiki vesov vektorov v sluchai`ny`kh dvoichny`kh linei`ny`kh kodakh // Matematicheskie voprosy` kriptografii. 2013. T.3. №4. S. 55–70. DOI: 10.4213/mvk67.
15. Faug`re J.-C. A new efficient algorithm for computation Grebner e o bases (F4 ) // Journal of pure and applied algebra. 1999. Vol. 139. Issues 1–3. P. 61-88. DOI: 10.1016/S0022-4049(99)00005-5.
16. Faug`re J-C. A new efficient algorithm for computation Grebner e o bases without reduction to zero (F5 ) // Proceedings of the 2002 international symposium on Symbolic and algebraic computation 2002. P.75–83. DOI: 10.1145/780506.780516.
17. Courtois N., Pieprzyk J. Cryptanalysis of block chiphers with overdened systems of equations // Proc. 8th Int. Conf. on the Theory and Application of Cryptology and Information Security. 2002. Springer. P. 267–287.
18. Courtois N, Bard G.V. Algebraic cryptanalysis of the data encryption standard // IMA International Conference on Cryptography and Coding Theory. Lecture Notes in Computer Science. Springer-Verlag. 2007. P. 152-169. DOI: 10.1007/3-540-36178-2_17.
19. Massacci F, Marraro L. Logical Cryptanalysis as a SAT Problem // Journal of Automated Reasoning. Springer Netherlands. 2000. Vol. 24. P. 165-203. DOI:10.1023/A:1006326723002.
20. Fiorini C., Martinelli E., Massacci F. How to fake an RSA signature by encoding modular root nding as a SAT problem // Discrete Applied Mathematics. 2003.Vol. 130. P. 101-127.
21. Mironov I., Zhang L. Applications of SAT Solvers to Cryptanalysis of Hash Functions// In: Biere A., Gomes C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. Vol. 4121. P. 102-115. DOI: 10.1007/11814948_13
22. Meluzov A.S. Postroenie e`ffektivny`kh algoritmov resheniia sistem polinomial`ny`kh bulevy`kh uravnenii` metodom oprobovaniia chasti peremenny`kh // Diskretnaia matematika. 2011. T. 23. № 4. S. 66–79.
23. Meluzov A.S. O kriptoanalize LILI-128, osnovannom na chastichnom oprobovanii i monomial`noi` sovmestnosti sistem polinomial`ny`kh uravnenii` // Sbornik rabot molody`kh ucheny`kh fakul`teta VMK MGU. 2011. № 8. S.99–107.
24. Alekseev E.K., Oshkin I.V., Popov V.O., Smyshlyaev S.V., Solving systems of linear Boolean equations with noisy right-hand sides over the reals // Discrete Math. Appl. 2018. Vol. 28. №1. P. 1–5. DOI:10.1515/dma-2018-0001.
25. Leont`ev V.K. O psevdobulevy`kh polinomakh // Zhurnal vy`chislitel`noi` matematiki i matematicheskoi` fiziki. 2015. T. 55. № 11. S. 1952–1958. DOI: 10.7868/S0044466915110113.
26. Leont`ev V.K. Kombinatorika i informatciia. Chast` 1. Kombinatorny`i` analiz. M.: MFTI, 2015. 174 s.
27. Leont`ev V.K. Kombinatorika i informatciia. Chast` 2. Informatcionny`e modeli. M.: MFTI, 2015. 112 s.
18-28
SECURITY ASSESSMENT METHODOLOGY BASED ON THE SEMANTIC MODEL OF METRICS AND DATA / E. V. Doynikova, A. V. Fedorchenko, I. V. Kotenko, E. C. Novikova // Cybersecurity issues. – 2021. – № 1(41). – С. 29-40. – DOI: 10.21681/2311-3456-2021-1-29-40.

Abstract
The purpose of the article: development of semantic model of metrics and data and technique for security assessment based on of this model to get objective scores of information system security. Research method: theoretical and system analysis of open security data sources and security metrics, semantic analysis and classification of security data, development of the security assessment technique based on the semantic model and methods of logical inference, functional testing of the developed technique.The result obtained: an approach based on the semantic model of metrics and data is proposed. The model is an ontology generated considering relations among the data sources, information system objects and data about them, primary metrics of information system objects and integral metrics and goals of assessment. The technique for metrics calculation and assessment of unspecified information systems security level in real-time using the proposed model is developed. The case study demonstrating applicability of the developed technique and ontology to answer security assessment questions is provided.The area of use of the proposed approach are security assessment components of information security monitoring and management systems aimed at increasing their efficiency.
