
Content of 1st issue of magazine «Voprosy kiberbezopasnosti» at 2023:
Title | Pages | Markov, A. S. IMPORTANT MILESTONES IN OPEN SOURCE SOFTWARE SECURITY / A. S. Markov // Cybersecurity issues. – 2023. – № 1(53). – P. 2-12. – DOI 10.21681/2311-3456-2023-1-2-12. | 2-12 | SUBSYSTEM FOR PREVENTION OF COMPUTER ATTACKS AGAINST OBJECTS OF CRITICAL INFORMATION INFRASTRUCTURE: ANALYSIS OF FUNCTIONING AND IMPLEMENTATION / I. V. Kotenko, I. B. Saenko, R. I. Zakharchenko, D. V. Velichko // Cybersecurity issues. – 2023. – № 1(53). – P. 13-27. – DOI 10.21681/2311-3456-2023-1-13-27.
AbstractThe purpose of the article: conducting a system analysis of the requirements for the subsystem for preventing computer attacks on critical information infrastructure in order to substantiate the directions for further improved scientific and methodological apparatus for the full functioning of the subsystem for preventing computer attacks. Research method: theoretical and systematic analysis of the requirements of legal acts, scientific publications, protection technologies and means of their implementation in departmental systems for detecting and counteringcomputer attacks.The result obtained: the rationale for the need to build mechanisms for preventing computer attacks on critical information infrastructure objects and the requirements for the subsystem for preventing computer attacks was carried out, an approach was proposed to prevent computer attacks at the stages of reconnaissance by an attacker of critical information infrastructure objects, based on the introduction of a security event correlation mechanism with automatic adaptation to the analyzed information infrastructure and the functions it performs at the current time and a detailed specification of the correlation rules.Scope of the proposed approach: a subsystem for preventing computer attacks of departmental systems for detecting and countering computer attacks, which should identify and prevent attempts to conduct computer attacks on critical information infrastructure objects in advance.The scientific novelty consists in a comprehensive analysis of the need to build mechanisms for preventing computer attacks on critical information infrastructure objects, an analysis of the requirements for the computer attack prevention subsystem, its functions and means of implementation. It is shown that the functions of preventing computer attacks in domestic technical solutions are not fully implemented, and that there is a substitution of the concept of “subsystem for preventing computer attacks” by the concept of “control and technical measures”. It is substantiated that for the implementation of the functions of preventing computer attacks, there is a technological backlog in the form of a ready-made technology based on the technology for building SIEM systems. It is shown that there is a need to refine the scientific and methodological apparatus for implementing computer warning functions based on artificial intelligence methods and big data technologies.Contribution: Kotenko I.V. - analysis of the functionality of the subsystem for preventing computer attacks, setting the task and proposals for developing the functionality of the subsystem for preventing computer attacks on critical information infrastructure objects; Saenko I.B. - analysis of the subsystem for preventing computer attacks in the general context of the theory of information security, substantiation of the implementation of the functions of preventing computer attacks based on the technology of building SIEM systems and big data; Zakharchenko R.I. - analysis of technical solutions that ensure the implementation of the subsystem for preventing computer attacks, Velichko D.V. - an approach to detecting computer attacks at the stages of reconnaissance by an attacker of objects of critical information infrastructure. All authors participated in the writing of the article. Keywords: cybersecurity, computer attack, information and telecommunication systems and networks, information and technical impact, systems for detecting, preventing and eliminating the consequences of computer attacks. References1. Saenko I.B., Nikolaev V.V. Approach to the construction of an optimal scheme for the distribution of information resources in a single information space // Proceedings of LO ZNIIS. St. Petersburg branch. — 2022. — T. 1. — No. 13. — pp. 65-68. 2. Starodubtsev Yu.I., Begaev A.N., Davlyatova M.A. Quality management of information services. — St. Petersburg: SPbPU, 2017. 3. Antonov S.G., Gvozdeva G.A., Klimov S.M. Methods of improving the stability of the functioning of information and control systems under information and technical influences // Secure Information Technologies. Proceedings of the Tenth International Scientific and Technical Conference. — 2019. — pp. 6-11. 4. Makarenko S.I. Information weapon in the technical sphere: terminology, classification, examples // Control systems, communications and security. — 2016. — No. 3. – pp. 292-376. 5. Kotenko V.I., Saenko I.B., Kotsynyak M.A., Lauta O.S. Estimation of cyber stability of computer networks based on the simulation of cyber attacks by the method of transformation of stochastic networks // Proceedings of SPIIRAS. — 2017. — No. 6 (55). — S. 160-184. 6. Klimov S.M. Methods and intelligent means of preventing and detecting computer attacks on critically important segments of information and telecommunication systems // Izvestiya TRTU. — 2005. — No. 4 (48). — pp. 74-82. 7. Shablya V.O., Konovalenko S.A., Edunov R.V. Analysis of the process of functioning of SIEM systems // E-Scio. — 2022. — No. 5 (68). – pp. 284-295. 8. Shirin K. O. Modern approaches to solving the problem of protection against network attacks “denial of service”: automatic intrusion prevention systems // T-Comm: Telecommunications and transport. — 2011. — V. 5, No. 7. — pp. 161-163. 9. Kotenko I.V., Konovalov A.M., Shorov A.V. Agent-based modeling of the functioning of botnets and mechanisms of protection against them // Protection of information. Inside. — 2010. — No. 4 (34). — pp. 36-45. 10. Butova L.V., Fursov K.V. Development of an algorithm for detecting and preventing computer attacks // Actual directions of scientific research of the XXI century: theory and practice. – 2015. V. 3, No. 5-4 (16-4). — pp. 45-50. 11. Petrenko S.A., Stupin D.D. National Computer Attack Early Warning System. — St. Petersburg: Publishing House “Athena”, 2017. — 440 p. 12. Lobach D.V., Smirnova E.A. The state of cybersecurity in Russia at the present stage of the digital transformation of society and the formation of a national system for counteracting cyberthreats // Territory of new opportunities. Bulletin of the Vladivostok State University of Economics and Service. — 2019. — V. 11, No. 4. — pp. 23-32. 