№ 6 (52)

Content of 6th issue of magazine «Voprosy kiberbezopasnosti» at 2022:

Title Pages
ASSESSMENT AND PREDICTION OF THE COMPLEX OBJECTS STATE: APPLICATION FOR INFORMATION SECURITY / K. E. Izrailov, M. V. Buinevich, I. V. Kotenko, V. A. Desnitsky // Cybersecurity issues. – 2022. – № 6(52). – С. 2-21. – DOI: 10.21681/2311-3456-2022-6-2-21.

Abstract
The goal of the study is to create a method for estimating and predicting the state of objects with a non-trivial internal structure, multifunctional elements and complex relationships between them. An important feature of the goal is the independence of its solution from the area of operation of complex objects. The task of applying this approach in the field of information security is set.Research methods: system analysis, analytical modeling methods, statistical methods and machine learning methods, development of program code for the implementation of assessment and forecasting algorithms.Result: an ontological model of a generalized subject area is introduced that describes the main elements and their relationships. An analysis of the domestic scientific literature over the past few years and an analysis of the solutions existing in them are carried out, as well as their criteria-based comparison. The principles of constructing invariant methods of estimation and forecasting are developed. A scheme of a new method of estimation and forecasting is proposed. A description is given of generalized algorithms for the functioning of the assessment and prediction components, as well as their applicability for solving problems in the field of information security in the interests of countering network attacks. The scientific novelty lies in a rather extensive review of works over the past ten years (mainly over the past five years) devoted to the evaluation and prediction of objects with a complex internal structure. The systematization of works aims not only at analyzing and criteria-based comparison of research results, but also at synthesizing solutions “tied” to a specific area of application. As a result, a method of estimation and forecasting is proposed, which, unlike similar ones, can work without taking into account the specifics of the subject area, and its use for information security is considered.
Keywords: information technology, ontological model, articles survey, criteria comparison, construction principles, hypothetical scheme, generalized algorithms, network security.
References
1. Intellektual’nyye servisy zashchity informatsii v kriticheskikh infrastrukturakh / I.V.Kotenko, I.B.Sayenko, A.A.Chechulin [i dr.]; pod obshchey red. I.V.Kotenko, I.B.Sayenko. SPb.: BKHV-Peterburg, 2019. 400 s. ISBN 978-5-9775-3968-5.
2. Desnitskiy V.A., Chechulin A.A., Kotenko I.V., Levshun D.S., Kolomeyets M.V. Kombinirovannaya metodika proyektirovaniya zashchishchennykh vstroyennykh ustroystv na primere sistemy okhrany perimetra // Trudy SPIIRAN. 2016. № 5 (48). S. 5-31.
3. Izrailov K., Chechulin A., Vitkova L. Threats Classification Method for the Transport Infrastructure of a Smart City // The proceedings of 14th International Conference on Application of Information and Communication Technologies (Tashkent, Uzbekistan, 7-9 October 2020). IEEE, 2020. PP. 1-6.
4. Buinevich M., Izrailov K., Vladyko A. Metric of vulnerability at the base of the life cycle of software representations // The proceedings of 20th International Conference on Advanced Communication Technology (Chuncheon, South Korea, 2018). IEEE, 2018. PP. 1-8.
5. Vasil’yev V.A., Dobrynina N.V. Informatsionnaya sistema otsenki sostoyaniya slozhnogo ob″yekta // Fundamental’nyye problemy radioelektronnogo priborostroyeniya. 2016. T. 16. № 4. S. 108-111.
6. Katasova D.V. Neyronechetkaya model’ i programmnyy kompleks formirovaniya baz znaniy dlya otsenki sostoyaniya ob″yektov // Prikaspiyskiy zhurnal: upravleniye i vysokiye tekhnologii. 2022. № 1 (57). S. 65-76.
7. Katasov A.S. Neyronechetkaya model’ i programmnyy kompleks avtomatizatsii formirovaniya nechetkikh pravil dlya otsenki sostoyaniya ob»yektov // Avtomatizatsiya protsessov upravleniya. 2019. № 1 (55). S. 21-29.
8. Katasov A.S. Neyronechetkaya model’ formirovaniya nechetkikh pravil dlya otsenki sostoyaniya ob″yektov v usloviyakh neopredelennosti // Komp’yuternyye issledovaniya i modelirovaniye. 2019. T. 11. № 3. S. 477-492.