Keywords: security assessment, semantics, metrics, ontology, cyber attack, information system, data mining.
References
1. Kotenko I., Saenko I., Chechulin A., Polubelova O., Novikova E., Doinikova E., Shorov A., Desnitsky V. Intelligent information security services in critical infrastructures. Monography / Ed. Igor Kotenko and Igor Sayenko. St. Petersburg: BHV Publishing House, 2019. ISBN 978-5-9775-3968-5 (in Russian).
2. Rybolovlev D., Karasev S., Poljakov S. Classification of modern security information and event management systems // Cybersecurity issues. 2018. No. 3 (27). P. 47-53. DOI: 10.21681/2311-3456-2018-3-47-53 (in Russian).
3. Kotenko I., Fedorchenko A., Saenko I., and Kushnerevich A. Big-data technologies for security event correlation based on types relations // Cybersecurity issues. 2017. No. 5(23). P. 2-16. DOI: 10.21681/2311-3456-2017-5-2-16 (in Russian).
4. Grusho, A.A., Grusho, N.A., Zabezhailo, M.I., Timonina E.E. Intelligent data analysis in information security // Aut. Control Comp. Sci. 50, P. 722–725. 2016. https://doi.org/10.3103/S0146411616080307.
5. Miloslavskaya, N. Stream data analytics for network attacks’ prediction // Procedia Computer Science. 169, P. 57-62. 2020. 10.1016/j.procs.2020.02.114.
6. Vasilyev V, Vulfin А., Kuchkarova N. Automation of software vulnerabilities analysis on the basis of text mining technology // Cybersecurity issues. 2020. No. 4 (38). P.22-31. DOI: 10.21681/2311-3456-2020-04-22-31 (in Russian).
7. Fatkieva R.R., Levonevskiy D.K. Application of Binary Trees for the IDS Events Aggregation Task. SPIIRAS Proceedings. 2015. Issue 40. P. 110-121 (in Russian).
8. Granadillo G., el Barbori M., Debar, H. New types of alert correlation for security information and event management systems // Proceedings of the 8th IFIP International Conference on New Technologies, Mobility and Security, Larnaca, Cyprus. 2016. P.1–7. 10.1109/NTMS.2016.7792462.
9. Kotenko I., Doynikova E., Fedorchenko A., Chechulin A. An ontology-based hybrid storage of security information // Information Technology and Control, 18, 3, 2018. P. 655–667.
10. Doynikova E., Kotenko I. CVSS-based probabilistic risk assessment for cyber situational awareness and countermeasure selection // Proc. of the 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2017), IEEE, St. Petersburg, Russia, 2017. P. 346–353. DOI: 10.1109/PDP.2017.44.
11. Doynikova E., Kotenko I. Approach for determination of cyber attack goals based on the ontology of security metrics // Proc. of the IOP Conference Series: Materials Science and Engineering, vol. 450, ‘Data protection in automation systems’, 2018. P. 1–6.
12. Doynikova E., Fedorchenko A., Kotenko I. A Semantic Model for Security Evaluation of Information Systems // Journal of Cyber Security and Mobility. 9, 2. 2020. P. 301–330. DOI: 10.13052/jcsm2245-1439.925. Режим доступа: http://dx.doi.org/10.13052/jcsm2245-1439.925.
13. Elahi G., Yu E., Zannone N. A modeling ontology for integrating vulnerabilities into security requirements conceptual foundations // Lecture Notes in Computer Science 5829, 99-114, 2009.
14. Kotenko I., Fedorchenko A., Chechulin A. Integrated repository of security information for network security evaluation // Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 6, P. 41–57, 2015.
15. Guo M., Wang J. A. An ontology-based approach to model Common Vulnerabilities and Exposures in information security // Proc. of the 2009 ASEE Southeast Section Conference, 2009. P. 41–57.
16. Wang J. A., Guo M. Security data mining in an ontology for vulnerability management // Proc. of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, 2009, 597-603.
17. Syed Z., Padia A., Finin T., Mathews L., Joshi A. UCO: a Unified Cybersecurity Ontology // Proc. of the AAAI Workshop on Artificial Intelligence for Cyber Security, Phoenix, Arizona, USA, 195-202, 2016. 
18. Mirzagitov A., Palchunov D. Methods for development of the ontology on information security based on precedent approach // NSU Vestnik. Series: Information technologies. 2013. No. 3. P. 37–46 (in Russian).
19. Petrenko A., Petrenko S. Cybersecurity ontology for self-healing smart grid // Proceedings of the third All-Russian Scientific and Technical Conference of Young Designers and Engineers dedicated to the 70th anniversary of the Academician A.L. Mints and the 70th anniversary of FIZTECH. 2016. P. 200–210 (in Russian).
20. Javanmardi S., Amini M., Jalili R., Ganjisaffar Y. SBAC : a Semantic-Based Access Control model, 2006. P. 1–12.
21. Granadillo G. G., Mustapha Y. B., Hachem N., Debar H. An ontology-based model for SIEM environments // Global Security, Safety and Sustainability & eDemocracy, Springer Berlin Heidelberg, 2012. P. 148–155. DOI: 10.1007/978-3-642-334481_21.
22. Mozzaquatro B., Melo R., Agostinho C., Jardim-Goncalves R. An ontology-based security framework for decision-making in industrial systems // Proc. of the 4th International Conference on Model-Driven Engineering and Software Development, 779-788, 2016.
23. Parmelee M. C. Toward an ontology architecture for cyber-security standards // Proc. of the 2010 Semantic Technology for Intelligence, Defence, and Security. Fairfax, 116-123, 2010.
24. Kenaza T., Aiash M. Toward an Efficient Ontology-Based Event Correlation in SIEM // Procedia Computer Science. 83. P. 139-146. 2016. 10.1016/j.procs.2016.04.109.
25. Kotenko I., Polubelova O., Saenko I., Doynikova E. The ontology of metrics for security evaluation and decision support in SIEM systems // Proc. of the ARES 2013, 2013. P. 638–645.
26. Aviad A., Węcel K., Abramowicz W. The semantic approach to cyber security. Towards ontology based body of knowledge // Proc. of the 14th European Conference on Cyber Warfare and Security, 328-336, 2015.
27. Cho J.-H., Xu S., Hurley P. M., Mackay M., Benjamin T., Beaumont M. STRAM: Measuring the Trustworthiness of Computer-based Systems // ACM Computing Surveys, Vol. 51, No. 6, Article 128, P. 1–47. 2019. Режим доступа: http://www.cs.utsa.edu/~shxu/socs/STRAM_paper.pdf (дата обращения: 3.01.2021).
28. Scarfone, K., Mell P. An analysis of CVSS version 2 vulnerability scoring // 3rd International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL, 2009, P. 516-525. DOI: 10.1109/ESEM.2009.5314220.
29. Younis, A. A., Malaiya, Y. K. Comparing and evaluating CVSS base metrics and Microsoft rating system // Proceedings of the The 2015
IEEE International Conference on Software Quality, Reliability and Security. 2015. P. 252-261. 10.1109/QRS.2015.44.
30. Fedorchenko A., Doynikova E., Kotenko I. Automated Detection of Assets and Calculation of their Criticality for the Analysis of Information System Security // SPIIRAS Proceedings, vol. 18 (5), 2019. P. 1182–1211. DOI: 10.15622/sp.2019.18.5.1182-1211.
29-40
Kozachok, V. I. MULTI-LEVEL POLICY MODEL ACCESS CONTROL SECURITY OPERATING SYSTEMS OF THE WINDOWS FAMILY / V. I. Kozachok, A. V. Kozachok, E. V. Kochetkov // Cybersecurity issues. – 2021. – № 1(41). – С. 41-56. – DOI: 10.21681/2311-3456-2021-1-41-56.

Abstract
The purpose of research - development of a more advanced Windows NT family access control mechanism to protect against information leakage from memory by hidden channels.The method of research - analysis of Windows NT family models of mandatory access control and integrity control, modeling of access control security policy for specified security properties, automatic verification of models. The Lamport Temporal Logic of Actions (TLA +) used to describe the model and its specification is used. TLA+ allows automatic verification of the model with the specified security properties.The result of research - revealed the main limitations of the existing mandatory integrity control of operating systems of the Windows NT family. A set of structures of a multilevel model has been developed, reflecting the attributes that are significant for modeling the process of access of subjects to objects. The key mechanisms of access control in the operating system are modeled: management of users, groups, subjects, objects, roles, rights, discretionary and mandatory access control, mandatory integrity control - multilevel control of subjects’ access to objects. The model defines a mechanism for controlling the creation of subjects based on executable files to organize an isolated software environment. The values of the attributes of the model variables for the initialization stage are determined. The invariants of variables correctness in the process of verification and subjects to objects safe access are developed. The model was specified using the TLA + modeling language and verified.
Keywords: information security, unauthorized access, access control model, model verification. 
References
1. Leuenberger, Adrian. “Shatter Attack Privilege Escalation on Win32Systems.” CSNC Security Event 2003, Compass Security. 
2. S. Zune, Mandatory access control by Biba model. M.C.Sc Dissertation. University of Computer Studies, Yangon, 2018
3. Gartaganis, Charalampos. “Comparative analysis of the Windows security XP, Vista, 7, 8 and 10.” Master’s thesis, ΠανεπιστήμιοΠειραιώς, 2017
4. Yile, Fan. “Research on the Security Problem in Windows 7 Operating System.» 2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2016. DOI: 10.1109/ICMTMA.2016.139
5. Havelund, Klaus, and Doron Peled. “Runtime verification: From propositional to first-order temporal logic.” In International Conference on Runtime Verification, pp. 90-112. Springer, Cham, 2018. DOI: 10.1007/978-3-030-03769-7_7
6. Kozachok A.V., Bochkov M.V., Lai Minh T., Kochetkov E.V. First order logic for program code functional requirements description // Voprosy kiberbezopasnosti. 2017. № 3 (21). С. 2-7. DOI: 10.21681/2311-3456-2017-3-2-7
7. Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox. In F-IDE@FM 2019, pages 50–62, 2019. DOI: 10.4204/EPTCS.310.6
8. McMillan K. L. Eager Abstraction for Symbolic Model Checking // Computer Aided Verification / ed. by G. Chockler Hana and Weissenbacher. Cham : Springer International Publishing, 2018. P. 191-208. DOI: 10.1007/978-3-319-96145-3_11.
9. Devyanin, P.N., On the problem of representation of the formal model of security policy for operating systems. Proceedings of the Institute for System Programming of the RAS, 2017, 29(3), pp.7-16 DOI: 10.15514/ISPRAS-2017-29(3)-1
10. Devyanin, P.N., Khoroshilov, A.V., Kuliamin, V.V., Petrenko, A.K. and Shchepetkov, I.V., 2020. Integrating RBAC, MIC, and MLS in verified hierarchical security model for operating system. Programming and Computer Software, 46(7), pp.443-453. DOI: 10.1134/S0361768820070026
11. Efremov, D. and Shchepetkov, I., 2019, October. Runtime Verification of Linux Kernel Security Module. In International Symposium on Formal Methods (pp. 185-199). Springer, Cham. DOI: 10.1007/978-3-030-54997-8_12
12. Georget, L., Jaume, M., Tronel, F., Piolle, G., Tong, V.V.T.: Verifying the reliability of operating system-level information flow control systems in Linux. In: 2017 IEEE/ACM 5th International FME Workshop on Formal Methods in Software Engineering (FormaliSE), pp. 10–16 DOI: 10.1109/FormaliSE.2017.1
13. Baier C., Katoen J. P. Principles of model checking. – MIT press, 2008.
14. Zheng, B., Li, W., Deng, P., Gérard, L., Zhu, Q. and Shankar, N., 2015, June. Design and verification for transportation system security. In Proceedings of the 52nd annual design automation conference (pp. 1-6). DOI: 10.1145/2744769.2747920
15. Starodubcev YU.I., Begaev A.N., Kozachok A.V. Sposob upravleniya dostupom k informacionnym resursam mul’tiservisnyh setej razlichnyh urovnej konfidencial’nosti // Voprosy kiberbezopasnosti. 2016. № 3 (16). pp. 13-17. DOI:10.21681/2311-3456-2016-3-13-17
16. Kozachok A.V. Specifikaciya modeli upravleniya dostupom k raznokategorijnym resursam komp’yuternyh sistem // Voprosy kiberbezopasnosti. 2018. № 4 (28). pp. 2-8. DOI: 10.21681/2311-3456-2018-4-2-8
17. Kozachok A. V., Kochetkov E. V. Obosnovanie vozmozhnosti primeneniya verifikacii programm dlya obnaruzheniya vredonosnogo koda // Voprosy kiberbezopasnosti. – 2016. – Т. 16, № 3. – pp. 25–32. DOI:10.21681/2311-3456-2016-3-25-32
18. Kozachok A.V., Tuan L.M. Kompleks algoritmov kontroliruemogo razgranicheniya dostupa k dannym, obespechivayushchij zashchitu ot nesankcionirovannogo dostupa // Sistemy upravleniya i informacionnye tekhnologii. 2015. № 3 (61). pp. 58-61.
19. Kozachok, A.: TLA+ based access control model specification. In: Proceedings of the Institute for System Programming of the RAS, vol. 30, pp. 147–162, January 2018.  DOI: 10.15514/ISPRAS-2018-30(5)-9
20. Bell, D.E., LaPadula, L.: Secure Computer Systems: Mathematical Model. ESD-TR 73-278, The MITRE Corporation, McLean (1973)
41-56
Tali, D. I. CRYPTOGRAPHIC RECURSIVE CONTROL OF INTEGRITY OF METADATA ELECTRONIC DOCUMENTS. PART 3. APPLICATION METHODOLOGY / D. I. Tali, O. A. Finko // Cybersecurity issues. – 2021. – № 1(41). – С. 57-68. – DOI: 10.21681/2311-3456-2021-1-57-68.

Abstract
The purpose of the study is to develop recommendations for organizing a cryptographic recursive 2-D control of the integrity of electronic documents metadata based on chain data recording technology.Research methods: the proposed methodology is based on the general principles of constructing a chain data record, which is a dynamic registry, where changes in metadata records are allowed without changing the previously entered information. In this case, the relationship between the metadata records is ensured through the use of a cryptographic hash function.Research result: the analysis of the life cycle of electronic documents processed by automated information systems of electronic document management was carried out, based on the results of which it was concluded that it is necessary to protect metadata by cryptographic methods in order to control their integrity and effectively manage electronic documents. The technique of cryptographic recursive 2-D control of the integrity of metadata of electronic documents, based on the previously proposed by the authors a mathematical model and a set of algorithms, has been developed. General and particular results of its application are described. The practical use of the proposed solutions makes it possible to provide the necessary measures to protect electronic documents in a time-changing environment, in accordance with the requirements for document man-agement. This effect is achieved by bringing the existing metadata structure to the form of a multidimensional model, thereby making it possible to achieve the required level of their security.
Keywords: automated information systems, electronic document management, metadata management, insider, chain data recording, dynamic ledger, hash function, electronic signature.
References
1. Tali D.I., Finko O.A., Yeliseyev N.I., Dichenko S.A., Baril’chenko S.A. Sposob kriptograficheskogo rekursivnogo 2-D kontrolya tselostnosti metadannykh faylov elektronnykh dokumentov // Patent na izobreteniye RU 2726930, opubl. 16.07.2020, byul. №20.
2. Tali D.I., Finko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 1. Matematicheskaya model’ // Voprosy kiberbezopasnosti. 2020. № 5 (39). S. 2-18.
3. Tali D.I., Finko O.A. Kriptograficheskiy rekursivnyy kontrol’ tselostnosti metadannykh elektronnykh dokumentov. Chast’ 2. Kompleks algoritmov // Voprosy kiberbezopasnosti. 2020. № 6 (40). S. 32-47.
4. Tali D.I. Model’ ugroz bezopasnosti metadannym v sisteme elektronnogo dokumentooborota voyennogo naznacheniya // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2020. № 139-140. S. 95-101.
5. Hartmann K., Giles K. UAV exploitation: A new domain for cyber power // 8th International Conference on Cyber Conflict (CyCon). 2016. Pp. 205-221.
6. 6. Baranov A.V. Sistemy yuridicheski znachimogo elektronnogo dokumentooborota // Aktual’nyye problemy ekonomiki sovremennoy Rossii. 2015. T. 2. № 2. S. 28-31
7. Zhigalov K.YU., Podlevskikh A.P., Avetisyan K.R. Napravleniya razvitiya sistem obespecheniya bezopasnosti elektronnogo dokumentooborota v sovremennykh usloviyakh // Sovremennyye naukoyemkiye tekhnologii. 2019. № 2. S. 52-56.
8. Tarasov S.V. SUBD dlya programmista. Bazy dannykh iznutri. M.: SOLON-Press, 2015. 320 s.
9. Dichenko S.A., Finko O.A. Obobshchennyj sposob primeneniya hesh-funkcii dlya kontrolya celostnosti dannyh // Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2020. T. 12. № 6. S. 48-59. DOI: 10.36724/2409-5419-2020-12-6-48-59.
10. Gromov YU.YU., Ivanova O.G., Yakovlev A.V., Odnol’ko V.G. Upravleniye dannymi. – Tambov: «TGTU», 2015. 192 s.
11. Murray D.R., Newman M.B. Probability analyses of combining background concentrations with model-predicted concentrations // J. Air
Waste Manag. Assoc. 2016, vol. 64, no. 3, pp. 248-254.
12. Dichenko S.A., Finko O.A. Gibridnyy kripto-kodovyy metod kontrolya i vosstanovleniya tselostnosti dannykh dlya zashchishchonnykh informatsionno-analiticheskikh sistem // Voprosy kiberbezopasnosti. 2019. № 6 (34). S. 7-14. DOI: 10.21681/2311-3456-2019-6-17-36.
13. Yeliseyev N.I., Finko O.A. Teoreticheskiye aspekty razvitiya sistemy elektronnogo dokumentooborota Ministerstva oborony Rossiyskoy Federatsii // Voyennaya mysl’. 2015. № 7. S. 55-63.
14. Yeliseyev N.I., Finko O.A. Upravleniye tselostnost’yu sistemy yuridicheski znachimogo elektronnogo dokumentooborota v usloviyakh mezhformatnykh preobrazovaniy elektronnykh dokumentov // Problemy upravleniya. 2014. № 3 S. 68-73.
15. Guselev A.M., Lavrikov I.V., Marshalko G.B., Shishkin V.A. Tekhnologii tsepnoy zapisi dannykh i raspredelennykh reyestrov: kriptograficheskiy skachok vpered, shag nazad ili put’ v nikuda // Materialy nauchno-prakticheskoy konferentsii «RusKripto-2017».
https://www.ruscrypto.ru/resource/archive/rc2017/files/02_guselev_lavrikov_marchalko_shishkin.pdf
16. Savin S.V., Finko O.A., Eliseev N.I. Sistema kontrolya celostnosti zhurnalov nepreryvno vedushchihsya zapisej dannyh // Patent na izobreteniye RU 2637486, opubl. 04.12.2017, byul. № 34.
57-68
Soloviev, S. V. INFORMATION SUPPORT OF THE ACTIVITY FOR TECHNICAL PROTECTION OF INFORMATION / S. V. Soloviev, Yu. K. Yazov // Cybersecurity issues. – 2021. – № 1(41). – С. 69-79. – DOI: 10.21681/2311-3456-2021-1-69-79.

Abstract
The goal of research is to determine the main areas for the development, composition and structure of methodological support for the construction and functioning of information provision systems for the organization and maintenance of technical protection of information in authorities, organizations and enterprises.The method of research is synthesis and analysis of the composition, and content of the tasks of technical protection of information, addressed in its organization, as well as the mathematical technique of factor analysis and theoretical and methodological basis of the cluster approach.As a result of the research, the tasks of technical protection of information, considered on the objects of informatization are defined and the timeliness of the application is shown for automated information support systems of the activity for the technical protection of information to solve these problems. It is noted that at present, the methodology for creating such systems is practically absent. The authors of research indicate the main approaches to their development, such as the dynamic change in the subject area of information security, the emergence of new information technologies, rapid changes in system and application software, the expansion of the range of information security threats, changes in the regulatory framework, etc. The composition and structure of the system of models and methodologies are proposed necessary for the design of these information support systems, their development, production, delivery and operation. Particular indicators are proposed to assess the completeness, reliability, timeliness (relevance) and information security necessary to ensure the activities to solve the problems of technical protection of information and complex indicator to assess the efficiency of information support for this activity. The interdependence of complex and particular indicators is shown by convolution of particular indicators using the linear function and the Cobb-Douglas function. Examples of calculating the complex indicator are given.The proposed indicators and models for their calculation will define quantitative requirements for the composition and structure of promising information support systems, as well as for the completeness, reliability, timeliness and security of the information provided by them, which is necessary for organizing the technical protection of information in domestic information systems.
Keywords: object of informatization, technical protection of information, information support, life cycle, stage,
indicator, efficiency, model, methodology.
References
1. Oganisian A.K. Sovershenstvovanie informatcionnogo obespecheniia organizatcii. Evrazii`skii` nauchny`i` zhurnal. 2016. № 10. S. 87-89.
2. Iazov Iu.K. Organizatciia zashchity` informatcii v informatcionny`kh sistemakh ot nesanktcionirovannogo dostupa: monografiia / Iu.K. Iazov, S.V. Solov`ev. Voronezh: Kvarta, 2018. – 588 s.
3. Solov`ev S.V. Osobennosti proektirovaniia informatcionny`kh sistem obespecheniia deiatel`nosti po TZI / S.V. Solov`ev, I.V. Zatoka. M.: Zhurnal «Programmnaia inzheneriia», vy`p. № 5, 2012 g., str. 21-28.
4. Kostogry`zov A.I. Prognozirovanie riskov dlia obespecheniia kachestva informatcii v slozhny`kh sistemakh/ A.I. Kostogry`zov, P.V. Stepanov, A.A. Nistratov, L.I. Grigor`ev, L.M. Cherviakov // Sistemy` vy`sokoi` dostupnosti. 2016. T. 12. № 3. S. 25-38.
5. Troianskaia M.A. Informatcionnoe obespechenie deiatel`nosti organov gosudarstvennogo upravleniia: poniatie i znachenie. Mezhdunarodny`i` nauchno-issledovatel`skii` zhurnal. 2020. № 5-2 (95). S. 100-103.
6. Siuntiurenko O.V. Informatcionnoe obespechenie: faktory` razvitiia, upravlenie, e`ffektivnost`. Nauchno-tekhnicheskaia informatciia. Seriia 2: Informatcionny`e protcessy` i sistemy`. 2016. № 6. S. 7-15.
7. Vorob`ev A.F. Zhiznenny`i` tcicl informatcionnoi` sistemy`. APRIORI. Ceriia: Estestvenny`e i tekhnicheskie nauki. 2014. № 6. S. 9.
8. Lapina Ia.S. Zhiznenny`e tcicly` informatcionny`kh sistem. E`konomika i sotcium. 2015. № 5-1 (18). S. 686-693.
9. Konev A.A. Model` zhiznennogo tcicla sistemy` zashchity` informatcii/ A.A. Konev T.E. Mineeva, M.L. Solov`yov, A.A. Shelupanov, M.P. Silich. Bezopasnost` informatcionny`kh tekhnologii`. 2018. T. 25. № 4. S. 34-41.
10. Ry`binetc A.G. Metody` analiza, modelirovanie i prognozirovaniia e`konomicheskikh protcessov (mirovoi` opy`t primeneniia krizis prognozny`kh modelei`).Uchebnoe posobie / Moskva, 2016. 180 s.
11. Timshina D.V. Modelirovanie e`konomicheskikh protcessov / D.V. Timshina, E.N. Zelepuhina.– Ucheb. posobie / Penza. 2017. 200 s.
12. Chernov V.A. Teoriia e`konomicheskogo analiza. Izd-vo OOO «Prospekt». – M: 2017.
13. Markov L.S. Teoretiko-metodologicheskie osnovy` clasternogo podhoda. Institut e`konomiki i organizatcii promy`shlennogo proizvodstva Sibirskogo otdeleniia Rossii`skoi` akademii nauk. Novosibirsk, 2015. 300 s.
14. Zhgun T.V. Algoritm postroeniia integral`nogo indikatora kachestva slozhnoi` sistemy` dlia riada posledovatel`ny`kh nabliudenii`. Vestneyk Iuzhno-Ural`skogo gosudarstvennogo universiteta. Seriia: Vy`chislitel`naia matematika i informatika. 2017. T. 6. № 1. S. 5-25.
15. Remesnik E.S. Primenenie posledovatel`nostei` Fishberna v modeliakh s kolichestvenny`mi faktorami. V sbornike: Teoriia i praktika e`konomiki i predprinimatel`stva. XVI Vserossii`skaia s mezhdunarodny`m uchastiem nauchno-prakticheskaia konferentciia. Pod redaktciei` N.V. Apatovoi`. 2019. S. 210-212.
16. Sazanova L.A. Analiz osobennostei` proizvodstvennoi` funktcii Kobba-Douglasa. V sbornike: Aktual`ny`e tendentcii i innovatcii v razvitii rossii`skoi` nauki / sbornik nauchny`kh statei`. Moskva, 2020. S. 120-123.
69-79
Petrenko, S. A. SELF-HEALING CLOUD COMPUTING / S. A. Petrenko // Cybersecurity issues. – 2021. – № 1(41). – С. 80-89. – DOI: 10.21681/2311-3456-2021-1-80-89.

Abstract
Purpose of the article: development of tools for building a cyber-stable private cloud. The relevance of building a cyber-resilient private cloud is confirmed by the dynamics of growth in the market volume of relevant solutions. According to PRnewswire, the market for private cloud solutions will reach 183 billion USD by 2025. At the same time, the average annual growth rate of the CAGR will be 29.4% during the forecast period. According to the analytical company Grand view research, the global market for private cloud solutions in 2018 was estimated at 30.24 billion US dollars, and it is expected that in the period from 2019 to 2025, the CAGR will be 29.6%.Research methods: It uses a set of open-source solutions that applies the advanced cloud technologies, including distributed data processing models and methods, container orchestration technologies, software-defined data storage architecture, and a universal database.
Results: Developed tools for building a cyber-stable private cloud. Considered a possible approach to building a cyber-resilient private cloud based on the well-known and proprietary models and methods of the artificial immune systems (AIS), as well as technologies for distributed data processing, container orchestration, and others. In addition, the unique centralized fault-tolerant logging and monitoring subsystem has been developed for the described platform, as well as an innovative cybersecurity subsystem based on the following original technologies

Keywords: Digital transformation, Digital economy, Сritical information infrastructure, Cyber resilience, Selforganization, Proactive cyber security and adaptability, Big Data, Сloud computing.
References
1. Bodeau D., Graubart R., Heinbockel W. and Laderman E.:Cyber Resiliency Engineering Aid-The Updated Cyber Resiliency Engineering Framework and Guidance on Applying Cyber Resiliency Techniques (MTR140499R1PR 15-1334) (May 2015).
2. Bodeau D., Brtis J., Graubart R. and Salwen J.:Resiliency Techniques for System of Systems: Extending and Applying the Cyber Resiliency Engineering Framework to the Space Domain (MTR 130515, PR 13-3513), (September 2013).
3. Ronald S. Ross: Risk Management Framework for Information Systems and Organiza-tions: A System Life Cycle Approach for Security and Privacy (December 20, 2018).
4. Markov A., Markov G., Tsirlov V. SIMULATION OF SOFTWARE SECURITY TESTS BY SOFT COMPUTATIONAL METHODS: CRITICAL
INFRASTRUCTURES: CONTINGENCY MANAGEMENT, INTELLIGENT, AGENT-BASED, CLOUD COMPUTING AND CYBER SECURITY (IWCI
2019). Proceedings of the VIth International Workshop. Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences. 2019. С. 257-261. 1
5. Dorofeev A.V., Markov A.S., Tsirlov V.L. APPLICATION OF OPEN DATA IN ACCORDANCE WITH INFORMATION SECURITY REQUIREMENTS: CEUR Workshop Proceedings. ISTMC 2019 - Selected Papers of the 4th All-Russian Scientific and Practical Conference with International Participation “Information Systems and Technologies in Modeling and Control”. 2019. С. 36-46.
6. Petrenko, S.: Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation, Springer Nature Switzerland AG (2018).
7. Petrenko, S.: Cyber Security Innovation for the Digital Economy: A Case Study of the Russian Federation, River Publishers, (2018).
8. Kott, A., Linkov, I: Cyber Resilience of Systems and Networks (Risk, Systems and De-cisions), 2019 Springer Nature Switzerland AG, (2019)
9. ISO/TS 22330:2018, Security and resilience -- Business continuity management sys-tems -- Guidelines for people aspects of business continuity.
10. ISO/TS 22331:2018, Security and resilience -- Business continuity management sys-tems -- Guidelines for business continuity strategy.
11. NIST Special Publication 800-160 VOLUME 2. Systems Security Engineering. Cyber Resiliency Considerations for the Engineering of Trustworthy Secure Systems, (March 2018).
12. NIST Special Publication 800-160 VOLUME 3. Systems Security Engineering. Soft-ware Assurance Considerations for the Engineering of Trustworthy Secure Systems (December 20, 2019).
13. NIST Special Publication 800-160 VOLUME 4. Systems Security Engineering. Hard-ware Assurance Considerations for the Engineering of Trustworthy Secure Systems, (December 20, 2020).
14. Graubart R,: The MITRE Corporation, Cyber Resiliency Engineering Framework, The Secure and Resilient Cyber Ecosystem (SRCE) Industry Workshop Tuesday, (November 17, 2015).
15. Ronald S. Ross, Michael McEvilley, Janet C. Oren: Systems Security Engineering: Considerations for a Multidisciplinary Approach in the Engineering of Trustworthy Se-cure Systems (March 21, 2018).
80-89

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.