13. Korolev I.D., Litvinov E.S., Pestov S.V. Analysis of data flows on information security events and incidents coming from heterogeneous sources // Results of modern scientific research and development. Collection of articles of the VIII All-Russian Scientific and Practical Conference. — 2020. — pp. 26-34. 14. Miroshnichenko E.L., Kalach A.V., Zenin A.A. Development of a model for collecting information about the state of the protected system for solving problems of managing the system for detecting, preventing and eliminating the consequences of computer attacks // Bulletin of the Voronezh Institute of the Federal Penitentiary Service of Russia. — 2020. — No. 1. — pp. 102-107. 15. Petrenko A.S., Petrenko S.A. Design of the SOPKA corporate segment // Protection of information. Inside. — 2016. — No. 6 (72). – pp. 28-30. 16. Biryukov D.N., Lomako A.G., Petrenko S.A. Generation of scenarios for preventing computer attacks // Information Security. Inside. — 2017. — No. 4 (76). — pp. 70-79. 17. What is Cyber-Kill Chain and why should it be considered in a protection strategy. – URL: https://habr.com/ru/company/panda/blog/327488/ (date of access: 11/05/2022). 18. Kotenko I.V., Khmyrov S.S. Analysis of models and methods used for attribution of violators of cybersecurity in the implementation of targeted attacks // Issues of cybersecurity. — 2022. — No. 4 (50). — pp.52-79. 19. Kuts S. Interaction of KII and GosSOPKA. positive technologies. – URL: https://www.ussc.ru/upload/files/Interaction%20KII%20i%20GosSOPKA.pdf (date of access: 07.11.2022). 20. Miloslavskaya N.G., Tolstoy A.I. Information security risk management. M.: Hotline — Telecom, 2019. 224 p. 21. Doynikova E.V., Kotenko I.V. Security assessment and selection of countermeasures for cybersecurity management. St. Petersburg: Nauka Publishing House, 2021. — 197 p. 22. Kotenko I.V., Saenko I.B. SIEM systems for managing security information and events Information protection. Inside. — 2012. — No. 5 (47). — pp. 54-65. 23. Kotenko I.V., Saenko I.B., Polubelova O.V., Chechulin A.A. Application of Information and Security Events Management Technology for Information Protection in Critical Infrastructures // Proceedings of SPIIRAS. — 2012. — No. 1 (20). – pp. 27-56 24. Kotenko I.V., Vorontsov V.V., Chechulin A.A., Ulanov A.V. Proactive protection mechanisms against network worms: approach, implementation and results of experiments // Information technologies. — 2009. — No. 1. — pp.37-42. 25. Kotenko I.V., Saenko I.B., Polubelova O.V., Chechulin A.A. Technologies for managing information and security events for protecting computer networks // Problems of information security. Computer systems. — 2012. — No. 2. — pp. 57-68. 26. Doynikova E. V., Kotenko I. V. Security assessment and choice of countermeasures for cybersecurity management. — Moscow: Russian Academy of Sciences, 2021. — 184 p. 27. Overview of SIEM systems in the global and Russian market [electronic resource]. URL: https://www.anti-malware.ru/analytics/Technology_Analysis/ (date of access: 11/05/2022). 28. KOMRAD Enterprise SIEM. – URL: https://etecs.ru/komrad/ (date of access: 11/05/2022). 29. MaxPatrol SIEM. – URL: https://positivetech.softline.com/solution/maxpatrol-siem (date of access: 11/05/2022). 30. Kotenko I.V., Saenko I.B. Creation of new systems for monitoring and managing cybersecurity // Bulletin of the Russian Academy of Sciences. — 2014. — T. 84, No. 11. — pp. 993-1001. 31. Kotenko I., Polubelova O., Saenko I. The Ontological Approach for SIEM Data Repository Implementation // 2012 IEEE International Conference on Green Computing and Communications. – 2012. – pp. 761-766. 32. Kotenko I.V., Saenko I.B., Polubelova O.V. Perspective data storage systems for monitoring and managing information security // Proceedings of SPIIRAS. — 2013. — No. 2 (25). — pp. 113-134. 33. Kotenko I.V., Polubelova O.V., Saenko I.B., Chechulin A.A. Application of ontologies and logical inference for managing information and security events // High Availability Systems. — 2012. — V. 8, No. 2. — pp. 100-108. 34. Kotenko I.V., Fedorchenko A.V., Saenko I.B., Kushnerevich A.G. Big data technologies for correlation of security events based on connection types // Cybersecurity Issues. — 2017. — No. 5 (24). — pp. 2-16. 35. Kotenko I., Saenko I., Branitskiy A. Framework for Mobile Internet of Things Security Monitoring Based on Big Data Processing and Machine Learning // IEEE Access. — 2008. — Vol. 6. — pp. 72714-72723. 36. Branitskiy A., Kotenko I., Saenko I. Applying machine learning and parallel data processing for attack detection in IoT // IEEE Transactions on Emerging Topics in Computing. — 2021. — Vol. 9, no. 4. — pp. 1642-1653. |
13-27 | Volkova, E. S. BELIEF AND PLAUSIBILITY MEASURES IN ASSESSING INFORMATION SECURITY RISKS / E. S. Volkova, V. B. Gisin // Cybersecurity issues. – 2023. – № 1(53). – P. 28-40. – DOI 10.21681/2311-3456-2023-1-28-40.
AbstractPurpose of the research: to develop methods for assessing information security risks under uncertainty, to describe the mechanism of propagating belief and plausibility in the attack graph.Research method: application of soft computing techniques, including the combination of Dempster-Shafer evidence theory, integration with respect to non-additive measures of belief and plausibility.Research result: risk assessment methods and methods for assessing expected losses have been developed in the case when risk factors are characterized by high uncertainty and do not allow sufficiently justified applying objective (probabilistic) assessment methods. The initial information is the upper and lower estimates of the probability of risk realization. Using the methods of the Dempster-Shafer evidence theory, belief and plausibility measures are built on the attack graph. An approach is described that allows building belief and plausibility measures in the space of attack scenarios based on probabilistic estimates of typical information security events. It is shown how the expected damage (severity) can be estimated by the expectation of damage with respect to to these measures using the Choquet integral. Scientific novelty: a method of propagation belief along the attack graph has been developed. The method is based on an original approach to evaluating logical combinations of evidence given on binary frames and represented by disjunctive normal forms. Keywords: risk, belief measure, plausibility measure, Choquet integral, evidence theory. References1. Popov E., Semyachkov K. Umnye goroda. Monografiya. – M.: YUrajt, 2020. 347 s. 2. Innovations in Cybersecurity Education. Kevin Daimi, Guillermo Francia, eds. Springer 2020. 391 P. https://doi.org/10.1007/978-3-030-50244-7 3. Mamaeva L. N., Bekher V. V. Ugrozy kiberbezopasnosti v cifrovom prostranstve //Vestnik Saratovskogo gosudarstvennogo social’noekonomicheskogo universiteta. 2019. № 4 (78). P. 68-70. 4. Gas’kova D. A., Massel’ A. G. Tekhnologiya analiza kiberugroz i ocenka riskov narusheniya kiberbezopasnosti kriticheskoj infrastruktury // Voprosy kiberbezopasnosti. 2019. № 2 (30). P. 42-49. 5. Review of cybersecurity risk analysis methods and tools for safety critical industrial control systems. VTT Technical Research Centre of Finland. VTT Research Report. VTT-R-00298-22. 2022. 46 p. https://cris.vtt.fi/en/publications/review-of-cybersecurity-risk-analysismethods-and-tools-for-safet (last accessed 22.01.2023) 6. Upadhyay D., Sampalli S. SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations // Computers & Security. – 2020. v. 89. p. 101666. 7. Kalashnikov A. O., Bugajskij K. A. Model’ ocenki bezopasnosti slozhnoj seti (chast’ 1) // Voprosy kiberbezopasnosti. 2022. №. 4 (50). P. 26-38. DOI:10.21681/2311-3456-2022-4-26-38 8. Landoll D. The security risk assessment handbook: A complete guide for performing security risk assessments. Boca Raton: CRC Press,2021. 512 p. https://doi.org/10.1201/9781003090441 9. Petturiti D., Vantaggi B. How to assess coherent beliefs: a comparison of different notions of coherence in Dempster-Shafer theory of evidence // In Reflections on the Foundations of Probability and Statistics: Essays in Honor of Teddy Seidenfeld. Cham: Springer International Publishing, 2022. P. 161-185. 10. Lepskij A. E. Analiz protivorechivosti informacii v teorii funkcij doveriya. CH. 1. Vneshnij konflikt //Problemy upravleniya. 2021. №. 5. P. 3-19. 11. Ivanov V. K., Vinogradova, N. V., Palyuh, B. V., & Sotnikov, A. N. Sovremennye napravleniya razvitiya i oblasti prilozheniya teorii Dempstera-SHafera (obzor) // Iskusstvennyj intellekt i prinyatie reshenij. 2018. №. 4. P. 32-42. 12. Naik N., Jenkins P., Kerby B., Sloane J., Yang L. Fuzzy logic aided intelligent threat detection in cisco adaptive security appliance 5500 series firewalls. In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). – IEEE, 2018. p. 1-8. 13. Guzairov M. B. Vul’fin A. M., Kartak V. M., Kirillova, A. D., Mironov K. V. Sravnitel’nyj analiz algoritmov kognitivnogo modelirovaniya pri ocenke riskov informacionnoj bezopasnosti // Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. 2019. № 4 (69). P. 62-69. DOI: 10.14357/20790279190408 14. Kalashnikov A. O., Bugajskij K. A. Model’ ocenki bezopasnosti slozhnoj seti (chast’ 2) // Voprosy kiberbezopasnosti. 2022. № 5 (50). P. 47-60. DOI:10.21681/2311-3456-2022-5-47-60 15. Kaneman D., Siboni O., Sanstejn K.R. Shum. M.: AST, 2021. 590 P. 16. Bruine de Bruin W., Carman K. G. Measuring subjective probabilities: The effect of response mode on the use of focal responses, validity, and respondents’ evaluations //Risk Analysis. 2018. № 10 (38). P. 2128-2143. DOI: 10.1111/risa.13138 17. Wilson R. S., Zwickle A., Walpole H. Developing a broadly applicable measure of risk perception //Risk Analysis. 2019. № 4 (39). P. 777-791. 18. Zhang, Z., Jiang, C. Evidence-theory-based structural reliability analysis with epistemic uncertainty: a review. Struct Multidisc Optim 63, 2935–2953 (2021). https://doi.org/10.1007/s00158-021-02863-w 19. Jiroušek R., Kratochvíl V. On subjective expected value under ambiguity // International Journal of Approximate Reasoning. 2020. V. 127. P. 70-82. https://doi.org/10.1016/j.ijar.2020.09.002 20. Dimuro G. P. Fernández, J., Bedregal, B., Mesiar, R., Sanz, J. A., Lucca, G., Bustince, H. The state-of-art of the generalizations of the Choquet integral: from aggregation and pre-aggregation to ordered directionally monotone functions // Information Fusion. 2020. V. 57. P. 27-43. https://doi.org/10.1016/j.inffus.2019.10.005 21. Lallie H. S., Debattista K., Bal J. A review of attack graph and attack tree visual syntax in cyber security // Computer Science Review. 2020. V. 35. P. 100219. https://doi.org/10.1016/j.cosrev.2019.100219 22. Zeng J., Wu, S., Chen, Y., Zeng, R., & Wu, C.Survey of attack graph analysis methods from the perspective of data and knowledge processing // Security and Communication Networks. 2019. V. 2019. Article ID 2031063, 16 P., 2019. https://doi.org/10.1155/2019/2031063 23. Pappaterra M. J., Flammini F. A review of intelligent cybersecurity with Bayesian Networks //2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). – IEEE, 2019. – P. 445-452. 24. Sahu A., Davis K. Structural learning techniques for Bayesian attack graphs in cyber physical power systems //2021 IEEE Texas Power and Energy Conference (TPEC). IEEE, 2021. С. 1-6. 25. Wang P. Yang, L. T., Li, J., Chen, J., & Hu, S. Data fusion in cyber-physical-social systems: State-of-the-art and perspectives // Information Fusion. 2019. V. 51. P. 42-57. 26. Arzhenovskiy S. V., Bakhteev A. V., Sinyavskaya T. G., Hahonova N. N. Audit risk assessment model. International Journal of Economics and Business Administration. 2019. № 1(7). 74-85. 27. Desai V., Kim J. W., Srivastava R. How do auditors issue going concern opinions? A dynamic model under Bayesian Framework: Evidence from 2004 to 2015. Working paper, 2020. 57 P. 28. Baskerville R. L., Kim J., Stucke C. The Cybersecurity Risk Estimation Engine: A Tool for Possibility Based Risk Analysis //Computers & Security. 2022. P. 102752. https://doi.org/10.1016/j.cose.2022.102752 29. Rohmer J. Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review // Engineering Applications of Artificial Intelligence. 2020. V. 88. P. 103384. https://doi.org/10.1016/j.engappai. 2019.103384 30. Volkova E.S., Gisin V.B. Ocenka riskov informacionnoj bezopasnosti na osnove teorii svidetel’stv Dempstera-SHefera. In «Informacionnaya bezopasnost’ finansovo-kreditnyh organizacij v usloviyah cifrovoj transformacii ekonomiki», S.I.Koz’minyh red., 2020. P. 89-101. 31. Dimuro G. P. Fernández, J., Bedregal, B., Mesiar, R., Sanz, J. A., Lucca, G., Bustince, H. The state-of-art of the generalizations of the Choquet integral: from aggregation and pre-aggregation to ordered directionally monotone functions // Information Fusion. 2020. V. 57. P. 27-43. https://doi.org/10.1016/j.inffus.2019.10.005 32. Information Quality in Information Fusion and Decision Making (E. Bossé, G. L. Rogova, eds). Cham, Springer, 2019 –629 p. https://doi.org/10.1007/978-3-030-03643-0. 33. Wang P. Yang, L. T., Li, J., Chen, J., & Hu, S. Data fusion in cyber-physical-social systems: State-of-the-art and perspectives //Information Fusion. – 2019. – V. 51. – P. 42-57. |
28-40 | Soloviev, S. V. STATUS AND PROSPECTS OF DEVELOPMENT METHODOLOGICAL SUPPORT FOR TECHNICAL PROTECTION OF INFORMATION IN INFORMATION SYSTEMS / S. V. Soloviev, М. А. Tarelkin, V. V. Tekunov, Yu. K. Yazov // Cybersecurity issues. – 2023. – № 1(53). – P. 41-57. – DOI 10.21681/2311-3456-2023-1-41-57.
AbstractThe goal of article is determine the main areas for development, composition and structure of prospective methodological support for the organization and maintenance of technical protection of information in information systems.The method of research: is summary and analysis the existing methodological support for organization and maintenance of the technical protection of information from unauthorized access and its development trends in the interests of the conversion from qualitative to quantitative procedures of substantiation requirements and selection process to build information security system in information systems. The result of the research: The factors defining the need to develop methodological support for the organization and maintenance of technical protection of information have been identified, including subject area extension of information protection, the need to move to quantitative research methods, algorithms and procedures for assessment the possibilities of implementing information security threats, the need to justify the requirements for technical protection of information and select protection measures and means. Data volume has increased dramatically and processes of information gathering and analysis are impossible without the use of corresponding special software tools and complexes. The composition and structure of prospective methodological support have been developed, including using modern methods of artificial intelligence theory (machine learning, artificial neural networks (ANNs)), the apparatus of composite Petri-Markov nets, risk theory, etc., for the tasks of categorizing the information systems and the information processed in them, identifying information security threats and vulnerabilities, as well as threat risk assessment considering time factor. It was noted that the introduction of such support into practice is impossible without the creation of software systems that automate categorization processes, quantitative risk assessments of implementing threats and building information protection systems. Scientific novelty: a systematic idea of the composition, structure and prospects of development methodological support has been identified for the organization and maintenance of technical protection of information to solve problems of categorizing the information systems and the information processed in them, forecasting, assessment the possibilities and consequences of implementing information security threats. Author contributions: Soloviev S.V. - assessment of the status and research of the prospects of development methodological support for the categorization the information system and the information processed in them; Tarelkin M.A. - study of methods of threats forecasting for information security and their prospective applications in the management of the Data Bank of information security threats of FSTEC of Russia; V.V. Tekunov - ways to build a promising system for threat forecasting to information security based on the monitoring publications results about them on the Internet; Yazov Yu.K. - general guidance, assessment of the states and prospects of development methodological support for risk assessment of implementing information security threats. Keywords: algorithm, probability, protection task, categorization, methodology, model, assessment the possibilities of implementing information security threats, information security threats, damage, risk, forecasting. References1. Jazov, Ju. K., Solov’ev, S.V. Organizacija zashhity informacii v informacionnyh sistemah ot nesankcionirovannogo dostupa: monografija/ Ju. K. Jazov, S.V. Solov’ev // Voronezh: Kvarta, 2018. – 588 s. 2. Pavlychev, A.V., Starodubov, M.I., Galimov, A.D. Ispol’zovanie algoritma mashinnogo obuchenija Rabdom Forest dlja vyjavlenija slozhnyh komp’juternyh incidentov/ A.V. Pavlychev, M.I. Starodubov, A.D. Galimov // Voprosy kiberbezopasnosti. 2022 g. №5(51). S. 74 – 81. DOI:10.21681/2311-3456-2022-5-74-81. 3. Saenko, I.B., Kotenko, I.V., Al’-Bari, M.H. Primenenie iskusstvennyh nejronnyh setej dlja vyjavlenija anomal’nogo povedenija pol’zovatelej centrov obrabotki dannyh / I.B. Saenko, I.V. Kotenko, M.H. Al’-Bari // Voprosy kiberbezopasnosti. 2022 g. №2(48). S. 87 – 97. DOI:10.21681/2311-3456-2022-2-87-97. 4. Vasil’ev, V.I., Vul’fin, A.M., Kuchkarova, N.V. Avtomatizacija analiza ujazvimostej programmnogo obespechenija na osnove tehnologii text mining / V.I. Vasil’ev, A.M. Vul’fin, N.V. Kuchkarova // Voprosy kiberbezopasnosti. 2020. №4 (38). S. 22 – 31. DOI 10.21681/2311-3456-2020-04-22-31. 5. Kotenko, I.V., Saenko, I.B, Chechulin, A.A. Intellektual’nye servisy zashhity informacii v kriticheskih infrastrukturah / I.V. Kotenko, I.B Saenko, A.A. Chechulin pod obshhej red. I.V. Kotenko, I.B. Saenko // SPB.: BHV-Peterburg, 2019. 400s. ISBN 978-5-9775-398-5. 6. Dojnikova, E.V., Fedorchenko, A.V., Kotenko, I.V., Novikova, E.S. Metodika ocenivanija zashhishhennosti na osnove semanticheskoj modeli metrik i dannyh/E.V. Dojnikova, A.V. Fedorchenko, I.V., Kotenko, E.S. Novikova // Voprosy kiberbezopasnosti. 2021. №1 (41). S. 29 – 40. DOI 10.21681/ 2311-3456-2021-1-29-40. 7. Bratchenko, A.I. Primenenie metodov teorii nechetkih mnozhestv k ocenke riskov narushenija kriticheski vazhnyh svojstv zashhishhaemyh resursov avtomatizirovannyh sistem upravlenija/ A.I. Bratchenko, I.V. Butusov, A.M. Kobeljan, A.A. Romanov // Voprosy kiberbezopasnosti. 2019. №2 (29). S. 18-24. DOI:10.21681/2311-3456-2019-1-18-24. 8. Tel’nov, V.P. Kontekstnyj poisk kak tehnologija izvlechenija znanij v seti internet / V.P. Tel’nov // Programmnaja inzhenerija. 2017. T. 8. № 1. S. 26 – 37. DOI: 10.17587/prin.8.26-37. 9. Jazov, Ju.K., Solov’ev, S.V., Tarelkin, M.A. Logiko-lingvisticheskoe modelirovanie ugroz bezopasnosti informacii v informacionnyh sistemah// Ju.K. Jazov, S.V. Solov’ev, M.A. Tarelkin // Voprosy kiberbezopasnosti. 2022, №4 (50), s. 13 – 23. DOI:10.21681/2311-3456-2022-4-13-23. 10. Solov’ev, S.V. Informacionnoe obespechenie dejatel’nosti po tehnicheskoj zashhite informacii/ S.V. Solov’ev, Ju.K. Jazov // Voprosy kiberbezopasnosti. 2021 g. №1(41). S. 69 – 79. DOI: 10.21681/2311-3456-2021-1-69-79. 11. Gos’kova D.A., Massel’ A.G. Tehnologija analiza kiberugroz i ocenka riskov kiberbezopasnosti kriticheskoj infrastruktury // Voprosy kiberbezopasnosti. 2019. №2. S. 42-49. DOI:10.21681/2311-3456-2019-2-42-49. 12. Lifshic, I.I., Zajceva, A.A. Metodika ocenki riskov bezopasnosti informacionnyh tehnologij dlja slozhnyh promyshlennyh ob#ektov v raspredelennyh kiberfizicheskih sistemah / I.I. Lifshic, A.A., Zajceva // Informacionno-upravljajushhie sistemy. 2019.tom 17, №5. S.51 – 59. 13. Vasil’ev, V.I., Vul’fin, A.M., Gerasimova, I.B., Kartak, V.M. Analiz riskov kiberbezopasnosti s pomoshh’ju nechetkih kognitivnyh kart / V.I. Vasil’ev, A.M. Vul’fin, I.B. Gerasimova, V.M. Kartak // Voprosy kiberbezopasnosti. 2020. №2 (36). S. 11-21. DOI:10.21681/2311-3456-2020-2-11-21. 14. Jazov, Ju. K., Solov’ev, S.V. Metodologija ocenki jeffektivnosti zashhity informacii v informacionnyh sistemah ot nesankcionirovannogo dostupa: monografija / Ju. K. Jazov, S.V. Solov’ev // Sankt-Peterburg: Izd-vo Naukoemkie tehnologii, 2023. – 263 s. 15. Jazov, Ju.K., Anishhenko, A.V. Seti Petri-Markova i ih primenenie dlja modelirovanija processov realizacii ugroz bezopasnosti informacii v informacionnyh sistemah: monografija / Ju.K. Jazov, A.V. Anishhenko // Voronezh: Kvarta, 2020. – 173 s. |
41-57 | Kartskhiya A. A. LEGAL ASPECTS OF MODERN CYBERSECURITY AND CYBERCRIME COUNTERACTION / A. A. Kartskhiya, G. I. Makarenko // Cybersecurity issues. – 2023. – № 1(53). – P. 58-74. – DOI 10.21681/2311-3456-2023-1-58-74.
AbstractThe article analyses contemporary legal aspects and current cybersecurity issues, cybercrime features of Russian and foreign law of information and communication technologies. The research methods consist of comparative legal analysis of contemporary Russian and foreign legislation and law enforcement practice, as well as, a formal and logical study of a conceptual apparatus, content and structure of the research object. The study results enable the authors to formulate the awareness of cybercrime legal content, that includes not only offenses committed by using computer technology, but other information and communication equipment and tools, including software either. The rapid spread of cybercrime, the emergence of new forms of organized crime using the global Internet, intended and well-organized cyber attacks on a critical infrastructure of states and private companies indicate the formation of a special area of crime - cybersecurity crime and information technology, which goes beyond a common insight of crime of information technology and communications. Therefore, the authors came to certain conclusions to conceptualize theoretical and methodological principles, develop the foundations of law and order of cybersecurity, clarify the conceptual apparatus and specifics of legal regulation of cybersecurity in public and private law, as well as the formation of a new line of criminology of cybercrime. The scientific novelty of the study consists of a conceptual justification of a cybercrime countering, as an element of national cybersecurity, as well as, the substantiation of a specific line of criminology - cybercriminology. Keywords: cybercrime, information security, cyberspace security, cyber attacks, foreign cyber law, information law, cybercriminology, digital law, personal data, private law, cybersecurity. References1. Avdeev V.A., Avdeeva O.A. Osnovnye napravlenija sovershenstvovanija pravovoj politiki po obespecheniju v uslovijah globalizacii informacionnoj bezopasnosti // Rossijskaja justicija. 2021. N 3. S. 3-10. 2. Aleshin.A. Evrosojuz razrabotal svoju pervuju oboronnuju strategiju URL:https://www.imemo.ru/publications/relevant-comments/text/evrosoyuz-razrabotal-svoyu-pervuyu-oboronnuyu-strategiyu 3. Karchija A.A., Sergin M.Ju., Makarenko G.I. Novye jelementy nacional’noj bezopasnosti: nacional’nyj i mezhdunarodnyj aspekt // Voprosy kiberbezopasnosti, 2020, № 6(40), S.72-82. DOI: 10.21681/2311-3456-2020-6-72-82 4. Karchija A.A., Makarenko G.I., Sergin M.Ju. Sovremennye trendy kiberugroz i transformacija ponjatija kiberbezopasnosti v uslovijah cifrovizacii sistemy prava // Voprosy kiberbezopasnosti. 2019. № 3 (31). S. 18-23. DOI: 10.21681/2311-3456-2019-3-16-23 5. Bochkov S.I., Makarenko G.I., Fedichev A.V. Ob okinavskoj hartii global’nogo informacionnogo obshhestva i zadachah razvitija rossijskih sistem kommunikacii // Pravovaja informatika. 2018. № 1. S. 4-14. DOI: 10.21681/1994-1404-2018-1-4-14 6. Karchija A.A. Kiberbezopasnost’ v uslovijah novoj tehnologicheskoj revoljucii i opyt stran BRIKS // Probely v rossijskom zakonodatel’stve. 2021. T. 14. № 4. S. 358-365. 7. Perina A.S. Fenomen ispol’zovanija komp’juternyh tehnologij pri sovershenii prestuplenij protiv lichnosti: analiz mezhdunarodnyh dokumentov i ugolovnogo zakonodatel’stva otdel’nyh stran // Zhurnal zarubezhnogo zakonodatel’stva i sravnitel’nogo pravovedenija. 2022. N 5. S. 115 – 126; 8. Sarkisjan A.Zh. Kriminologicheskaja harakteristika prestuplenij, sovershaemyh v sfere informacionno-kommunikacionnyh tehnologij // Rossijskij sledovatel’.2019.N3.S.54 - 59. 9. Human Rights, Digital Society and the Law. A Research Comparison (Ed. By Mart Susi). London. Routledge, 2019. 10. Je. Verhelst, Ja. Vauters. Global’noe upravlenie v sfere kiberbezopasnosti: vzgljad s pozicii mezhdunarodnogo prava i prava ES // Vestnik mezhdunarodnyh organizacij. T. 15. № 2 (2020), s.141-172. 11. Kovalev O.G., Skipidarov A.A. Normativnoe-pravovoe regulirovanie realizacii Strategii kiberbezopasnosti v gosudarstvah Evropejskogo sojuza // Stolypinskij vestnik. 2021. T. 3. № 2. 12. Kovalev O.G., Skipidarov A.A. Pravovoe regulirovanie i osobennosti organizacii kiberbezopasnosti v SShA // Stolypinskij vestnik. 2021. T. 3. № 1. S. 12. 13. Mordvinov K.V., Udavihina U.A. Kiberprestupnost’ v Rossii: aktual’nye vyzovy i uspeshnye praktiki bor’by s kiberprestupnost’ju // Teoreticheskaja i prikladnaja jurisprudencija», № 1 (11) 2022, s.83-88. 14. Dalgaly T.A. Kiberkriminologija: vyzovy XXI veka // Rossijskaja justicija. 2020. N 10.S.19 - 21. 15. Moroz N.O. Dejatel’nost’ Interpola po koordinacii sotrudnichestva v bor’be s prestupnost’ju v sfere vysokih tehnologij // Jekonomicheskie i juridicheskie nauki. Konstitucionnoe i mezhdunarodnoe pravo, 2011, № 14, s.143-148. |
58-74 | Chepovskiy, A. A. ON THE CONSTRUCTION AND ANALYSIS FEATURES OF GRAPHS OF INTERACTING OBJECTS IN THE TELEGRAM-CHANNELS NETWORK / A. A. Chepovskiy // Cybersecurity issues. – 2023. – № 1(53). – P. 75-81. – DOI 10.21681/2311-3456-2023-1-41-57.
AbstractThe purpose of the study:. search for a technique for constructing and analyzing a graph of interacting objects in the network of Telegram channels, including the calculation of psycholinguistic characteristics of texts. This technique makes it possible to classify groups of channels and evaluate their informational impact on users.Method:. U , M , R -model is used to build a weighted graph during data import. Next, on the resulting graph,the Galaxies method is applied to reveal implicit intersecting communities. Psycholinguistic factors are calculated on the imported combined texts of communities to assess the channels thematic focus. Results:. the article presents a methodology for working with a network of Telegram channels in order to identify groups of channels that carry out information impact on users. A full cycle of actions is presented, starting from data import, using a model for constructing a graph of interacting objects for such networks, and ending with the calculation of psycholinguistic characteristics of texts for groups of channels. At the same time, the issue of the most effective selection of implicit communities in networks of Telegram channels is highlighted. An example of a network and a constructed weighted graph with markers calculated on texts, which are the most indicative for identifying the channels focus, is presented. The presented approach, by highlighting significant differences in the corresponding markers, makes it possible to identify channels that most actively carry out informational impact on users. The combination of an algorithmic approach and the use of psycholinguistic research represent the scientific novelty of this method. The results obtained make it possible, using the methods of computational linguistics in combination with the communities reveal methods, to evaluate different participants in such networks. Keywords: Telegram, analysis of social networks, model of information impact, graph of interacting objects, community detection, psycholinguistic analysis of texts. References1. Popov V.A., Chepovskiy A.A. Modeli importa dannykh iz messendzhera Telegram // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii. 2022. Т.20, №2. S. 60-71. (in Russian). 2. Popov V.A., Chepovskiy A.A. Vydelenie neyavnykh peresekayushchikhsya soobshchestv na grafe vzaimodejstviya Telegram-kanalov s pomoshchyu «Metoda Galaktik» // Trudy ISA RAN. 2022. Т.72. №4. S. 39-50. (in Russian). 3. Voronin А.N., Kovaleva J.B., Chepovskiy A.A. Vzaimosvyaz setevykh kharakteristik i subektnosti setevykh soobshchestv v socialnoj seti Twitter // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2020. Т. 37. № 3. S. 40-57. DOI:10.21681/2311-3456-2020-03-40-57 (in Russian). 4. Popov V.A., Chepovskiy A.A. Modeli importa dannykh iz Tvittera // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii. 2021. Т.19, №2. S. 76–91. (in Russian). 5. Fortunato, S., Newman, M. E. J. 20 years of network community detection. Nat. Phys. 2022; 18:848–850. 6. Ahuja M.S., Singh J., Neha Practical Applications of Community Detection // International Journal of Advanced Research in Computer Science and Software Engineering. 2016. Vol. 6. No 4. Pp. 412-415. 7. Kolomejchenko M.I., Polyakov I.V., Chepovskiy A.A., Chepovskiy A.M. Vydelenie soobshchestv v grafe vzaimodejstvuyushchikh obektov // Fundamentalnaya i prikladnaya matematika. 2016, T. 21. №3. S. 131-139. (in Russian). 8. Leshhyov D. A., Suchkov D. V., Khajkova S. P., Chepovskiy A.A. Algoritmy vydeleniya grupp obshcheniya // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2019. T. 32. № 4. S. 61-71. DOI: 10.21681/2311-3456-2019-4-61-71. (in Russian). 9. Sokolova T.V., Chepovskiy A.A. Analiz profilej soobshhestv social`ny`x setej. Sistemy` vy`sokoj dostupnosti. 2018. T. 14, № 3. str. 82-86. DOI: 10.18127/j20729472-201803-14. (in Russian). 10. Sokolova T.V., Chepovskiy A.M. Problema vosstanovleniya profilej pol`zovatelej socialnykh setej // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2019. № 4(32). S. 88-93. DOI: 10.21681/2311-3456-2019-4-88-93. (in Russian). 11. Avanesyan N.L., Solovev F.N., Tikhomirova E.A., Chepovskiy А.М. Viayvlenie znachimikh priznakov protivopravnikh tekstov // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2020. № 4(38). S. 76-84. DOI:10.21681/2311-3456-2020-04-76-84. (in Russian). 12. Avanesyan N.L., Solovev F.N., Chepovskiy А.A. Kharakteristiki tekstov soobshchestv socialnykh setej // Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Informacionnye tekhnologii.. 2021 Т.19, №1. S. 5–14. DOI 10.25205/1818-7900-2021-19-1-5-14. (in Russian). |
75-81 | METAGRAMMATIC APPROACH TO THE ANALYSIS OF HIERARCHIES FOR SYNTHESIS OF SECURITY SYSTEMS NUCLEAR POWER PLANTS / O. I. Atakishchev, V. G. Gribunin, I. L. Borisenkov, M. N. Lysachev // Cybersecurity issues. – 2023. – № 1(53). – P. 82-92. – DOI 10.21681/2311-3456-2023-1-82-92.
AbstractThe purpose of the work is to analyze the features of the application of the integrated metagrammar approach of hierarchy analysis to solve the problem of structural-parametric synthesis of information security systems of automated control systems of low-power nuclear power plants.Research method: in order to achieve the goal of the work, the metagrammar approach of hierarchy analysis was used, which is an integration of the metagrammar approach and the Saati hierarchy analysis method.The result of the research: the metagrammar approach of hierarchy analysis is presented in the paper, the features of its application to solve the problem of structural-parametric synthesis of information security systems of automated control systems of low-power nuclear power plants are considered in detail.The scientific novelty lies in the development and analysis of the scientific and applied features of a new integrated metagrammar approach to hierarchy analysis, which allows the synthesis of complex structured information security systems in conditions of partial uncertainty. Keywords: information security, information security systems, Saati method, structural-parametric synthesis, low power nuclear power plant. References1. Atomnye stancii maloj moshhnosti: novoe napravlenie razvitija jenergetiki : T. 2 /pod red. akad. RAN A. A. Sarkisova. — M. : AkademPrint, 2015. — 387 s. : ISBN 978-5-906324-04-7 2. Lindsay.M. Krall, Allison M. Macfarlane, Rodney C. Ewing Nuclear waste from small modular reactors / Edited by Eric J. Schelter, University of Pennsylvania, Philadelphia, PA; received June 26, 2021; May 31, 2022. https://doi.org/10.1073/pnas.211183311 3. Anishhenko, A.V. Seti Petri-Markova i ih primenenie dlja modelirovanija processov realizacii ugroz bezopasnosti informacii v informacionnyh sistemah: [monografija]/ A.V. Anishhenko, Ju. K. Jazov. Voronezh: Kvarta, 2020. 173 s. 4. Atakishhev O.I. Kollegial’nye metagrammatiki dlja modelirovanija dinamichno izmenjaemyh programm sozdanija sistem informacionnoj bezopasnosti / O.I. Atakishhev, I.L. Borisenkov, V.G. Gribunin, Ja.D. Smirnov // Vestnik komp’juternyh i informacionnyh tehnologij. – 2020. — № 4(190). – S. 29-43. 5. Gorodeckij V.I., Jusupov R.M. Iskusstvennyj intellekt: metafora, nauka i informacionnaja tehnologija // Mehatronika, avtomatizacija, upravlenie. 2020. T. 21. № 5. S. 282-293. 6. Smirnov D.V., Atakishhev O.I., Lysachev M.N., Atakishhev E.I., Atakishhev K.E., Movchan V.O. Osobeenosti primeneniya metagrammatik dlya modelirivanita sloznostructurirovannyh protzessov funktzionirovaniya avtomatizirovannyh system upravleniya technologicheskimi protzessami atomnych electrostanciy // Izvestiya insituta injenernoy physiki, 2022. №4 (66). С.72-78. 7. Kulakova A.O., Maksimova T.G. Ispolzovaniye metoda analiza ierarhiy dlya obosnovaniya vybora stzenariya razvitiya proyekta / Инновации. 2019. — №2 8. Umnikov E.V., Atakishhev O.I., Grachev V.A. Primeneniye metoda analiza ierarhiy Saati dlya otzenki effectivnosti systemy zaschity informatzii virtualnogo poligona // Izvestiya insituta injenernoy physiki, 2022. №1 (63). С.98-104. 9. Gorodeckij V.I., Jusupov R.M. Iskusstvennyj intellekt – nauka i informacionnaja tehnologija: nastojashhee i budushhee // V sbornike: Materialy obshhih plenarnyh zasedanij 13-j mul’tikonferencii po problemam upravlenija. 13-ja mul’tikonferencija po problemam upravlenija, vkljuchajushhaja pjat’ konferencij. Sankt-Peterburg, 2020. S. 10-21. 10. Nefedov A.S., Shakirov V.A., Ignatyeva S.M. Mnogokriterialnyi vybor structury generiruyushih moshnostey lokalnyh energosystem na osnove modofitzirovannogo metoda analiza ierarhiy. — iPolytech. – 2022. – Т.26. — №3. – С.451-464. 11. Dorofeev, A. V. Conducting Cyber Exercises Based on the Information Security Threat Model / A. V. Dorofeev, A. S. Markov // CEUR Workshop Proceedings, Yalta, Crimea, 20–22 сентября 2021 года. – Yalta, Crimea, 2021. – P. 1-10. 12. Barabanov, A. On Systematics of the Information Security of Software Supply Chains / A. Barabanov, A. Markov, V. Tsirlov // Advances in Intelligent Systems and Computing. – 2020. – Vol. 1294. – P. 115-129. – DOI 10.1007/978-3-030-63322-6_9. 13. Multi-objective Configuration of a Secured Distributed Cloud Data Storage / A.I. Avetisyan, L. E. García-Hernández, A. Tchernykh, V. Miranda-López [et al.] // Communications in Computer and Information Science. – 2020. – Vol. 1087. – P. 78-93. – DOI 10.1007/978-3-030-41005-6_6. 14. Kostogryzov, A. I. Analysis of the impact of information security on the performance of decision management process / A. I. Kostogryzov // CEUR Workshop Proceedings : BIT 2021 — Selected Papers of 11th International Scientific and Technical Conference on Secure Information Technologies, Moscow, 06–07 апреля 2021 года. Vol. 3035. – Moscow: CEUR, 2021. – P. 66-75. 15. Probability, Combinatorics and Control / N. A. Makhutov, M. M. Gadenin, D. O. Reznikov [et al.]. – London : InTech, 2020. – 322 p. |
82-92 | Kapitsyn, S. Yu. LOGICAL-LINGUISTIC MECHANISM OF FORMATION OF “PAPER” BULLETS IN THE INFORMATION CONFRONTATION / S. Yu. Kapitsyn, K. Yu Ryumshin, V. V. Varenitsa // Cybersecurity issues. – 2023. – № 1(53). – P. 93-99. – DOI 10.21681/2311-3456-2023-1-93-99.
AbstractPurpose of the work consists in the analysis of approaches to the representation of the integrity of the seman- tics of knowledge of the information need of the target object of influence and the development of a logical-linguis- tic method for the formation of “paper” bullets based on phrase-structural grammar. Research method: the mechanism of the formation of «paper» bullets in the form of semantic-syntactic constructions and a set of required semantic conclusions (inferences, the basis for the formation of a model of social behavior of the «defeated») of the target object of influence in the form of logical-linguistic models are illustrated. Research results: the technology of presenting logical-linguistic models (semantic-syntactic constructions) of «paper» bullets can be used in the development of the foundations of information weapons (information and reconnaissance strike systems) for selective impact on an object and a guaranteed change in its information needs in the interests of covert formation the required model of social behavior (the model of social behavior of the «vanquished»). Scientific novelty: representation of the integrity of the meaning of the required information needs in the form of semantic-syntactic constructions based on logic - the law of maintaining the integrity of the object. Keywords: information warfare, the law of object integrity preservation, logical-linguistic model. References1. Burlov V.G., Vasil’ev M.N., Grachev M.I. Kapicyn S.Ju. Model’ upravlenija v social’nyh i jekonomicheskih sistemah s uchetom vozdejstvija na informacionnye processy v obshhestve // T-Comm: Telekommunikacii i transport. 2020. Tom 14. №5. S. 46 – 55. 2. Burlov V.G., Verevkin S.A., Grozmani E.S., Kapicyn S.Ju., Petrov S.V. Razrabotka modeli upravlenija processom obespechenija informacionnoj bezopasnosti kiberfizicheskih sistem // Informacionnye tehnologii i sistemy: upravlenie, jekonomika, transport, pravo. 2019. №4(36). S. 94 – 98. 3. Burlov V.G., Vasil’ev M.N., Kapicyn S.Ju. Ob intellektualizacii processa propagandy na baze matematicheskoj modeli reshenija cheloveka // XV Vserossijskaja nauchnaja konferencija “Nejrokomp’jutery i ih primenenie”. Tezisy dokladov. – M: FGBOU VO MGPPU, 2017. S. 263 – 264. 4. Lovcov D.A. Arhitektura bazy dannyh i znanij podsistemy planirovanija i koordinacii informacionnyh processov v ierarhicheskoj jergasisteme // Pravovaja informatika. 2020. № 4. S. 4 – 19. DOI:10.21681/1994-1404-2020-4-4-19 5. Jazov Ju.K., Solov’ev S.V., Tarelkin M.A. Logiko-lingvisticheskoe modelirovanie ugroz bezopasnosti informacii v informacionnyh sistemah // Voprosy kiberbezopasnosti. 2022. № 4 (50). S. 13 – 25. DOI:10.21681/2311-3456-2022-4-13-25 6. Burlov V.G., The Methodological Basis for Solving the Problems of the Information Warfare and Security Protection. 13th International Conference on Cyber Warfare & Security (ICCWS 2018) // National Defense University, Washington DC, USA, 2018, pp. 64 – 74. 7. Burlov V.G., Information Warfare: Modeling a decision maker processes // European Conference on Information Warfare and Security, ECCWS, 2018, pp. 66 – 76. |
93-99 | Petrenko, A. S. BASIC ALGORITHMS QUANTUM CRYPTANALYSIS / A. S. Petrenko, S. A. Petrenko // Cybersecurity issues. – 2023. – № 1(53). – P. 100-115. – DOI 10.21681/2311-3456-2023-1-100-115.
AbstractKeywords: quantum security threat, cryptographic attacks, quantum cryptanalysis, quantum algorithms Shor, Grover and Simon algorithms, quantum Fourier transform, factorization, and discrete logarithm problems. References1. Alexei Petrenko, Applied Quantum Cryptanalysis (научная монография «Прикладной квантовый криптоанализ»), ISBN: 9788770227933, e-ISBN: 9788770227926, River Publishers, 2022. — 256 pp. (SCOPUS) https://www.riverpublishers.com/book_ details.php?book_id=1028 2. Shor’s algorithm, its implementation in Haskell and the results of some experiments [Electronic resource] / Programmer’s Notes. — Access mode: http://eax.me/shors-algorithm — 14.05.2021 p . 3. Bogdanov A.Yu. Quantum algorithms and their impact on the security of modern classical cryptographic systems / A.Yu. Bogdanov, I.S. Kizhvatov // RGGU. — 2005. — 18 p. 4. Valiev K.A. Quantum computers and quantum computations / K.A. Valiev.-M.:Institute of Physics and Technology, 2005.- 387c. 5. Vasilenko O. N. Number-theoretic algorithms in cryptography / O. N. Vasilenko. — M.: ICNMO, 2003. — 328 p. 6. Denisenko D.V., Marshalko G.B., Nikitenkova M.V., Rudskoy V.I., Shishkin V.A. Evaluation of the complexity of implementing the Grover algorithm for sorting the keys of block encryption algorithms GOST R 34.12-2015, Journal of Experimental and Theoretical Physics, RAS, P.L. Institute of Physical Problems. Kapitsy RAS (Moscow), 2019, volume 155, issue 4, pp. 645-653, 2019. 7. Ishmukhametov Sh.T. Methods of factorization of natural numbers.: textbook / Sh.T. Ishmukhametov. — Kazan: Kazan University. — 2011. — 192 p. 8. Kitaev A., Shen A., Vyaly M. Classical and quantum computing / M.: ICNMO, Publishing House of Chero, 1999. — 192 p. 9. Kolmogorov, A.N. Information theory and theory of algorithms. USSR Academy of Sciences, Moscow: Nauka, 1987. 10. Kotelnikov V. A. The fate that engulfed the century. In 2 t. / comp. N. V. Kotelnikova. Moscow: Fizmatlit, 2011. 312 p. 11. Korolkov A.V. On some applied aspects of quantum cryptography in the context of the development of quantum computing and the emergence of quantum computers. / A.V. Korolkov // Issues of cybersecurity No. 1(9) — 2015. — M.: Journal “Issues of cybersecurity”, 2015. — pp. 6-13. 12. Korzh O.B., Andreev D.Yu., Korzh A.A., Korobkov V.A., Chernyavsky A.Yu., Modeling of an ideal quantum computer on a Lomonosov supercomputer, Journal “Computational Methods and Programming”, Ed. Research Computing Center of Moscow State University named after M.V. Lomonosov, 2013, No. 14, issue 2, pp. 24-34 13. Korzh O.B., Chernyavsky A.Yu., Korzh A.A.,Simulation of the quantum Fourier transform with noise on the Lomonosov supercomputer, CollectionScientific service on the Internet: all facets of parallelism: Proceedings of the International Supercomputer Conference (September 23-28, 2013, Novorossiysk), Ed. of the Moscow State University. Lomonosova, Moscow, pp. 188-193. 14. Klyucharev P.G. Abstract of the dissertation for the Candidate of Technical Sciences. Algorithmic and software for modeling a quantum computer. Moscow State Technical University named after N.E. Bauman, 2009, 18 p. 15. Manin Yu .I. Computable and non-computable. Moscow: Sovetskoe radio, 1980. 128 p. 16. Moldovyan A.A., Moldovyan N.A. New forms of the hidden discrete logarithm problem. Proceedings of SPIIRAN 2019. Volume 18 No. 2. Pp. 504-529. 17. Moldovyan N.A.,Introduction to Public Key Cryptosystems / N.A. Moldovyan,Moldovyan A.A./, Publishing House of BHV-Petersburg, 2005, 286 p. — 2005. 18. Moldovyan N.A., Workshop on cryptosystems with a public key, Publishing House BHV-Petersburg, 2005, 298 p. — 2007. 19. Nikolenko S.I. New constructions of cryptographic primitives based on semigroups, groups and linear algebra. Dissertation for the Candidate of Physical and Mathematical Sciences. St. Petersburg, Institution of the Russian Academy of Sciences St. Petersburg Department of the Mathematical Institute named after V.A. Steklova RAS, 2008 — 120 p. 20. Shannon K. Works on information theory and cybernetics / edited by R. L. Dobrushina, O. B. Lupanova. — M. : Publishing House of Foreign Literature, 1963 — 830 p. 21. Schneier B. Applied cryptography: protocols, algorithms, source code in the C language. Williams Publishing House, 2016– — 816 p. 22. Shor P. Algorithms for quantum computation: discrete logarithms and factoring [Text] /Shor P. // Foundations of Computer Science.—1994.—№10. —134p. 23. Deutsch D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society A. 400 (1818), 97 — 117 (1985) 24. Deutsch D., Jozsa R., Rapid solution of problems by quantum computation, Proceedings of the Royal Society of London A, 439, (1907), 553-558 (1992) 25. Feynman R, Simulating physics with computers, Internat. J. Theoret. Phys. 21, 467 — 488 (1982) 26. Grover L.K., A fast quantum mechanical algorithm for database search, In Proceedings of the twenty-eighth, annual ACM symposium on Theory of computing, 212 – 219, ACM (1996) 27. Huang C, Zhang F., Newman M/, Classical Simulation of Quantum Supremacy Circuits, arxiv.org/abs/2005.06787 (2020) 19. A. Zlokapa, S. Boixo, D. Lidar, Boundaries of quantum supremacy via random circuit sampling, arxiv.org/abs/2005.02464 (2020) 28. Johnston, Eric R., Nic Harrigan, and Mercedes Gimeno-Segovia (2019). Programming Quantum Computers: Essential Algorithms and Code Elements. Sebastopol, CA: O’Reilly. 29. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Computing 26, 1484 – 1509 (1997) 30. Simon D.R., On the power of quantum computation, SFCS ‘94: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 116 – 123 (1994) 31. S.E. Yunakovsky, M. Kot, N.O. Pozhar, D. Nabokov, M.A. Kudinov, A. Guglya, E.O. Kiktenko, E. Kolycheva, A. Borisov, A.K. Fedorov. Towards security recommendations for public-key infrastructures for production environments in the post-quantum era. EPJ Quantum Technology (2021) arXiv: 2105.01324 32. Grebnev S.V. Post-quantum cryptography: Trends, problems and prospects. Information Security. 2019, 2. 33. I.S. Kabanov, R.R. Yunusov, Y.V. Kurochkin, and A.K. Fedorov. Practical cryptographic strategies in the post-quantum era, AIP Conference Proceedings 1936, 020021 (2018); arXiv:1703.04285 34. V. S. Belsky, I. V. Chizhov, A. A. Chichaeva, V. A. Shishkin. Physically unclonable functions in cryptography. International Journal of Open Information Technologies ISSN: 2307-8162 vol. 8, no.10, 2020 |
100-115 |
Leave a Reply