9. Kalinchik I.V. Ocenka i prognozirovanie sostojanija sistem jelektropotreblenija promyshlennyh ob″ektov // Energetika: ekonomіka, tehnologії, ekologіja. 2013. № S. S. 41-46. eLIBRARY ID: 34464989
10. Nazarov A.N., Nazarov M.A., Pantyukhin D.V., Sychev A.K., Pokrova S.V. Avtomatizatsiya protsedur monitoringa v Web-prostranstve na osnove neyro-nechotkogo formalizma // T-Comm: Telekommunikatsii i transport. 2015. T. 9. № 8. S. 26-33.
11. Akimov A.A., Mustafina S.I. Primeneniye sematicheskikh svertochnykh neyronnyy setey dlya detektsii treshchin dorozhnogo pokrytiya // materialy mezhdunarodnoy nauchnoy konferentsii: Ufimskaya osennyaya matematicheskaya shkola - 2021 (Ufa, 06–09 oktyabrya 2021 goda).2021. S. 128-131.
12. Sorokin A.A. Identifikatsiya sostoyaniya slozhnogo ob″yekta na osnove analiza signatury yego sostoyaniya // Matematicheskiye metody v tekhnike i tekhnologiyakh - MMTT. 2020. T. 12-2. S. 30-35.
13. Averin G.V., Zvyagintseva A.V. Postroyeniye shkal dlya izmereniya sostoyaniy slozhnykh ob″yektov v mnogomernykh prostranstvakh // Vestnik Donetskogo natsional’nogo universiteta. Seriya G: Tekhnicheskiye nauki. 2018. № 1. S. 13-23.
14. Kotenko I., Budko P., Vinogradenko A., Saenko I. An Approach for Intelligent Evaluation of the State of Complex Autonomous Objects Based on the Wavelet Analysis // Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and Techniques. H. Fujita and A. Selamat (Eds.). IOS Press, 2019. P.25-38.
15. Vinogradenko A.M. Intellektual’noye otsenivaniye tekhnicheskogo sostoyaniya slozhnykh tekhnicheskikh ob″yektov // Tekhnika sredstv svyazi. 2021. № 4 (156). S. 2-19.
16. Puchkov A.YU., Dli M.I., Lobaneva Ye.I. Primeneniye glubokikh neyronnykh setey v modelyakh slozhnykh tekhnologicheskikh ob″yektov // Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2020. № 52 (78). S. 104-110.
17. Puchkov A.YU., Dli M.I., Lobaneva Ye.I. Modeli slozhnykh tekhnologicheskikh ob″yektov na osnove setey glubokogo obucheniya // Matematicheskiye metody v tekhnike i tekhnologiyakh - MMTT. 2019. T. 9. S. 8-10.
18. Fedotov M.V., Grachev V.V. Prediktivnaya analitika tekhnicheskogo sostoyaniya sistem teplovozov s ispol’zovaniyem neyrosetevykh prognoznykh modeley // Byulleten’ rezul’tatov nauchnykh issledovaniy. 2021. № 3. S. 102-114. DOI 10.20295/2223-9987-2021-3-102-114.
19. Fedorov A.V., Shkodyrev V.P., Barsukov N.D. Sistema situatsionnogo upravleniya i kontrolya plokho formalizuyemykh stsenariyev dinamicheskikh stsen // Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Informatika. Telekommunikatsii. Upravleniye. 2018. T. 11. № 3. S. 20-28.
20. Klyachkin V.N., Zhukov D.A. Prognozirovaniye sostoyaniya tekhnicheskogo ob″yekta s primeneniyem metodov mashinnogo obucheniya // Programmnyye produkty i sistemy. 2019. № 2. S. 244-250.
21. Astakhov S.A., Konovalov D.V., Supon’ko K.L., Shchegolev G.P. Prognozirovaniye tekhnicheskogo sostoyaniya aviatsionnykh dvigateley pri ikh ekspluatatsii po sostoyaniyu // Aviatsionnaya promyshlennost’. 2011. № 1. S. 11.
22. Bulychev D.I., Grechikhin N.S. Primeneniye markovskikh tsepey dlya prognozirovaniya sostoyaniya parka avtomobiley v modelyakh s diskretnym sostoyaniyem i nepreryvnym vremenem // materialy Vserossiyskoy nauchno-prakticheskoy konferentsii: Matematika: teoreticheskiye i prikladnyye issledovaniya (Moskva, 17 iyunya 2021 goda). 2022. S. 43-47.
23. Vilisov V.YA. Primeneniye markovskikh tsepey dlya modelirovaniya i prognozirovaniya razvitiya pozhara // Inzhenernyy vestnik Dona. 2021. № 3 (75). S. 159-169.
24. Doynikova Ye.V., Kotenko I.V. Otsenivaniye zashchishchennosti i vybor kontrmer dlya upravleniya kiberbezopasnost’yu. SPb.: Izd-vo «Nauka», 2021. – 197 s. ISBN 978-5-907366-23-7.
25. Kotenko I.V., Sayenko I.B. Sozdaniye novykh sistem monitoringa i upravleniya kiberbezopasnost’yu // Vestnik Rossiyskoy akademii nauk. 2014. T. 84. № 11. S. 993-1001.
26. Plokhaya Ye. Ye. Mezhdistsiplinarnyy kharakter traktovki ponyatiya «informatsiya» // Izomorfnyye i allomorfnyye priznaki yazykovykh sistem: sbornik statey po materialam IV yezhegodnoy nauchno-prakticheskoy konferentsii (Stavropol’, 12–19 aprelya 2016 g.). 2016. S. 149-153.
27. Buynevich M.V., Izrailov K.Ye. Antropomorficheskiy podkhod k opisaniyu vzaimodeystviya uyazvimostey v programmnom kode. Chast’ 1. Tipy vzaimodeystviy // Zashchita informatsii. Insayd. 2019. № 5 (89). S. 78-85.
28. Buynevich M.V., Izrailov K.Ye. Antropomorficheskiy podkhod k opisaniyu vzaimodeystviya uyazvimostey v programmnom kode. Chast’
2. Metrika uyazvimostey // Zashchita informatsii. Insayd. 2019. № 6 (90). S. 61-65.
29. Vasil’yeva A.YU., Izrailov K.Ye., Ramazanov A.I. Ukrupnennaya metodika otsenki effektivnosti avtomatizirovannykh sredstv, vosstanavlivayushchikh iskhodnyy kod v tselyakh poiska uyazvimostey // Vestnik INZHEKONa. Seriya: Tekhnicheskiye nauki. 2013. № 8(67). S. 107-109.
30. Tesler G.S. Sistemnaya metodologiya prognozirovaniya: prognozirovaniye protsessov yestestvennoy i iskusstvennoy prirody // Matematicheskiye mashiny i sistemy. 2004. № 1. S. 144-165.
31. Voronin Ye.A., Zakharov D.N. Postroyeniye samoobuchayushchikhsya grafov dinamicheskikh sistem s sosredotochennymi parametrami // Mezhdunarodnyy tekhniko-ekonomicheskiy zhurnal. 2013. № 1. S. 67-69.
32. Bezlepkin Ye.A. Zakonomernosti postroyeniya fizicheskikh kartin mira // Filosofiya nauki. 2016. № 4 (71). S. 67-82.
33. Buynevich M.V., Izrailov K.Ye., Pokusov V.V., Yaroshenko A.YU. Osnovnyye printsipy proyektirovaniya arkhitektury sovremennykh sistem zashchity // Natsional’naya bezopasnost’ i strategicheskoye planirovaniye. 2020. № 3 (31). S. 51-58.
34. Maksimenko V.A. Analiticheskoye modelirovaniye tekhnicheskoy sistemy // Vestnik Chernigovskogo gosudarstvennogo
tekhnologicheskogo universiteta. Seriya: Tekhnicheskiye nauki. 2011. № 2 (49). S. 10-14.
35. L’vovich I.YA., Preobrazhenskiy A.P., Khromykh A.A. Otsenka srednikh kharakteristik rasseyaniya ob″yektov // V mire nauchnykh otkrytiy. 2013. № 2 (38). S. 188-200.
36. Bogdanov V.V., Petronevich V.V., Panchenko I.N., Kulikov A.A., Lyutov V.V., Bugrov A.YU., Manvelyan V.S. Stendy dlya opredeleniya massy, koordinat tsentra mass i momentov inertsii ob″yektov // Aviakosmicheskoye priborostroyeniye. 2017. № 11. S. 28-39.
37. Anosov A.A., Belyayev R.V., Vilkov V.A., Kazanskiy A.S., Mansfel’d A.D., Sharakshane A.S. Opredeleniye dinamiki izmeneniya temperatury v model’nom ob″yekte metodom akustotermografii // Akusticheskiy zhurnal. 2008. T. 54. № 4. S. 540-545.
38. Sadriddinov P.B. Analiz temperatury initsiirovaniya i maksimal’noy temperatury gaza pri fil’tratsionnom gorenii gazov // Vestnik Tadzhikskogo natsional’nogo universiteta. Seriya yestestvennykh nauk. 2019. № 4. S. 107-110.
39. Izrailov K.Ye. Sistema kriteriyev otsenki sposobov poiska uyazvimostey i metrika ponyatnosti predstavleniya programmnogo koda // Informatizatsiya i svyaz’. 2017. № 3. S. 111-118.
40. Kotenko I., Doynikova E. Security Assessment of Computer Networks based on Attack Graphs and Security Events // Lecture Notes in Computer Science. 2014. Vol 8407. P 462-471.
41. Branitskiy A.A., Kotenko I.V. Obnaruzheniye setevykh atak na osnove kompleksirovaniya neyronnykh, immunnykh i neyro-nechetkikh klassifikatorov // Informatsionno-upravlyayushchiye sistemy, 2015, № 4 (77), S. 69-77. ‘DOI:10.15217. ISSN:1684-8853.2015.4.69.
42. Kotenko I., Chechulin A. Computer Attack Modeling and Security Evaluation based on Attack Graphs // Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems, IDAACS 2013. 2013. S. 614-619.
43. Lavrova D.S., Popova Ye.A., Shtyrkina A.A., Shterenberg S.I. Preduprezhdeniye dos-atak putem prognozirovaniya znacheniy korrelyatsionnykh parametrov setevogo trafika // Problemy informatsionnoy bezopasnosti. Komp’yuternyye sistemy. 2018. № 3. S. 70-77.
44. Shterenberg S.I., Poltavtseva M.A. A distributed intrusion detection system with protection from an internal intruder // Automatic Control and Computer Sciences. 2018. T. 52. №8. S. 945-953
45. Kotenko I., Saenko I., Chechulin A., Desnitsky V., Vitkova L., Pronoza A. Monitoring and counteraction to malicious influences in the information space of social networks // Lecture Notes in Computer Science, Vol 11186, Springer 2018. P. 159-167.
46. Izrailov K.Ye. Algoritmizatsiya mashinnogo koda telekommunikatsionnykh ustroystv kak strategicheskoye sredstvo obespecheniya informatsionnoy bezopasnosti // Natsional’naya bezopasnost’ i strategicheskoye planirovaniye. 2013. № 2 (2). S. 28-36.
47. Sakharov D.V., Kovtsur M.M., Bakhtin D.V., Model’ zashchity ot eksploytov i rutkitov s posleduyushchim analizom i otsenkoy intsidentov // Naukoyemkiye tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2019. T. 11. № 5. S. 22-31.
48. Markov A.S. Tehnicheskaja zashhita informacii. Kurs lekcij. M. AISNT. 2020.–234 S. ISBN 978-5-6045553-0-9
2-21
ARCHITECTURE OF ADAPTIVE PROTECTION SYSTEM FOR SENSOR NETWORK / A. S. Basan, E. S. Basan, O. Yu. Peskova, N. A. Sushkin, M. G. Shulika // Cybersecurity issues. – 2022. – № 6(52). – С. 22-39. – DOI: 10.21681/2311-3456-2022-6-22-39.

Abstract
Purpose: Development of the adaptive protection system architecture for sensor networks and cyber-physical systems for anomaly detection based on the collection and analysis of cyber-physical parameters. Method: The method is based on the use of probability theory, mathematical statistics, and information theory. The entropy measure and normalization of the raw data make it possible to unify the data and evaluate it in terms of anomaly detection.Results: The existing solutions for the protection of cyber-physical systems from external active attacks were analyzed. The architecture of an adaptive system for a cyber-physical system protection is proposed. As part of the representation of the node data collection and analysis subsystem, a method for estimating cyber-physical parameters to detect intrusions is proposed. Three parameter changes for four behavioral scenarios were analyzed in detail in this study. Even by three parameters, you can determine the difference between attacks and normal behaviors. It is possible to evaluate not only the fact of parameter change, but also the degree of its change. At the same time, the node autonomously compared changes in its parameters with changes in the parameters of the neighboring node and could identify the impact of the attack on the neighboring node.The scientific novelty primarily consists in the fact that for the first time a method for determining the abnormal activity of a cyber-physical system based on the evaluation of system parameters using a measure of entropy and normalization of raw data has been developed, which makes it possible to achieve a high level of detection of known and unknown attacks. This method can be effectively used also for autonomous systems. The original architecture of the adaptive system for protecting the cyber-physical system is also proposed, its main components are worked out. When implementing an attack in a distributed system, this development will allow the node to detect anomalies not only autonomously, but also distributed, that is, to detect the impact on neighboring nodes.
Keywords: data analysis, anomaly, statistics, attacks, risks, cyberphysical systems.
References
1. Yar H., Imran A.S., Khan Z.A., Sajjad M., Kastrati Z. Towards smart home automation using IoT-enabled edge-computing paradigm // Sensors, 2021. №21, 4932. DOI:10.3390/s21144932.
2. Robles-Durazno A., Moradpoor N., McWhinnie J., Russell G., Porcel-Bustamante J. Implementation and evaluation of physical, hybrid, and virtual testbeds for cybersecurity analysis of industrial control systems // Symmetry, 2021. №13, 519. DOI:10.3390/sym13030519.
3. Choudhary A., Kumar S., Gupta S., Gong M., Mahanti A. FEHCA: A fault-tolerant energy-efficient hierarchical clustering algorithm for wireless sensor networks // Energies, 2021. №14, 3935. DOI:10.3390/en14133935.
4. Bouteraa Y., Ben Abdallah I., Ibrahim A., Ahanger T.A. Development of an IoT-based solution incorporating biofeedback and fuzzy logic control for elbow rehabilitation // Appl. Sci., 2020. №10, 7793. DOI:10.3390/app10217793.
5. Umran S.M., Lu S., Abduljabbar Z.A., Zhu J., Wu J. Secure data of industrial internet of things in a cement factory based on a Blockchain technology. // Appl. Sci., 2021. №11, 6376. DOI:10.3390/app11146376.
6. Barka E., Dahmane,S., Kerrache C.A., Khayat M., Sallabi F. STHM: A secured and trusted healthcare monitoring archi-tecture using SDN and Blockchain. // Electronics, 2021. №10, 1787. DOI:10.3390/electronics10151787.
7. Chang Y.-F., Tai W.-L., Hou P.-L., Lai K.-Y. A secure three-factor anonymous user authentication scheme for internet of things environments // Symmetry, 2021. №13, 1121. DOI:10.3390/sym13071121.
8. Zeng X., Zhang X., Yang S., Shi Z., Chi C. Gait-based implicit authentication using edge computing and deep learning for mobile devices. // Sensors, 2021. №21, 4592. DOI:10.3390/s21134592.
9. Nikolopoulos D., Ostfeld A., Salomons E., Makropoulos C. Resilience assessment of water quality sensor designs under cyber-physical attacks. // Water, 2021. №13, 647. DOI:10.3390/w13050647.
10. Yousefnezhad N., Malhi A., Främling K. Automated IoT device identification based on full packet information using real-time network traffic // Sensors, 2021. №21, 2660. DOI: 10.3390/s21082660.
11. Gluck T., Kravchik M., Chocron S., Elovici Y., Shabtai A. Spoofing attack on ultrasonic distance sensors using a continuous signal // Sensors, 2020. №20, 6157. DOI:10.3390/s20216157.
12. Dodig I., Cafuta D., Kramberger T., Cesar I. A novel software architecture solution with a focus on long-term IoT device security support // Appl. Sci., 2021. №11, 4955. DOI:10.3390/app11114955.
13. Stępień K., Poniszewska-Marańda A. Security measures with enhanced behavior processing and footprint algorithm against sybil and bogus attacks in vehicular Ad Hoc network. // Sensors, 2021. №21, 3538. DOI:10.3390/s21103538.
14. Jiang J.-R., Kao J.-B., Li,Y.-L. Semi-supervised time series anomaly detection based on statistics and deep learning. // Applied Sciences, 2021. №11, 6698. DOI:10.3390/app11156698.
15. Mittal M., de Prado R.P., Kawai Y., Nakajima S., Muñoz-Expósito J.E. Machine learning techniques for energy efficiency and anomaly detection in hybrid wireless sensor networks. // Energies, 2021. №14, 3125. DOI:10.3390/en14113125.
16. Elsisi M., Mahmoud K., Lehtonen M., Darwish M.M.F. Effective nonlinear model predictive control scheme tuned by im-proved NN for robotic manipulators. // IEEE Access, 2021. №9, 64278–64290. DOI:10.1109/ACCESS.2021.3075581.
17. Robinson Y.H., Julie E.G., Balaji S., Ayyasamy A. Energy aware clustering scheme in wireless sensor network using neu-ro-fuzzy approach. // Wireless Personal Communications, 2017. №95, pp.703–721. DOI:10.1007/s11277-016-3793-8.
18. Schneider T., Helwig N., Schütze A. Automatic feature extraction and selection for classification of cyclical time series data // tmTechnisches Messen, 2017. // 84, pp.198–206. DOI:10.1515/teme-2016-0072.
19. KDD99. KDDCup1999 Data. 2020. URL: http://kddicsuciedu/databases/kddcup99/kddcup99html (data obrashhenija 15.08.2022).
20. Park P., Marco P.D., Shin H., Bang J. Fault detection and diagnosis using combined autoencoder and long short-term memory network. // Sensors, 2019. №19, 4612. DOI: 10.3390/s19214612.
21. