
Content of 3rd issue of magazine «Voprosy kiberbezopasnosti» at 2023:
Title | Pages |
Budnikov, S. A. METHODOLOGY FOR ASSESSING THE EFFECTIVENESS OF SECURITY SYSTEMS OF AUTOMATED CONTROL SYSTEMS / S. A. Budnikov, S. M. Kovalenko, A. I. Bocharova // Cybersecurity issues. – 2023. – № 3(55). – С. 2-12. – DOI: 10.21681/2311-3456-2023-3-2-12.
AbstractPurpose: to develop a methodology for evaluating the effectiveness of the created security systems of significant objects of critical information infrastructure, which allows to substantiate recommendations for the application of organizational and technical measures to ensure information security, taking into account the scale of negative consequences, the effectiveness of various security measures, as well as the effectiveness of control.Methods: methods of scoring, efficiency theory and decision-making are used to formalize the parameters.Result: a methodology for evaluating the effectiveness of security systems for automated process control systems has been developed, which makes it possible to substantiate recommendations for the application of information protection measures in four areas of security activities. A procedure has been developed for scoring the effectiveness of automated systems security systems according to the formed list of parameters checked in the course of assessing the effectiveness of automated systems security systems. The scale of compliance with the levels of the state of safety of automated process control systems is determined. The indicator of the effectiveness of the security system of automated process control systems is substantiated, which allows evaluating the selected composition of protection measures for organizing and planning, implementing, monitoring the state, maintaining and improving the security system and developing recommendations for the application of information protection measures proposed in the reference book “Information protection measures groups» FSTEC of Russia. The results obtained in the work can be used in the development of guidelines for ensuring the security of automated control systems, which are significant objects of critical information infrastructure. Novelty: a generalized criterion for evaluating weighted average deviations from the ideal alternative was used for the values of four particular criteria for the feasibility of measures for the organization and planning, implementation, condition monitoring, support and improvement of the security system, and the procedure for scoring the effectiveness of automated systems security systems was determined according to a specified list of parameters checked during the effectiveness assessment security systems of automated systems. Keywords: automated process control system, significant object, critical information infrastructure, security measures, security system, efficiency theory. References1. Yаzov YU.K. Metodologiya otsenki effektivnosti zashchity informatsii v informatsionnykh sistemakh ot nesanktsionirovannogo dostupa: monografiya / YU.K. YAzov, S.V. Solov›yev. – Sankt-Peterburg: Naukoyemkiye tekhnologii, 2023. – 258 s.. 2. Durdenko V.A. Modelirovaniye i otsenka effektivnosti integrirovannykh sistem bezopasnosti ob»yektov, podlezhashchikh obyazatel›noy gosudarstvennoy okhrane / V.A. Durdenko, A.A. Rogozhin, B.O. Batorov // Vestnik VGU, seriya: sistemnyy analiz i informatsionnyye tekhnologii. – 2018. – № 3. – S. 82–92. 3. Yаzov YU.K., Tarelkin M.A., Rubtsova I.O. Metodicheskiy podkhod k otsenke effektivnosti zashchity informatsii v informatsionnykh sistemakh na osnove opredeleniya vozmozhnosti operezheniya merami zashchity protsessa realizatsii ugroz. Informatsiya i bezopasnost›. 2019. T. 22. № 2. S. 220-225. 4. Kalashnikov A.O., Bugayskiy K.A., Anikina Ye.V. Modeli kolichestvennogo otsenivaniya komp›yuternykh atak (Chast› 2). Informatsiya i bezopasnost›. 2019. T. 22. № 4. S. 529-538. 5. Len›shin A.V., Kravtsov Ye.V., Slavnov K.V. Metodika otsenki effektivnosti sredstv zashchity informatsii na ob»yektakh kompleksnogo tekhnicheskogo kontrolya. Radiotekhnika. 2021. T. 85. № 1. S. 20-27. 6. Al›kayev V.A., Fateyev A.G. sredstva analiza zashchishchennosti, primenyayemyye dlya otsenki effektivnosti funktsionirovaniya sredstv zashchity informatsii. Inzhiniring i tekhnologii. 2018. T. 3. № 2. S. 25-28. 7. Kuleshov YU.Ye., Sergiyenko V.A., Paskrobka S.I. Metodicheskiy podkhod k otsenke effektivnosti zashchity informatsii. Problemy infokommunikatsiy. 2018. № 1 (7). S. 45-53. 8. Popov A.D. Chislennyy metod otsenki effektivnosti sistem zashchity informatsii ot nesanktsionirovannogo dostupa v avtomatizirovannykh informatsionnykh sistemakh. V sbornike: Problemy obespecheniya nadezhnosti i kachestva priborov, ustroystv i sistem. Mezhvuzovskiy sbornik nauchnykh trudov. Voronezh, 2018. S. 52-60. 9. Titov M.YU., Trubiyenko O.V., Titova M.M. Pokazateli otsenki effektivnosti sistem zashchity informatsii i metody ikh opredeleniya. Promyshlennyye ASU i kontrollery. 2020. № 1. S. 63-67. 10. Umnikov Ye.V., Atakishchev O.I., Grachov V.A. Primeneniye metoda analiza iyerarkhiy saati dlya otsenki effektivnosti sistemy zashchity informatsii virtual›nogo poligona. Izvestiya Instituta inzhenernoy fiziki. 2022. № 1 (63). S. 99-103. 11. Klyaus T.K., Gatchin YU.A., Polyakov V.I. Metodika formirovaniya optimal›nogo sostava i otsenki effektivnosti sistemy zashchity informatsii. V sbornike: Trudy Mezhdunarodnogo nauchno-tekhnicheskogo kongressa «Intellektual›nyye sistemy i informatsionnyye tekhnologii - 2019» («IS & IT-2019», «IS&IT›19»). Nauchnoye izdaniye: v 2-kh tomakh. 2019. S. 358-360. 12. Minyayev A.A. Metod otsenki effektivnosti sistem zashchity informatsii territorial›no raspredelennykh informatsionnykh sistem / A.A. Minyayev, M.YU. Bud›ko // Informatizatsiya i svyaz›. – 2017. – № 3. – S. 119–121. 13. Budnikov S.A., Butrik Ye.Ye., Solov›yev S.V. Modelirovaniye APT-atak, ekspluatiruyushchikh uyazvimost› Zerologon. Voprosy kiberbezopasnosti. 2021. № 6(46). S.47-62. 0.4/0.8 14. Kiberbezopasnost› tsifrovoy industrii. Teoriya i praktika funktsional›noy ustoychivosti k kiberatakam / D. P. Zegzhda, Ye. B. Aleksandrova, M. O. Kalinin [i dr.]. – Moskva: Nauchno-tekhnicheskoye izdatel›stvo «Goryachaya liniya-Telekom», 2021. – 560 s. 15. Shlykov A.I., Shaburov A.S. O formalizatsii podkhodov k razrabotke modeley mnogokriterial›noy otsenki effektivnosti sistem zashchity informatsii. V sbornike: Avtomatizirovannyye sistemy upravleniya i informatsionnyye tekhnologii. Materialy vserossiyskoy nauchnotekhnicheskoy konferentsii. V dvukh tomakh. Perm›, 2020. S. 408-414. |
2-12 |
Moskvin, А. А. MODEL, OPTIMIZATION AND EFFICIENCY EVALUATION OF APPLICATION MULTICAST NETWORK CONNECTIONS IN CONDITIONS OF NETWORK INTELLIGENCE / Moskvin А. А. , Maksimov R. V. , Gorbachev A. A. // Cybersecurity issues. – 2023. – № 3(55). – С. 13-22. – DOI: 10.21681/2311-3456-2023-3-13-22.
AbstractThe purpose of the study: increasing the availability of network devices in a computer network in the conditions of changing them structural and functional characteristics.Methods used: methods for random processes research and multicriteria optimization were used in this work. The result of the study: a model of functioning of network devices with multicast network connection has been developed, which is formalized as a semi-Markov random process with discrete states and continuous time. The probabilistic-temporal characteristics of the processes are obtained, which subsequently act as efficiency criteriain formulating of the vector optimization problem.The problem of determining the optimal parameters of a network connection, such as the number of IP addresses and the time of their use, at which the efficiency criteria take optimal values, is solved.The evaluation of the effectiveness of the use of multicast network connections according to the criteria of “availability” and “security” was carried out.Scientific novelty: consists in developing a model and solving the problem of optimization the parameters of multicast network connections under network intelligence using the mathematical apparatus of semi-Markov random processes and scalarization of the vector optimization problem by the ideal point method. Keywords: structural and functional characteristics, multicast network connections, continuity of information exchange, random process, availability and security of network devices. References1. Markov A.S. Vazhnaja veha v bezopasnosti otkrytogo programmnogo obespechenija // Voprosy kiberbezopasnosti. 2023. № 1 (53). S. 2-12. DOI:10.21681/2311-3456-2023-1-2-12. 2. Voronchihin I.S., Ivanov I.I., Maksimov R.V., Sokolovskij S.P. Maskirovanie struktury raspredelennyh informacionnyh sistem v kiberprostranstve // Voprosy kiberbezopasnosti. 2019. № 6 (34). S. 92-101. DOI:10.21681/2311-3456-2019-6-92-101. 3. 3. Maximov R.V., Sokolovsky S.P., Telenga A.P. Methodology for substantiating the characteristics of false network traffic to simulate information systems // Selected Papers of the XI Anniversary International Scientific and Technical Conference on Secure Information Technologies (BIT 2021). Bauman Moscow Technical University. Aprill 6-7, 2021, Moscow, Russia. P. 115-124. 4. Sengupta, S., Chowdhary, A., Sabur, A., Alshamrani, A., Huang, D., Kambhampati, S.A Survey of Moving Target Defenses for Network Security // IEEE Commun. Surv. Tutor. 2020, 22, 1909-1941. 5. Kanellopoulos, A., Vamvoudakis, K.G. A Moving Target Defense Control Framework for Cyber-Physical Systems // IEEE Trans. Autom. Control 2020, 65, pp. 1029-1043. 6. Maximov R.V., Sokolovsky S.P., Telenga A.P. Honeypots network traffic parameters modeling // Selected Papers of the XI Anniversary International Scientific and Technical Conference on Secure Information Technologies (BIT 2021). Bauman Moscow Technical University. Aprill 6-7, 2021, Moscow, Russia. P. 229-239. 7. Lejkin A.V., Razvitie SCTP kak konvergentnogo transportnogo protokola sledujushhego pokolenija // Vestnik svjazi. 2020. № 1. S. 13- 17. Patent № 2716220 Rossijskoj Federacii. Sposob zashhity vychislitel’nyh setej / R.V. Maksimov, 8. S.P. Sokolovskij, I.S. Voronchihin // zajavitel’ i patentoobladatel’ Krasnodarskoe vysshee voennoe uchilishhe imeni generala armii S.M. Shtemenko. № 2019123718, zajavl. 22.07.2019, opubl. 06.03.2020. 9. Patent № 2726900 Rossijskoj Federacii. Sposob zashhity vychislitel’nyh setej / R.V. Maksimov, S.P Sokolovskij, I.S. Voronchihin, [i dr.] // zajavitel’ i patentoobladatel’ Krasnodarskoe vysshee voennoe uchilishhe imeni generala armii S.M. Shtemenko. № 2019140769, zajavl. 09.12.2019, opubl. 16.07.2020. 10. Patent № US20120117376A1 SShA. Method and apparatus for anonymous IP datagram exchange using dynamic network address translation / R.A.Fink, E.A.Bubnis, T.E.Keller // zajavitel’ i patentoobladatel’ Raytheon BBN Technologies corp. – № US12/814624, opubl. 10.05.2012. 11. Maksimov R.V., Sokolovskij S.P., Voronchihin I.S. Algoritm i tehnicheskie reshenija dinamicheskogo konfigurirovanija klient-servernyh vychislitel’nyh setej // Informatika i avtomatizacija. 2020. T. 19. № 5. S. 1018-1049. 12. Maksimov R.V., Kuchurov V.V., Sherstobitov R.S. Model’ i metodika maskirovanija adresacii korrespondentov v kiberprostranstve // Voprosy kiberbezopasnosti. 2020. № 6 (40). S. 2-13. DOI:10.21681/2311-3456-2020-06-2-13. 13. Evnevich E.L., Fatkieva R.R. Modelirovanie informacionnyh processov v uslovijah konfliktov // Voprosy kiberbezopasnosti. 2020. № 2 (36). S. 42-49. DOI:10.21681/2311-3456-2020-2-42-49. 14. Kubarev A.V., Lapsar’ A.P., Fedorova Ja.V. Povyshenie bezopasnosti jekspluatacii znachimyh ob#ektov kriticheskoj infrastruktury s ispol’zovaniem parametricheskih modelej jevoljucii // Voprosy kiberbezopasnosti. 2020. № 1 (35). S. 8-17. DOI:10.21681/2311-3456-2020-01-08-17. 15. Drobotun E.B. Metodika snizhenija udobstva ispol’zovanija avtomatizirovannoj sistemy pri vvedenii v ee sostav sistemy zashhity ot komp’juternyh atak // Voprosy kiberbezopasnosti. 2020. № 2 (36). S. 50-57. DOI:10.21681/2311-3456-2020-02-50-57. 16. Gorbachev A.A. Model’ i parametricheskaja optimizacija proaktivnoj zashhity servisa jelektronnoj pochty ot setevoj razvedki // Voprosy kiberbezopasnosti. 2022. № 3 (49). S. 69-81. DOI:10.21681/4311-3456-2022-3-69-81. 17. Budnikov S.A., Butrik E.E., Solov’ev S.V. Modelirovanie APT-atak, jekspluatirujushhih ujazvimost’ Zerologon // Voprosy kiberbezopasnosti. 2021. № 6 (46). S. 47-61. DOI:10.21681/2311-3456-2021-6-47-61. 18. Ivanov I.I. Model’ funkcionirovanija raspredelennyh informacionnyh sistem pri ispol’zovanii maskirovannyh kanalov svjazi // Sistemy upravlenija, svjazi i bezopasnosti, 2020. № 1. S. 198-234. |
13-22 |
ASSESSMENT OF INFORMATION SYSTEM SECURITY BASED ON THE EXPLOIT’S GRAPH MODEL / E. V. Fedorchenko, I. V. Kotenko, A. V. Fedorchenko, E. S. Novikova, I. B. Saenko // Cybersecurity issues. – 2023. – № 3(55). – С. 23-36. – DOI: 10.21681/2311-3456-2023-3-23-36.
AbstractThe purpose of the study: automating the processes of identifying and evaluating exploits, an information system is vulnerable, by identifying their features based on the analysis of the exploit source code, related weaknesses and vulnerabilities in order to further eliminate them and increase the security of information systems.Research methods: statistical analysis of source data, semantic and syntactic modeling of the process of executing the source code of exploits, data classification methods for evaluating exploits based on related weaknesses and vulnerabilities.Results obtained: a general concept of dynamic security assessment of information systems under conditions of initial data uncertainty is proposed; within the framework of the proposed concept, the data used in security assessment, the relationships between them and the main types of uncertainties associated with the use of previously unknown vulnerabilities, weaknesses of the analyzed system or exploits, are identified. there are methods of static and dynamic analysis of exploits in order to eliminate the identified uncertainties; data sources and initial data for experiments were identified, their statistical analysis was carried out; proposed a technique for eliminating the identified uncertainties based on the classification of exploits using the signs of their associated vulnerabilities; an experimental assessment of the accuracy of the classification of exploits was made, and the shortcomings of the proposed methodology were highlighted; to eliminate the identified shortcomings, a graph model of exploits and a methodology for its formation were developed; a technique for classifying exploits based on features generated using the developed model and related weaknesses and vulnerabilities is proposed. The results obtained can be used in monitoring systems and improving the security of information systems.Scientific novelty: the proposed general concept of dynamic assessment of the security of information systems differs from the existing ones in the identified types of uncertainty in the initial data and the use of exploit classification techniques to eliminate them by detecting signs of exploit implementation, and the proposed concept is based on the hypothesis that previously unknown exploits use previously known fragments malicious program code; the proposed methodology for classifying exploits differs both in the use of known features of related vulnerabilities and features based on a graph model of exploits; The developed graph model of exploits is a variation of the semantic graph, built on the basis of the control flow graph and function call dependency graph, and allows taking into account both the main code execution route and functional dependencies between imported function names when generating signs of exploit execution.Contribution: Elena Fedorchenko - development of a methodology for classifying exploits based on features generated using a graph model of the source code of exploits and related weaknesses and vulnerabilities; Igor Kotenko and Andrey Fedorchenko - analysis of the state of affairs in the presentation of the source code of exploits for the purpose of dynamic assessment of the security of information systems, setting the problem of classifying exploits, developing an approach to obtaining classification features; Andrey Fedorchenko - collection and preliminary analysis of initial data; Evgenia Novikova - experimental study of the proposed approach; Igor Saenko and Elena Fedorchenko - development of the concept of dynamic assessment of the security of information systems in the face of uncertainty in the initial data. Keywords: weakness, vulnerability, features, data analysis, data classification, security monitoring. References1. Mell P., Scarfone K., Romanosky S. A complete guide to the Common Vulnerability Scoring System. Version 2.0. – URL: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51198 (accessed on 10.04.2023). 2. CVSS v3.1 Specification Document – Revision 1. June 2019. – URL: https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf (accessed on 10.04.2023). 3. Wang T., Lv Q., Hu B., Sun D. CVSS-based multi-factor dynamic risk assessment model for network system // Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2020. – pp. 289-294. DOI: 10.1109/ICEIEC49280.2020.9152340. 4. Debnath J.K., Xie D. CVSS-based vulnerability and risk assessment for high performance computing networks // Proceedings of the 2022 IEEE International Systems Conference, Montreal, QC, Canada, 2022. – pp. 1-8. DOI: 10.1109/SysCon53536.2022.9773931. 5. Figueroa-Lorenzo S., Añorga J., Arrizabalaga S. A survey of IIoT protocols: A measure of vulnerability risk analysis based on CVSS // ACM Computing Survey, 2021, vol. 53, no. 2, art. 44, 53 p. DOI: 10.1145/3381038. 6. Aksu M.U., Bicakci K., Dilek M.H., Ozbayoglu A.M., Tatli E. Automated generation of attack graphs using NVD // Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, Tempe, AZ, USA, 2018. – pp. 135-142. DOI: 10.1145/3176258.3176339. 7. Özdemir Sönmez F., Hankin C., Malacaria P. Attack dynamics: An automatic attack graph generation framework based on system topology, CAPEC, CWE, and CVE databases // Computers & Security, 2022, vol. 123, pp. 102938. DOI: https://doi.org/10.1016/j.cose.2022.102938. 8. Doynikova E., Kotenko I. Assessment of security and choice of countermeasures for cybersecurity management. Monography. – Moscow: Russian Academy of Sciences, 2021. 9. Longueira-Romero Á., Iglesias R., Flores J.L., Garitano I. A novel model for vulnerability analysis through enhanced directed graphs and quantitative metrics // Sensors, 2022, vol. 22, no. 6, pp. 2126. DOI: 10.3390/s22062126. 10. Doynikova E., Kotenko I. CVSS-based probabilistic risk assessment for cyber situational awareness and countermeasure selection // Proceedings of the 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing, St. Petersburg, Russia, 2017, pp. 346-353. DOI: 10.1109/PDP.2017.44. 11. Syed R., Zhong H. Cybersecurity Vulnerability Management: An ontology-based conceptual model // Americas Conference on Information Systems. – 2018. 12. Kalgutkar V., Kaur R., Gonzalez H., Stakhanova N., Matyukhina A. Code Authorship Attribution: Methods and Challenges // ACM Computing Survey, 2020, vol. 52, no. 1, art. 3, 36 p. DOI: 10.1145/3292577. 13. Patterson E., Baldini I., Mojsilovic´ A., Varshney K.R. Semantic representation of data science programs // Proceedings of the TwentySeventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018. – pp. 5847-5849. 14. Zhang Y., Chen L., Nie X., Shi G. An effective buffer overflow detection with super data-flow graphs // Proceedings of the 2022 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Melbourne, Australia, 2022. – pp. 684-691. DOI: 10.1109/ISPA-BDCloudSocialCom-SustainCom57177.2022.00093. 15. Kotenko I., Doynikova E., Fedorchenko A., Chechulin A. An ontology-based hybrid storage of security information // Information Technology and Control, 2018, vol. 4, pp. 655-667. DOI: 10.5755/j01.itc.47.4.20007. 16. Kotenko I., Fedorchenko A., Doynikova E. Data analytics for security management of complex heterogeneous systems // EAI/Springer Innovations in Communication and Computing. Springer, Cham, 2020, vol. 3, pp. 79-116. DOI: 10.1007/978-3-030-19353-9_5. 17. Doynikova E., Fedorchenko A., Kotenko I. Determination of security threat classes on the basis of vulnerability analysis for automated countermeasure selection // Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg. Germany, 2018. – pp. 621-628. DOI: 10.1145/3230833.3233260. |
23-36 |
Gurina, L. A. SEARCH FOR AN EFFECTIVE SOLUTION TO PROTECT MI- CROGRID COMMUNITY WITH INTERCONNECTED INFORMATION SYSTEMS AGAINST CYBER THREATS / Gurina L. A. , Aizenberg N. I. // Cybersecurity issues. – 2023. – № 3(55). – С. 37-49. – DOI: 10.21681/2311-3456-2023-3-37-49.
AbstractЦель исследования: разработка методического подхода для обеспечения кибербезопасности взаимосвязанных микросетей в составе энергетического сообщества.Методы исследования: вероятностные методы, кооперативная и некооперативная теория игр. Результат исследования: Проведен анализ возможных угроз и уязвимостей информационно-коммуникационной инфраструктуры сообщества микросетей. Предложена модель коалиций микросетей, учитывающая такие факторы, как риски кибербезопасности, располагаемые ресурсы микросетей для защиты от кибератак и возможные последствия реализованных киберугроз. Разработана методика определения эффективности защиты от киберугроз в составе коалиций и без для сообщества микросетей. Предусматривается учёт синергетических эффектов при обеспечении кибербезопасности энергетического сообщества в случае объединения в коалиции отдельных микросетей через определение положительного и отрицательного взаимовлияния защищенности и киберугроз исследуемых объектов друг на друга. Для оценки эффективности объединения предложен метод определения совместного выигрыша коалиции, а также справедливое перераспределение дополнительного выигрыша между участниками. Приводятся результаты оценивания эффективности возможного объединения в коалиции для сообщества микросетей на основе вектора Шепли. Научная новизна состоит в том, что для оценки эффективности возможного объединения в коалиции микросетей с целью обеспечения кибербезопасности энергетического сообщества в работе предложен теоретико-игровой подход, сочетающий в себе приемы оценки рисков кибербезопасности на основе теорий вероятностей и нечетких множеств и приемы кооперативной теории игр, предлагающей способы справедливого дележа вложений для организации мер по защите от кибератак. Keywords: energy community, cybersecurity risk, cyber-attacks, coalitions, cooperative game. References1. E. Papadis and G. Tsatsaronis. Challenges in the decarbonization of the energy sector. Energy. 2020, vol. 205, 118025. DOI:10.1016/j.energy.2020.118025. 2. M. Erdiwansyah and H Husin, et al. A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems. 2021, vol. 6, no. 3. DOI: 10.1186/s41601-021-00181-3. 3. G. V. B. Kumar, R. K. Sarojini, K. Palanisamy, S. Padmanaban, and J. B. Holm-Nielsen. Large scale renewable energy integration: Issues and solutions. Energies. 2019, vol. 12, no. 10, 1996. DOI: 10.3390/en12101996. 4. N. Voropai. Electric power system transformations: A review of main prospects and challenges. Energies. 2020, vol. 13, no. 21, 5639. DOI: 10.3390/en13215639. 5. R. V. Yohanandhan, R. M. Elavarasan, P. Manoharan and L. Mihet-Popa. Cyber-Physical Power System (CPPS): A Review on Modeling, Simulation, and Analysis With Cyber Security Applications. In IEEE Access. 2020, vol. 8, pp. 151019-151064. DOI: 10.1109/ACCESS.2020.3016826. 6. X. Cai, Q. Wang, Y. Tang and L. Zhu. Review of Cyber-attacks and Defense Research on Cyber Physical Power System. 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China. 2019, pp. 487-492. DOI: 10.1109/iSPEC48194.2019.8975131. 7. I. Zografopoulos, J. Ospina, X. Liu, and C. Konstantinou. Cyber-physical energy systems security: Threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access. 2021, vol. 9, pp. 29775–29818. DOI: 10.1109/ACCESS.2021.3058403. 8. L. Gurina, T. Zoryna, and N. Tomin. Risk assessment for digitalization of facilities of cyber-physical energy system. 2022 International Ural Conference on Electrical Power Engineering (UralCon), Magnitogorsk, Russian Federation. 2022, pp. 86–90. DOI: 10.1109/UralCon54942.2022.9906686. 9. E. Hossain, E. Kabalcı, R. Bayindir, and R Perez. A comprehensive study on microgrid technology. International Journal of Renewable Energy Research. 2014, vol. 4, pp. 1094–1104. 10. J. L. Gallardo, M. A. Ahmed and N. Jara. LoRa IoT-Based Architecture for Advanced Metering Infrastructure in Residential Smart Grid. In IEEE Access. 2021, vol. 9, pp. 124295-124312. DOI: 10.1109/ACCESS.2021.3110873. 11. C. Wang, T. Zhang, F. Luo, F. Li, and Y. Liu. Impacts of cyber system on microgrid operational reliability. IEEE Transactions on Smart Grid. 2019, vol. 10, no. 1, pp. 105–115. DOI: 10.1109/TSG.2017.2732484. 12. A. D. Frias, N. Yodo and O. P. Yadav. Mixed-Degradation Profiles Assessment of Critical Components in Cyber-Physical Systems. 2019 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA. 2019, pp. 1-6. DOI: 10.1109/RAMS.2019.8769014. 13. Gjorgievski V.Z., Cundeva S., Georghiou G.E.. Social arrangements, technical designs and impacts of energy communities: A review. Renewable Energy. 2021, vol. 169, pp. 1138-1156. DOI: 10.1016/j.renene.2021.01.078. 14. Warneryd M., Håkansson M., Karltorp K. Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids. Renewable and Sustainable Energy Reviews. 2020, 121, 109690, DOI: 10.1016/j.rser.2019.109690. 15. Parilina E., Reddy P.V., and Zaccour. Cooperative Games. In Theory and Applications of Dynamic Games: A Course on Noncooperative and Cooperative Games Played over Event Trees. Cham: Springer International Publishing. 2022, pp. 39-63. DOI: 10.1007/978-3-031-16455-2_2. 16. S. Rathor and D Saxena. Energy management system for smart grid: An overview and key issues. International Journal of Energy Research. 2020. DOI:10.1002/er.4883. 17. I. Rendroyoko, A. D. Setiawan and Suhardi. Development of Meter Data Management System Based-on Event-Driven Streaming Architecture for IoT-based AMI Implementation. 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bandung, Indonesia. 2021, pp. 403-407. DOI: 10.1109/ICHVEPS53178.2021.9601104. 18. X. Liang, F. Liang, B. Zhou, H. Pan and L. Yuan. Key Technologies Research and Equipment Development of Smart Substation Automation System. 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China. 2020, pp. 1736-1741. DOI: 10.1109/iSPEC50848.2020.9351156. 19. A. N. Milioudis and G. T. Andreou. Use of Smart Metering Data for Distribution Network Operational Status Assessment. 2021 IEEE Madrid PowerTech, Madrid, Spain. 2021, pp. 1-6. DOI: 10.1109/PowerTech46648.2021.9494894. 20. S. Li, B. Jiang, X. Wang, and L. Dong. Research and application of SCADA system for the microgrid. Technologies. 2017, vol. 5, no. 2, 12. DOI: 10.3390/technologies5020012. 21. S. Mishra, K. Anderson, B. Miller, K. Boyer, and A. Warren. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Applied Energy. 2020, vol. 264, 114726. DOI: 10.1016/j.apenergy.2020.114726. 22. Y. Lu and L. D. Xu. Internet of Things (IoT) cybersecurity research: A review of current research topics. IEEE Internet of Things Journal. April 2019, vol. 6, no. 2, pp. 2103–2115. DOI: 10.1109/JIOT.2018.2869847. 23. Kolosok I.N., Gurina L.A. Ocenka kachestva dannyh SCADA i WAMS pri kiberatakah na informacionno-kommunikacionnuyu infrastrukturu EES // Informacionnye i matematicheskie tekhnologii v nauke i upravlenii [Information and mathematical tehnologies in science and management], 2020, № 1(17), pp. 68-78. DOI: 10.38028/ESI.2020.17.1.005. 24. Kolosok I.N., Gurina L.A. Otsenka pokazatelei kiberustoichivosti sistem sbora i obrabotki informatsii v EES na osnove polumarkovskikh modelei // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2021, №6. S. 2-11. DOI: 10.21681/2311-3456-2021-6-2-11. 25. Fardad Noorollah, Soleymani Soodabeh, Faghihi Faramarz. Cyber defense analysis of smart grid including renewable energy resources based on coalitional game theory. Journal of Intelligent & Fuzzy Systems. 2018, vol. 35(2), pp. 2063–2077. DOI: 10.3233/JIFS171980. 26. Iqbal A., Gunn L. J., Guo M., Babar M. A., & Abbott D. Game theoretical modelling of network/cybersecurity. IEEE Access. 2019, vol. 7, pp. 154167-154179. DOI: 10.1109/ACCESS.2019.294835. 27. Laraki Rida, Jérôme Renault, and Sylvain Sorin. Mathematical foundations of game theory. New York, NY, USA: Springer, 2019. DOI: 10.1007/978-3-030-26646-2. 28. Gurina L.A. Ocenka kiberustojchivosti sistemy operativno-dispetcherskogo upravleniya EES // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2022, №3 (49). S. 23-31. DOI: 10.21681/2311-3456-2022-3-23-31. |
37-49 |
Livshitz, I. I. PRACTICAL TRAINING IN THE FIELD OF FUNCTIONAL SAFETY AT ITMO UNIVERSITY / I. I. Livshitz, P. V. Perlak // Cybersecurity issues. – 2023. – № 3(55). – С. 50-61. – DOI: 10.21681/2311-3456-2023-3-50-61.
AbstractThe purpose of the study: development and practical testing of a new training program in the field of functional safety for technical universities. An important feature of this goal is the independence of its solution from the specific area of operation of complex industrial facilities. The task is to apply a unified engineering approach for training in the field of functional safety - both in the theoretical and in the practical (computational) part.Research methods: system analysis, analytical modeling methods, statistical methods, comparison methods and practical testing methods.The result obtained: the requirements for the creation and evaluation of components from the point of view of functional safety are investigated. A review of the domestic and world scientific literature over the past 10 years and a brief analysis of existing solutions for evaluating components from the point of view of functional safety are made. The structure of the new training course is proposed, the main parts are briefly described - theoretical (lecture) and computational (practical). The generalized procedures for assessing the functional safety of various components are described, as well as the results of their testing in the ITMO University training course in the 2022/2023 academic year.The scientific novelty lies in the systematization and a fairly extensive review of applicable regulatory and methodological documents (GOST R, ISO and IEC) over the past ten years devoted to the assessment of the functional safety of components. A new course for students of technical universities has been proposed, which equally combines practical and theoretical knowledge, has passed a full cycle of approbation. Keywords: automated control system, import substitution, risks, residual risks, audit, conformity assessment, digital sovereignty. References1. Смирнов Е.В. Методика оценки политической значимости угроз объекту критической информационной инфраструктуры на примере объекта инфокоммуникаций // Право. 2020. – №2. – C. 49-56. 2. Новикова Е.Ф., Хализев В.Н. Разработка модели угроз для объектов критической информационной инфраструктуры с учетом методов социальной инженерии // Прикаспийский журнал: управление и высокие технологии. 2019. – № 4. – С. 127-135. 3. Щелкин К.Е., Звягинцева П.А., Селифанов В.В. Возможные подходы к категорированию объектов критической информационной инфраструктуры // Интерэкспо Гео-Сибирь. 2019. – Т. 6. – С.128-133 №. 1. DOI: 10.33764/2618-981Х-2019-6-1-128-133. 4. Ерохин С.Д., Петухов А.Н., Пилюгин П.Л. Принципы и задачи асимптотического управления безопасностью критических информационных инфраструктур // Информатика, 2019. № 12. С. 29-35. DOI 10.24411/2072-8735-2018-10330 5. Герасимова К.С., Михайлова У.В., Баранкова И.И. Разработка ПО для оптимизации категорирования объектов критической информационной инфраструктуры // Вестник УрФО. Безопасность в информационной сфере. – 2022. – № 2 (44). – С. 30-36.6. Наталичев Р.В., Горбатов В.С., Гавдан Г.П., Дураковский А.П. Эволюция и парадоксы нормативной базы обеспечения безопасности объектов критической информационной инфраструктуры // Безопасность информационных технологий. – 2021. – Т. 28. – № 3. – С. 6‑27. 7. Соловьев С.В., Тарелкин М.А., Текунов В.В., Язов Ю.К. Состояние и перспективы развития методического обеспечения технической защиты информации в информационных системах // Вопросы кибербезопасности. – 2023. – № 1 (53). – С. 41-57. 8. Косьянчук В.В., Сельвесюк Н.И., Зыбин Е.Ю., Хамматов Р.Р., Карпенко С.С. Концепция обеспечения информационной безопасности бортового оборудования воздушного судна // Вопросы кибербезопасности. – 2018. – № 4 (28). – С. 9-20. 9. Гарбук С.В., Правиков Д.И., Полянский А.В., Самарин И.В. Обеспечение информационной безопасности АСУ ТП с использованием метода предиктивной защиты // Вопросы кибербезопасности. – 2019. – № 3 (31). – С. 63-71. 10. Alan C. NIST Cybersecurity Framework: A Pocket Guide // Ely, Cambridgeshire, United Kingdom:ITGP. 2018. 11. Гордейчик С.В. «Миссиоцентрический подход к кибербезопасности АСУ ТП» // Вопросы кибербезопасности №2(10) – 2015. – Стр. 56 – 59 12. Лившиц И.И., Неклюдов А.В. Суверенные информационный технологии России // Стандарты и качество. – 2018. – № 4. – С. 68-72 13. Лившиц И.И., Неклюдов А.В. Суверенные информационный технологии России. Окончание // Стандарты и качество. – 2018. – № 5. – С. 66-70 14. Лившиц И.И. К вопросу управления уязвимостями в компонентах АСУТП // Автоматизация в промышленности. – 2022. – № 8. – С. 12-16. 15. Лившиц И.И. К вопросу оценивания безопасности промышленных систем управления // Автоматизация в промышленности. – 2021. – № 7. – С. 3-7. 16. Лившиц И.И. Исследование оценок защищенности промышленных систем // Автоматизация в промышленности. – 2020. – № 12. – С. 13-18. 17. Лившиц И.И., Зайцева А.А. Проблемы обеспечения безопасности облачной компоненты информационных технологий // Автоматизация в промышленности. – 2019. – № 7. – С. 10-16. |
50-61 |
Sheluhin, O. I. MULTI-LABEL CLASSIFICATION OF SYSTEM LOGS OF COMPUTER NETWORKS. COMPARATIVE ANALYSIS OF CLASSIFIER EFFICIENCY / O. I. Sheluhin, D. I. Rakovskiy // Cybersecurity issues. – 2023. – № 3(55). – С. 62-77. – DOI: 10.21681/2311-3456-2023-3-62-77.
AbstractThe aim of the study. The aim of the study is to conduct a comparative analysis of binary (BC), multiclass (MCC) and multivalued (MLC) classification methods in information security problems. The boundaries of the study are the system logs formed by the computer network (CN).Method. Сlassification algorithms were analysed: Decision Tree Classifier (DTC); Extra Trees Classifier (ETC); KNeighbors Classifier (KNC); Random Forest Classifier (RFC). The study was conducted on three metrics based onthe Area Under the Receiver Operating Characteristic Curve (ROC-AUC): ROC-AUCMicro, ROC-AUCMacro, ROC-AUCWeighted using two methods One-vs-one, OVO or One-vs-everyone, OVE (in some sources - One-vs-rest - OVR). The experiment implied an iterative assessment of the classification quality depending on the number of ED attributes. The ED attributes were ranked in descending order of their total informative value and statistical significance. Results. The analysis of binary, multiclass and multivalued implementations of the DTC, ETC, RNC, RFC algorithms in terms of the ROC-AUC parameter (metrics - ROC-AUCscore ovo macro, ROC-AUCscore ovo weighted, ROC-AUCscore ovr macro, ROC-AUCscore ovr micro, ROC-AUCscore ovo micro, ROC-AUCscore ovr weighted). The experiment was carried out for 28 different dimensions of the ED attribute space. The results of the study of the MLC, MCC and BC classifiers according to the AUCovo micro showed that the gain of MLC in comparison with MCC is on average 15% for ETC and reaches 20% for RFC. The gain in the AUCovo micro MСC metric compared to BC averages 20% with a large number of attributes and decreases with a decrease in the number of attributes in ED. Algorithms DTC and KNC show slightly worse results, although the general pattern remains. A study was made of the dependence of the MLC on the ROC-AUC parameter on the dimension of the primary attributes in the ED. It showed that the AUCovo micro metric shows the best results for the ETC and RFC algorithms and averages 80% even when classifying in a small attribute space. The study showed that the use of multivalued classification can increase the classification Accuracy by up to 20% according to the AUCovo micro. Scientific novelty lies in the study of the effectiveness of these classification methods in relation to ED KN by a set of output metrics. It is shown that the gain of MLC over other classification methods is up to 35% in total (MLC versus BC). Keywords: data mining; abnormal condition; multi-label; binary classification; multiclass classification; feature importance; Decision Tree Classifier; Extra Trees Classifier; KNeighbors Classifier; Random Forest Classifier. References1. Mirsky Y., Doitshman T., Elovici Y., Shabtai A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection // V sbornike: Network and Distributed System Security Symposium. 2018. S. 1 – 16. DOI: 10.14722/ndss.2018.23211. 2. Hu J., Li Y., Xu G., Gao W. Dynamic subspace dual-graph regularized multi-label feature selection // Neurocomputing. 2022. T. 467. S. 184-196. DOI: 10.1016/j.neucom.2021.10.022 3. Dong Q., Gong S., Zhu X. Imbalanced deep learning by minority class incremental rectification // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019. T. 41. № 6. S. 1367-1381. DOI: 10.1109/TPAMI.2018.2832629 4. Sheluhin, O. I., Rybakov S.Ju., Vanjushina A.V. Modifikacija algoritma obnaruzhenija setevyh atak metodom fiksacii skachkov fraktal’noj razmernosti v rezhime online // Trudy uchebnyh zavedenij svjazi. 2022. T. 8. № 3. S. 117-126. DOI 10.31854/1813-324X-2022-8-3-117-126 5. Gurina A., Eliseev V. Anomaly-Based Method for Detecting Multiple Classes of Network Attacks // Information. 2019. T. 84. №10. C. 1-24 DOI: 10.3390/info10030084. 6. Machoke M., Mbelwa J., Agbinya J., Sam A. Performance Comparison of Ensemble Learning and Supervised Algorithms in Classifying Multi-label Network Traffic Flow // Engineering, Technology & Applied Science Research. 2022. №. 12. S. 8667-8674. DOI: 10.48084/etasr.4852 7. Ducau F. N., Rudd E. M., Heppner T. M., Long A., Berlin K. Automatic Malware Description via Attribute Tagging and Similarity Embedding // arXiv preprint arXiv:1905.06262. 2019. C. 1 – 17. DOI: 10.48550/arXiv.1905.06262 8. Molodcov D. A., Osin A. V. Novyj metod primenenija mnogoznachnyh zakonomernostej // Nechetkie sistemy i mjagkie vychislenija. №2. 2020. s. 83-95 DOI: 10.26456/fssc72 9. Sheluhin O. I., Kostin D. V., Polkovnikov M. V. Forecasting of Computer Network Anomalous States Based on Sequential Pattern Analysis of “Historical Data” // Automatic Control and Computer Sciences. 2021. № 6. C. 522–533. DOI: 10.3103/S0146411621060067 10. Sheluhin O.I., Osin A.V., Kostin D.V. Monitoring i diagnostika anomal’nyh sostojanij komp’juternoj seti na osnove izuchenija “istoricheskih dannyh” // T-Comm: Telekommunikacii i transport. 2020. №4. S. 23-30. DOI: 10.36724/2072-8735-2020-14-4-23-30 11. Sheluhin O.I., Osin A.V., Kostin D.V. Diagnostika “zdorov’ja” komp’juternoj seti na osnove sekvencial’nogo analiza posledovatel’nostnyh patternov // T-Comm: Telekommunikacii i transport. 12. Sheluhin O.I., Rakovskij D.I. Vybor kategorial’nyh atributov redkih anomal’nyh sobytij komp’juternoj sistemy metodami simvol’nogo analiza // V sbornike: Tehnologii Informacionnogo Obshhestva. Sbornik trudov XV Mezhdunarodnoj otraslevoj nauchno-tehnicheskoj konferencii «Tehnologii informacionnogo obshhestva». 2021. S. 179-181 13. Sheluhin O.I., Rakovskij D.I. Prognozirovanie profilja funkcionirovanija komp’juternoj sistemy na osnove mnogoznachnyh zakonomernostej // Voprosy kiberbezopasnosti. 2022. № 6. S. 28-45. DOI:10.21681/2311-3456-2022-6-53-70 14. Sheluhin O.I., Rakovskij D.I. Vybor metricheskih atributov redkih anomal’nyh sobytij komp’juternoj sistemy metodami intellektual’nogo analiza dannyh // T-Comm: Telekommunikacii i transport. 2021. T. 15. № 6. S. 40-47. DOI: 10.36724/2072-8735-2021-15-6-40-47 15. Awad, W., El-Attar N. Adaptive SLA mechanism based on fuzzy system for dynamic cloud environment // International Journal of Computers and Applications. 2019. T. 44. S. 1-11. DOI: 10.1080/1206212X.2019.1683956. 16. Kapassa, E., Touloupou, M., Kyriazis, D. SLAs in 5G: A complete framework facilitating VNF-and NS-tailored SLAs management // 5GTANGO - 5G Development and Validation Platform for global Industry-specific Network Services and Apps. AINA 2018. Krakow, Poland: 2018. S. 1-7. DOI:10.1109/WAINA.2018.00130. 17. Freeborn L., Andringa S., Lunansky G., Rispens J. Network analysis for modeling complex systems in SLA research // Studies in Second Language Acquisition. 2022. S. 1 – 33. DOI: 10.1017/S0272263122000407 |
62-77 |
Sinjuk, A. D. INFORMATION RATE OF A THREE-PART BROADCAST COMMUNI- CATION CHANNEL / A. D. Sinjuk, O. A. Ostroumov // Cybersecurity issues. – 2023. – № 3(55). – С. 78-89. – DOI: 10.21681/2311-3456-2023-3-78-89.
AbstractAbstractIntroduction. The main task of the communication system functioning is the transmission of information messages to correspondents. The telecommunications system may include various broadcast communication channels. Conditions for maximizing and evaluating information efficiency are not known for all models of broadcast channels. The studies of the broadcast channel, which includes three components of the communication channel according to the criterion of maximizing information efficiency, are being updated.Purpose: of the study is to evaluate the information efficiency of a three-part broadcast communication channel model by introducing an indicator of message transmission information rate.Method. Introduction of a new in information theory information measure of general information of a broadcast channel with three components and study of the proposed measure properties.Results. A model of a broadcast channel, including three components of a communication channel, was proposed and investigated. Terminologically, a new information measure of the broadcast channel model under study is defined, named as general information, which is represented by a random variable on a combined ensemble of four messages at the input and outputs of the channel. The properties of the introduced information measure have been conclusively investigated. Through the new terminology, the channel information rate is defined, which is used as an indicator of information efficiency showing the maximum estimate of the average total information per one transmitted symbol over the broadcast channel, regardless of the length of the transmitted message and the probability distribution law at the channel input. The evaluation of the information indicator by the graphical-analytical method is carried out. An analysis of the estimates and conditions for maximizing the information speed has been made. The binding conditions of the obtained results with known studies of broadcast communication channels various models are shown.Practical significance. The presented results may be useful for specialists to assess the potential for information transmission, synthesized high-performance telecommunication systems, including broadcast communication channels. Discussion: The presented results deepen and expand the known estimates of various broadcast communication channels. Further research is related to the evidence-based information-theoretic evaluation of the effectiveness of the presented model of the broadcast communication channel. Keywords: entropy; mutual information; joint information; an information measure of the common information of the three-part broadcast communication channel; information rate of information transfer; information efficiency. References1. H. Boche, G. Janßen, S. Saeedinaeeni Universal superposition codes: Capacity regions of compound quantum broadcast channel with confidential messages, 2020, Vol. 61, No. 4, p. 042204. – DOI 10.1063/1.5139622. – EDN ATGXBX. 2. Michael Heindlmaier, Shirin Saeedi Bidokhti Capacity Regions of Two-Receiver Broadcast Erasure Channels With Feedback and Memory. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 7, pp. 5042 – 5069. 3. Hon-Fah Chong, Ying-Chang Liang On the Capacity Region of the Parallel Degraded Broadcast Channel with Three Receivers and Three-Degraded Message Sets. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 7, pp. 5017 – 5041. DOI: 10.1109/TIT.2016.2606502 4. Narayan Ravi, Sibi Raj B. Pillai, Vinod M. Prabhakaran, Michèle Wigger On the Capacity Enlargement of Gaussian Broadcast Channels With Passive Noisy Feedback Aditya. IEEE Transactions on Information Theory, 2021, Volume: 67, Issue: 10, pp. 6356 – 6367. DOI: 10.1109/TIT.2021.3096639. 5. Sunghyun Kim, Soheil Mohajer, Changho Suh On the Sum Capacity of Dual-Class Parallel Packet-Erasure Broadcast Channels. IEEE Transactions on Communications, 2021, Volume: 69, Issue: 4, pp. 2271 – 2289. DOI: 10.1109/TCOMM.2021.3051392. 6. Michael Heindlmaier, Shirin Saeedi Bidokhti Capacity Regions of Two-Receiver Broadcast Erasure Channels With Feedback and Memory. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 7, pp. 5042 – 5069. DOI: 10.1109/TIT.2018.2818736. 7. Long Suo, Jiandong Li, Hongyan Li, Shun Zhang, Timothy N. Davidson Achievable Sum Rate and Degrees of Freedom of Opportunistic Interference Alignment in MIMO Interfering Broadcast Channels. IEEE Transactions on Communications, 2019, Volume: 67, Issue: 6, pp. 4062 – 4073. DOI: 10.1109/TCOMM.2019.2903250. 8. Arun Padakandla, S. Sandeep Pradhan Achievable Rate Region for Three User Discrete Broadcast Channel Based on Coset Codes. IEEE Transactions on Information Theory Year, 2018, Volume: 64, Issue: 4, pp. 2267 – 2297. DOI: 10.1109/TIT.2018.2798669. 9. Nikolaos Pappas, Marios Kountouris, Anthony Ephremides, Vangelis Angelakis Stable Throughput Region of the Two-User Broadcast Channel. IEEE Transactions on Communications Year, 2018, Volume: 66, Issue: 10, pp. 4611 – 4621. DOI: 10.1109/TCOMM.2018.2834943. 10. Ostroumov O. A., Sinjuk A. D. Propusknaja sposobnost’ shirokoveshhatel’nogo kanala svjazi // Vestnik komp’juternyh i informacionnyh tehnologij. 2019. № 9 (183). s. 33-42. DOI 10.14489/vkit.2019.09.pp.033-042. 11. Sinjuk A. D., Tarasov A. A., Ostroumov O. A. Metod ocenki vremennoj jeffektivnosti peredachi informacii diskretnogo shirokoveshhatel’nogo kanala svjazi // Telekommunikacii. 2021. № 7. s. 10-17. DOI 10.31044/1684-2588-2021-0-7-10-17. – EDN JMFKNS. 12. Sinjuk A. D., Ostroumov O. A. Obratnaja teorema kodirovanija diskretnogo shirokoveshhatel’nogo kanala svjazi // Informacija i kosmos. 2018. № 3. s. 49-54. – EDN YCMFBB. 13. Sinjuk, A. D., Tarasov A. A. Informacionnye bazisy otkrytogo setevogo mnogokljuchevogo soglasovanija // Izvestija Instituta inzhenernoj fiziki. 2022. № 1(63). s. 36-42. – EDN BOJIYN. 14. Kaiming Shen, Reza K. Farsani, Wei Yu Achievable Rates and Outer Bounds for Full-Duplex Relay Broadcast Channel with Side Message. IEEE International Symposium on Information Theory (ISIT) IEEE International Symposium on Information Theory (ISIT)2019 IEEE International Symposium on Information Theory (ISIT), 2019. DOI: 10.1109/ISIT.2019.8849640. 15. Krishnamoorthy Iyer Two Receiver Relay Broadcast Channel with Mutual Secrecy. International Conference on Signal Processing and Communications (SPCOM), 2018, DOI: 10.1109/SPCOM.2018.8724484. 16. Ke Wang, Youlong Wu, Yingving Ma Capacity Region of Degraded Relay Broadcast Channel. IEEE International Symposium on Information Theory, 2018. DOI: 10.1109/ISIT.2018.8437820. 17. Bin Dai, Chong Li, Yingbin Liang, Zheng Ma, Shlomo Shamai Shitz Impact of Action-Dependent State and Channel Feedback on Gaussian Wiretap Channels. IEEE Transactions on Information Theory, 2020, Volume: 66, Issue: 6, pp. 3435 – 3455. DOI: 10.1109/TIT.2020.2967757. 18. Shih-Chun Lin; I.-Hsiang Wang Gaussian Broadcast Channels With Intermittent Connectivity and Hybrid State Information at the Transmitter. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 9, pp. 6362 – 6383. DOI: 10.1109/TIT.2018.2857803. 19. Ziv Goldfeld, Haim H. Permuter MIMO Gaussian Broadcast Channels With Common, Private, and Confidential Messages. IEEE Transactions on Information Theory, 2019, Volume: 65, Issue: 4, pp. 2525 – 2544. DOI: 10.1109/TIT.2019.2892107. 20. Shirin Saeedi Bidokhti, Michèle Wigger, Aylin Yener Benefits of Cache Assignment on Degraded Broadcast Channels. IEEE Transactions on Information Theory, 2019, Volume: 65, Issue: 11, pp. 6999 – 7019. DOI: 10.1109/TIT.2019.2926714. 21. Shaofeng Zou, Yingbin Liang, Lifeng Lai, H. Vincent Poor, Shlomo Shamai Degraded Broadcast Channel With Secrecy Outside a Bounded Range. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 3, pp. 2104 – 2120. DOI: 10.1109/TIT.2018.2791995. 22. Shraga I. Bross Message and Causal Asymmetric State Transmission Over the State-Dependent Degraded Broadcast Channel. IEEE Transactions on Information Theory, 2020, Volume: 66, Issue: 6, pp. 3342 – 3365. DOI: 10.1109/TIT.2020.2983157. 23. H. Qi, K. Sharma, M. M. Wilde Entanglement-assisted private communication over quantum broadcast channels, 2018, Vol. 51, No. 37, p. 374001. DOI 10.1088/1751-8121/aad5f3. – EDN YKPJHV. 24. Farzin Salek, Min-Hsiu Hsieh, Javier Rodríguez Fonollosa Single-Serving Quantum Broadcast Channel With Common, Individualized, and Confidential Messages. IEEE Transactions on Information Theory, 2020, Volume: 66, Issue: 12, pp. 7752 – 7771. DOI: 10.1109/TIT.2020.3013098. 25. Sinjuk A. D., Ostroumov O. A. Informacionnaja emkost’ i neopredelennost’ diskretnogo shirokoveshhatel’nogo kanala svjazi // Vestnik komp’juternyh i informacionnyh tehnologij. 2018. № 8 (170). s. 36-45. DOI 10.14489/vkit.2018.08.pp.036-045. 26. L. Yu, H. Li, W. Li Distortion Bounds for Source Broadcast Problems, 2018, Vol. 64, No. 9, p. 6034-6053. DOI 10.1109/TIT.2018.2854547. – EDN YDIAUY. 27. Yucheng Liu, Parastoo Sadeghi, Fatemeh Arbabjolfaei, Young-Han Kim Capacity Theorems for Distributed Index Coding. IEEE Transactions on Information Theory, 2020, Volume: 66, Issue: 8, pp. 4653 – 4680. DOI: 10.1109/TIT.2020.2977916. 28. G. De Palma New lower bounds to the output entropy of multi-mode quantum Gaussian channels, 2019, Vol. 65, No. 9, p. 5959-5968. – DOI 10.1109/TIT.2019.2914434. – EDN TRPUKY. 29. Sinjuk A. D., Ostroumov O. A. Theorem about key capacity of a communication network // Informatsionno-upravliaiushchie sistemy [Information and Control Systems]. 2018. № 5. pp. 79-87. doi: 10.31799/1684-8853-2018-5-79-87. 30. Kheong Sann Chan, Susanto Rahardja Analysis of the Joint Viterbi Detector/Decoder (JVDD) Over a Coded AWGN/ISI System ss an LDPC Alternative. IEEE Transactions on broadcasting, 2019, Volume: 65, Issue: 1, pp. 1 – 9. DOI: 10.1109/TBC.2018.2855646. 31. Ran Averbuch, Neri Merhav Exact Random Coding Exponents and Universal Decoders for the Asymmetric Broadcast Channel. IEEE Transactions on Information Theory, 2018, Volume: 64, Issue: 7, pp. 5070 – 5086. DOI: 10.1109/TIT.2018.2836668. |
78-89 |
Izrailov, K. E. THE DIFFERENT GENESIS ATTACKS TO COMPLEX OBJECTS DETECT- ING METHOD BASED ON CONDITION INFORMATION. PART 1. PREREQUISITES AND SCHEMA / K. E. Izrailov, M. V. Buinevich // Cybersecurity issues. – 2023. – № 3(55). – С. 90-100. – DOI: 10.21681/2311-3456-2023-3-90-100.
AbstractThe goal of the study is to create a method of detecting attacks on complex objects and processes by evaluating and predicting their state; the method is based on 7 principles proposed by the authors earlier; a feature of method is its invariance with respect to the genesis of attacks. Research methods: system analysis, analytical modeling methods, statistical methods and machine learning, software code development for the implementation of estimation and prediction algorithms. Result: proposed method of attack detection on a complex object that uses assessment of current and future prediction states; the description of method is given in schematic and analytical form using a cross-cutting example from information security field; theoretical significance lies in the scientific and methodological apparatus of assessment and prediction development of states different structure objects; the practical significance lies in the possibility of direct implementation of software prototype with potentially high efficiency. The first part of the article formulates the prerequisites for creating a step-by-step method for detecting at-tacks of different genesis on complex objects based on state information. The description of all stages of the method and the basic logic of their implementation are given. The attack detection scheme represented in graphical form is described element by element. The scientific novelty is to create a method of detecting attacks on a complex object (or process), which is based on a fundamentally new approach to the evaluation and prediction of its state, obtained by the authors in previous studies. As a result, this method is applicable to subject area without taking into account its specificity, which in particular is achieved through the use of author's original intellectual fuzzy graph-oriented model. In contrast to the large number of information systems attacks detection methods, this method is described not only in terms of graphical scheme and steps sequence, but also using analytical record of algorithms that allows to apply to it certain mathematical apparatuses (for example, to justify the performance or optimization of individual steps). Keywords: information technology, information security, complex object, complex process, attack detection method, analytical algorithm, experiment. References1. Buinevich M., Izrailov K., Stolyarova E., Vladyko A. Combine method of forecasting VANET cybersecurity for application of high priority way // Proceedings of the 20th International Conference on Advanced Communication Technology (ICACT, Chuncheon, South Korea, 2018). IEEE, 2018. PP. 266-271. DOI: 10.23919/ICACT.2018.8323720 2. Shorikov A.F. Prognozirovaniye i minimaksnoye otsenivaniye sostoyaniy proizvodstvennoy sistemy pri nalichii riskov // Prikladnaya informatika. 2022. T. 17. № 4 (100). S. 97-112. (in Russian) DOI: 10.37791/2687-0649-2022-17-4-97-112 3. Maksimova Ye.A. Metody vyyavleniya i identifikatsii istochnikov destruktivnykh vozdeystviy infrastrukturnogo geneza // Elektronnyy setevoy politematicheskiy zhurnal «Nauchnyye trudy KubGTU». 2022. № 2. S. 86-99. (in Russian) 4. Izrailov K.Ye., Buynevich M.V., Kotenko I.V., Desnitskiy V.A. Otsenivaniye i prognozirovaniye sostoyaniya slozhnykh ob”yektov: primeneniye dlya informatsionnoy bezopasnosti // Voprosy kiberbezopasnosti. 2022. № 6(52). S. 2-21. (in Russian) DOI: 10.21681/2311-3456-2022-6-2-21 5. Balashov O.V., Bukachev D.S. Podkhod k opredeleniyu kachestvennykh kharakteristik ob”yektov // Mezhdunarodnyy zhurnal informatsionnykh tekhnologiy i energoeffektivnosti. 2021. T. 6. № 4 (22). S. 18-23. (in Russian) 6. Popov S.V. O predskazanii sobytiy // Informatsionnyye sistemy i tekhnologii. 2023. № 1 (135). S. 38-45. (in Russian) 7. Kubarev A.V., Lapsar’ A.P., Nazaryan S.A. Parametricheskoye modelirovaniye sostoyaniya ob”yektov kriticheskoy infrastruktury v usloviyakh destruktivnogo vozdeystviya // Voprosy kiberbezopasnosti. 2021. № 3 (43). S. 58-67. (in Russian) DOI: 10.21681/2311-3456-2021-3-58-67 8. Kotenko I., Izrailov K., Buinevich M. Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches // Sensors. 2022. Vol. 22. Iss. 4. PP. 1335. DOI: 10.3390/s22041335 9. Desnitskiy V.A. Podkhod k obnaruzheniyu atak v real’nom vremeni na osnove imitatsionnogo i grafooriyentirovannogo modelirovaniya // Informatizatsiya i svyaz’. 2021. № 7. S. 30-35. (in Russian) DOI: 10.34219/2078-8320-2021-12-7-30-35 10. Lavrova D.S., Popova Ye.A., Shtyrkina A.A., Shterenberg S.I. Preduprezhdeniye DoS-atak putem prognozirovaniya znacheniy korrelyatsionnykh parametrov setevogo trafika // Problemy informatsionnoy bezopasnosti. Komp’yuternyye sistemy. 2018. № 3. S. 70-77. (in Russian) 11. Akhrameyeva K.A., Fedosenko M.YU., Gerling Ye.YU., Yurkin D.V., Analiz sredstv obmena skrytymi dannymi zloumyshlennikami v seti internet posredstvom metodov steganografii // Telekommunikatsii. 2020. № 8. S. 14-20. (in Russian) 12. Branitskiy A.A., Sharma Yash.D., Kotenko I.V., Fedorchenko Ye.V., Krasov A.V., Ushakov I.A., Opredeleniye psikhicheskogo sostoyaniya pol’zovateley sotsial’noy seti REDDIT na osnove metodov mashinnogo obucheniya // Informatsionno-upravlyayushchiye sistemy. 2022. № 1 (116). S. 8-18. (in Russian) DOI: 10.31799/1684-8853-2022-1-8-18 13. Izrailov K.Ye., Obrezkov A.I., Kurta P.A. Podkhod k vyyavleniyu posledovatel’nosti odnotselevykh setevykh atak s vizualizatsiyey ikh progressa ekspertu // Metody i tekhnicheskiye sredstva obespecheniya bezopasnosti informatsii. 2020. № 29. S. 68-69. (in Russian) 14. Kuz’min V.N., Menisov A.B. Issledovaniye putey i sposobov povysheniya rezul’tativno-sti vyyavleniya komp’yuternykh atak na ob”yekty kriticheskoy informatsionnoy infrastruktury // Informatsionno-upravlyayushchiye sistemy. 2022. № 4 (119). S. 29-43. (in Russian) DOI: 10.31799/1684-8853-2022-4-29-43 15. Zakharchenko R.I., Korolev I.D. Metodika otsenki ustoychivosti funktsionirovaniya ob“yektov kriticheskoy informatsionnoy infrastruktury funktsioniruyushchey v kiberprostranstve // Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2018. T. 10. № 2. S. 52-61. (in Russian) DOI: 10.24411/2409-5419-2018-10041 16. Zakharov N.A., Klepikov V.I., Podkhvatilin D.S. Setevyye vstraivayemyye sistemy // Avtomatizatsiya v promyshlennosti. 2020. № 3. S. 58-61. (in Russian) DOI: 10.25728/avtprom.2020.03.14 17. Stepanov Ye.P., Smelyanskiy R.L. Sravnitel‘nyy analiz mnogopotochnykh transportnykh protokolov // Sistemy i sredstva informatiki. 2022. T. 32. № 2. S. 155-170. (in Russian) DOI: 10.14357/08696527220215 |
90-100 |
Petrov, I. A. PHYSICAL LAYER SECURITY FOR 5G/6G NETWORKS / I. A. Petrov // Cybersecurity issues. – 2023. – № 3(55). – С. 101-113. – DOI: 10.21681/2311-3456-2023-3-101-113.
AbstractPurpose: show promising technologies that will be used in new generations of wireless data transmission systems, to identify their vulnerabilities, as well as possible solutions to them.Method: the method of system analysis of open data on existing and promising technologies that ensure thesecurity of wireless data transmission networks is applied.Result: actual problems in the field of information security of wireless data transmission systems are identified. Conclusions are drawn about the need to use promising data transmission technologies in the near future, as well as their shortcomings. Since the amount of data transmitted over wireless networks is constantly increasing, the introduction of new generation networks must be implemented in the next decade, but this article highlights certain problems in security and data transfer speed, solutions for which are not yet available, or they are not economically feasible. In addition, problems have been identified when using machine learning and artificial intelligence, which can help attackers bypass existing security measures. The article also indicates problems with the balance of the quality of customer service and the security of data transmission.The scientific novelty: the presented article is one of the first Russian works devoted to the analysis and generalization of information security problems in wireless data transmission networks in 5/6 generation networks. The main problems of information security, as well as possible solutions to them, are formulated. Keywords: Wireless networks, heterogeneous networks, information security, orthogonal multiple access, cognitive radio networks, multiplexing with orthogonal frequency division, PLS development directions, PLS problems. References1. L. Chen et al., Reliability, security and privacy in location-based services for the future of the Internet of Things: an overview. 2. I. Andrea, K. Chrysostomou, G. Hadzhihristofi, Internet of Things: vulnerabilities and security problems. IEEE Symposium. Calculation. Commun., 180–187 (2015). https://doi.org/10.1109/ISCC.2015.7405513 . 3. M. Lianaj and others., All-around Safety Management 5 aposematic (aposematic, 2018). isbn: 9781119293071. 4. LaPolla, F. Martinelli, D. Sgandurra, Mobile device Security Review. LIEU Commun. Review. Teacher.15(1), 446-471 (2013). https://doi.org/10.1109/SURV.2012.013012.00028. 5. (2019). https://www.theverge.com/2019/4/4/18293817/cybersecurity-hospitals-health-care-scan-simulation . 6. V. Alcazar, V. Cruz-Machado, Scanning Industry 4.0: a review of the literature on technologies for production systems. Eng. The science. Technology. Int. J.22(3), 899-919 (2019).https://doi.org/10.1016/j.jestch.2019.01.006 . 7. K. Huang, K. Zhou, Yu. Qin, U. Tu, Game-theoretic approach to decision-making on inter-level security in industrial cyber-physical systems. IEEE Trans. Ind. Electron.PP (XX), 1-1 (2019). https://doi.org/10.1109/TIE.2019.2907451 . 8. A. Al-Dulaimi et al., 5G networks: Fundamental requirements for technology and Operations management (Wiley, 2018). isbn:978-1-119-33273-2. 9. D. Beisin, J. Dreyer, L. Hirshi, S. Radomirovich, R. Sasse, V. Stettler, in Proc. 2018 ACM SIGMOD Conf. Calculation. Commun. Safety. - CCS ’18. Formal Analysis of 5G Authentication, (2018), pp. 1383-1396. https://doi.org/10.1145/3243734.3243846 . 10. European Telecommunications Standards Institute ETSI, Water Technical Document Mobile Peripheral Computing. https://portal.etsi.org/TBSiteMap/MEC/MECWhitePapers.aspx. 11. D. Wang, B. Bai, K. Lei, V. Zhao, Yu Yang, Z. Han, Improving information security using physical layer approaches in heterogeneous IoT using mobile peripheral computing with multiple access in Smart City. IEEE Access. 7:, 54508-54521 (2019). https://doi.org/10.1109/ACCESS.2019.2913438 . Symantec, Otchet ob ugrozah bezopasnosti v Internete (ISTR), (2019). https://www.symantec.com/securitycenter/threat-report . 12. Cisco, Annual Cybersecurity Report for 2018, (2018). https://www.cisco.com/c/m/enau/products/security/offers/annualcybersecurity-report-2018.html . 13. R. K. M. J. Chakraborty, Handbook of Hardware Cryptography - Algorithms and Analysis (LAP LAMBERT Academic Publishing House, 2018). isbn: 978-6139841653. 14. I. Setiadi, A. I. Kistiyantoro, A. Miyaji, Cryptography on elliptic curves: analysis of algorithms and implementations in coordinate systems. 2015 2nd edition. https://doi.org/10.1109/ICAICTA.2015.7335349 . 15. K. Piotrowski, P. Langendorfer, S. Peter, in the materials of the fourth ACM workshop on peer-to-peer and sensor network security - SASN ’06. How Public Key cryptography affects the service life of a wireless sensor node, (2007), p. 169. https://doi.org/10.1145/1180345.1180366 . 16. T. Eisenbart, S. Kumar, K. Par, A. Poshman, L. Ukhsadel, Review of implementations of lightweight cryptography. IEEE Des. Test computing.24(6), 522-533 (2007). https://doi.org/10.1109/MDT.2007.178 . 17. K. L. Matti Latva-aho, Key driving forces and research challenges for ubiquitous wireless intelligence 6G, 6G Flaship (Technical Report, September, University of Oulu, Finland, 2019). 18. R. Roman, K. Alcatraz, J. Lopez, Review of cryptographic primitives and implementations for sensor network nodes with hardware limitations. Crowd. Netw. The app.12(4), 231-244 (2007). https://doi.org/10.1007/s11036-007-0024-2 . 19. S. B. Sadhan, A. O. Salman, Review of the state of Lightweight cryptography and future problems, (2018). https://doi.org/10.1109/ICASEA.2018.8370965 . 20. A. Biryukov, L. P. Perrin, The current state of lightweight symmetric cryptography, University of Luxembourg (University of Luxembourg, 2017). 21. L. Chen et al., NIST: A Report on NIST Post-Quantum Cryptography. https://csrc.nist.gov/publications/detail/nistir/8105/final. 22. Quanta magazine, does the law of Non-spring describe the growth of quantum computing (2019). https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618 . 23. IEEE Spectrum, which means Google’s quantum superiority requirement for quantum computing, (2019). https://spectrum.ieee.org/tech-talk/computing/hardware/how-googles-quantum-supremacy-plays-into-quantum-computings-long-game. 24. CRYPT CSA, 5.4: Report on Algorithms, Key Size and protocols, (2018). https://www.ecrypt.eu.org/csa/documents/D5.4- FinalAlgKeySizeProt.pdf. 25. K. Sen, K. Govindan, P. Mohapatra, Non-cryptographic authentication and identification in wireless networks [Security and privacy in new wireless networks. IEEE Wireless. Commun.17(5), 56–62 (2010). https://doi.org/10.1109/mwc.2010.5601959 . 26. J. Zhang, T. K. Duong, A. Marshall, R. Woods, Key generation via wireless channels: an overview. IEEE Access. 4:, 614-626 (2016). https://doi.org/10.1109/ACCESS.2016.2521718 . 27. S. Mathur, R. Miller, A. Warshawski, W. Trapp, N. Mandayam, in Proc. 9th Int. Conference. Mob. Syst. Application. The server. - MobiSys’11. ProxiMate, (2011), p. 211. https://doi.org/10.1145/1999995.2000016 . 28. F. Marino, E. Paolini, M. Ciani, in Proc. - IEEE Int. Conf.Extracting a secret key from a UWB channel: Analysis in a Real Environment (UltraWideband, 2014), pp. 80-85. https://doi.org/10.1109/ICUWB.2014.6958955. 29. H. Liu, Y. Wang, J. Yang, Y. Chen, in Proc. IEEE INFOCOM. Fast and practical secret key extraction using channel response, (2013), pp. 3048-3056. https://doi.org/10.1109/INFCOM.2013.6567117 . 30. S. N. Premnat, P. L. Gouda, S. K. Kasera, N. Patvari, R. Ricci, Secret key extraction using Bluetooth wireless signal level measurements. Raising. Annu. IEEE Int. The conference. Probing, communication. Netw., 293-301 (2014). https://doi.org/10.1109/SAHCN.2014.6990365 . 31. J. Wang, A. B. Lopez, M. A. Al-Farouk, in ACM/IEEE 7th Int. The conference. Cyberphysical system. ICCPS 2016 - Proc.Using the randomness of wireless channels to generate keys to ensure the security of an automotive cyber-physical system, (2016), pp. 1-10. 32. https://doi.org/10.1109/ICCPS.2016.7479103 32. A.M. Tonello, A. Pittolo, Physical layer security in power line networks: a new scenario, different from wireless. IET Communun.8(8), 1239-1247 (2014). https://doi.org/10.1049/iet-com.2013.0472 . 33. A. A. E. Hajomer, H. Yang, A. Sultan, U. San, U. Hu, Generation and distribution of keys using phase oscillations in a classical fiber-optic channel. Int. The conference. Transparent selection. Netw.2018-July:, 1-3 (2018). https://doi.org/10.1109/ICTON.2018.8473760 . A. Vaskes-Kastro, M. Hajashi, Bezopasnost’ fizicheskogo urovnja dlja radiochastotnyh sputnikovyh kanalov v rezhime konechnoj dliny. IEEE Trans. Inf. Forensics Security.14(4), 981-993 (2019). https://doi.org/10.1109/TIFS.2018.2868538 . 34. B. M. Al Halawani, A. A. A. Al-Banna, K. Wu, Security and privacy at the physical level for access to everything. INSTEAD OF A commune. Wizard.57(10), 84-90 (2019). https://doi.org/10.1109/MCOM.001.1900141 . 35. D. Tian, W. Zhang, J. Sun, K. -H. Wang, Security at the physical communication layer in visible light with interference, 512-517 (2019). https://doi.org/10.1109/ICCChina.2019.8855859 36. Yu. Luo, L. Pu, Z. Peng, Z. Shi, RSS-based secret key generation in underwater acoustic networks: advantages, problems and performance improvements. IEEE Communun. Mag.54(2), 32–38 (2016). https://doi.org/10.1109/MCOM.2016.7402258 37. C. Sanger, Physical layer security for the Internet of Things, doctoral dissertation (University of Bochum, 2017). 38. D. Wang, B. Bai, V. Zhao, Z. Han, Review of approaches to optimizing the security of the wireless physical layer. IEEE Communun. Review. Teacher.21(2), 1878-1911 (2019). 39. https://doi.org/10.1109/COMST.2018.2883144 39. M. Bloch, J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge Press, 2011). isbn: 978-0521516501. 40. R. Alswede, I. Sissar, Ordinary randomness in Information theory and cryptography - Part I: Sharing Secrets. IEEE Trans. Inf. Theory. 39(4), 1121-1132 (1993). 41. S. N. Premnat, P. L. Gouda, S. K. Kasera, N. Patvari, R. Ricci, Secret key extraction using Bluetooth wireless signal level measurements. Raising. Annu. IEEE Int. The conference. Probing, communication. Netw., 293-301 (2014). https://doi.org/10.1109/SAHCN.2014.6990365 . 42. S. Eberts, M. Strohmeyer, M. Wilhelm, I. Martinovich, A practical man-in-the-middle attack on signal-based key generation protocols. Lecture. Computational Notes. Sci. including Subser. Lecture. Notes Artif. Intelligence. Lecture. Notes Bioinformatics.7459 LNCS, 235-252 (2012). https://doi.org/10.1007/978-3-642-33167-114 . 43. D. Kapetanovic, G. Zheng, and F. Rusek, “Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks,” IEEE Commun. Magazine, vol. 53, pp. 21–27, June 2015. 44. A. Mukherjee and A. L. Swindlehurst, “A full-duplex active eavesdropper in MIMO wiretap channels: Construction and countermeasures,” in 2011 45th Asilomar Conf. Signals, Systems and Computers, pp. 265–269, Nov 2011. 45. Xu, L. Duan, and R. Zhang, “Proactive eavesdropping via cognitive jamming in fading channels,” arXiv preprint arXiv:1512.02754, 2015.J. Xu, L. Duan, and R. Zhang, “Proactive eavesdropping via jamming for rate maximization over Rayleigh fading channels,” IEEE Wireless Commun. Letters, vol. 5, pp. 80–83, Feb 2016. 46. Shiqi, G., Chengwen, X., Zesong, F., Jingming, K., 2016. Resource allocation for physical 47. layer security in heterogeneous network with hidden eavesdropper. China Commun. 13 (3), 82–95 Nasir, A.A., Tuan, H.D., Nguyen, H.H., Nguyen, N.M., 2019. Physical layer security by exploiting interference and heterogeneous signaling. IEEE Wirel. Commun. 26 (5), 26–31. 48. Zhong, Z., Luo, W., Peng, J., Jin, L., 2017. On the security of K-tier heterogeneous cellular networks. Phys. Commun. 25, 570–576. 49. Baracca, P., Laurenti, N., Tomasin, S., 2012. Physical layer authentication over MIMO fading wiretap channels. IEEE Trans. Wireless Commun. 11 (7), 2564–2573. 50. Shu, Z., Qian, Y., Ci, S., 2013. On physical layer security for cognitive radio networks. IEEE Netw. 27 (3), 28–33. 51. Bouabdellah, M., El Bouanani, F., Ben-Azza, H., 2018. Secrecy outage probability in cognitive radio networks subject to Rayleigh fading channels. In: 2018 Inter- national Conference on Advanced Communication Technologies and Networking (CommNet). IEEE, pp. 1–5. 52. Shah, H.A., Koo, I., 2018. A novel physical layer security scheme in OFDM-based cognitive radio networks. IEEE Access 6, 29486–29498. 53. Cardoso, L.S., Chairman, Q., 2006. Quality and security usability. In: Proc. ITU-T Wksp. End-To-End QoE/QoS. 54. Cardoso, L.S., Chairman, Q., 2006. Quality and security usability. In: Proc. ITU-T Wksp. End-To-End QoE/QoS. 55. Fadlullah, Z.M., Wei, C., Shi, Z., Kato, N., 2017. GT-QoSec: A game-theoretic joint optimization of QoS and security for differentiated services in next generation heterogeneous networks. IEEE Trans. Wireless Commun. 16 (2), 1037–1050. 56. Puska, A., Nogueira, M., Santos, A., 2018. Confidentiality-aware decision on handoffs under uncertainty on heterogeneous wireless networks. In: 2018 IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 00884–00889. 57. Lv, T., Gao, H., Yang, S., 2015. Secrecy transmit beamforming for heterogeneous networks. IEEE J. Sel. Areas Commun. 33 (6), 1154–1170. 58. Fang, D., Qian, Y., Hu, R.Q., 2017. Interference management for physical layer security in heterogeneous networks. In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress. IEEE, pp. 133–138. 59. Ren, Y., Lv, T., Gao, H., Li, Y., 2017. Secure wireless information and power transfer in heterogeneous networks. IEEE Access 5, 4967–4979. 60. Irrum, F., Ali, M., Naeem, M., Anpalagan, A., Qaisar, S., Qamar, F., 2021. D2D-enabled resource management in secrecy-ensured 5G and beyond heterogeneous networks. Phys. Commun. 45, 101275 61. Osipov, A., Pleshakova, E., Gataullin, S., Korchagin, S., Ivanov, M., Finogeev, A., & Yadav, V. (2022). Deep Learning Method for Recognition and Classification of Images from Video Recorders in Difficult Weather Conditions. Sustainability, 14(4), 2420. 62. Krakhmalev, O., Korchagin, S., Pleshakova, E., Nikitin, P., Tsibizova, O., Sycheva, I., ... & Krakhmalev, N. (2021). Parallel Computational Algorithm for Object-Oriented Modeling of Manipulation Robots. Mathematics, 9(22), 2886 |
101-113 |
Kostogryzov, A. I. AN APPROACH TO PROBABILISTIC PREDICTION OF THE REPUTATION PROTECTION OF POLITICAL FIGURES FROM “FAKE” THREATS IN THE PUBLIC INFORMATION SPACE / A. I. Kostogryzov // Cybersecurity issues. – 2023. – № 3(55). – С. 114-133. – DOI: 10.21681/2311-3456-2023-3-114-133.
AbstractObjective: to propose a methodological apparatus for probabilistic prediction of the reputation protection of Russian political figures in the conditions of “fake” threats, with its help to assess the protection of a virtual political figure from “fakes” and to quantitatively rationale effective ways of countering “fakes” in the public information space.Research methods include: methods of probability theory, methods of system analysis. The initially positive reputation of some collective image of a political figure (virtual political figure) in the conditions of the emergence and implementation of “fake” threats acts as a modelled system.Result: The author’s model of dangerous impact on the protected system, also recommended by national standards for system engineering, has been adapted for probabilistic forecasting of the protection of the reputation of political figures. As a result of the research, quantitative limits have been determined regarding the probabilities of preserving and discrediting the initially positive reputation of a virtual political figure in the conditions of legal legislation in Russia in the period from the late 90s to 2023. It is revealed that in the absence of legal norms to limit the duration of consideration of claims to protect the reputation of a politician in Russia, there is an unacceptably low degree of protection of an initially positive reputation from such “fakes”, which can be enhanced by the potential capabilities of neuro-linguistic programming technologies and special political technologies of psychological impact on the layman. The popular ways of protecting the reputation of political figures are substantiated, including comprehensive measures for monitoring and identifying threats, the development of the justice system to protect the reputation of a political figure, indicating the quantitative characteristics of countering “fake” threats.Scientific novelty: Today, the impact of “fake” threats in the public information space of Russia is expressed in facts about the degree of trust, successes and defeats of political figures. This front side is visible to everyone, political science studies are devoted to its study. In contrast to these studies, this article is devoted to using the methods of probability theory and system analysis in a proactive mode to build a time-bound, hidden from all eyes, reverse side of the development of “fake” threats and countering them. But not at the semantic level after the fact, but at the level of probabilistic predictions of preserving and discrediting the reputation of a political figure in the eyes of the electorate. At the same time, additional attention is paid to the consideration of previously unexplored possibilities of proactive actions related to the management of reputation protection from “fake” threats. All this together determines the scientific novelty of the conducted research. Keywords: probability, security, model, political figure, prediction, risk, system analysis, “fake”. References1. Trubeckoj A.Ju. Psihologija reputacii. - M.: Nauka, 2005. - 291 s. 2. Ustinova N. V. Politicheskaja reputacija: sushhnost’, osobennosti, tehnologii formirovanija: dis. kand. polit. nauk. - Ekaterinburg: UGU, 2005. - 166 s. 3. Shishkanova A.Ju. Reputacija politicheskogo lidera: osobennosti i tehnologii formirovanija // Ogarjov-Online. 2016. №7(72). S. 2. 4. Kostogryzov A.I., Stepanov P.V. Innovacionnoe upravlenie kachestvom i riskami v zhiznennom cikle sistem – M.: Izd.”Vooruzhenie, politika, konversija”, 2008. – 404s. 5. Andrey Kostogryzov, Andrey Nistratov, George Nistratov Some Applicable Methods to Analyze and Optimize System Processes in Quality Management // InTech. 2012. P. 127−196. URL = http://www.intechopen.com/books/total-quality-management-and-six-sigma/ some-applicable-methods-to-analyze-and-optimize-system-processes-in-quality-management 6. Grigoriev L., Kostogryzov A., Krylov V., Nistratov A., Nistratov G. Prediction and optimization of system quality and risks on the base of modelling processes // American Journal of Operation Research. Special Issue. 2013. V. 1. P. 217−244. http://www.scirp.org/journal/ajor/ 7. Andrey Kostogryzov, Pavel Stepanov, Andrey Nistratov, George Nistratov, Oleg Atakishchev and Vladimir Kiselev Risks Prediction and Processes Optimization for Complex Systems on the Base of Probabilistic Modeling // Proceedings of the 2016 International Conference on Applied Mathematics, Simulation and Modelling (AMSM2016), May 28-29, 2016, Beijing, China, pp. 186-192. www.dropbox.com/s/a4zw1yds8f4ecc5/AMSM2016%20Full%20Proceedings.pdf?dl=0 8. Kostogryzov A.I. Prognozirovanie riskov po dannym monitoringa dlja sistem iskusstvennogo intellekta / BIT. Sbornik trudov Desjatoj mezhdunarodnoj nauchno-tehnicheskoj konferencii – M.: MGTU im. N.Je. Baumana, 2019, ss. 220-229 9. Kostogryzov A., Nistratov A., Nistratov G. (2020) Analytical Risks Prediction. Rationale of System Preventive Measures for Solving Quality and Safety Problems. In: Sukhomlin V., Zubareva E. (eds) Modern Information Technology and IT Education. SITITO 2018. Communications in Computer and Information Science, vol 1201. Springer, pp.352-364. https://www.springer.com/gp/book/9783030468941 10. Kostogryzov A, Nistratov A. Probabilistic methods of risk predictions and their pragmatic applications in life cycle of complex systems. In “Safety and Reliability of Systems and Processes”, Gdynia Maritime University, 2020. pp. 153-174. DOI: 10.26408/srsp-2020 |
114-133 |
Leave a Reply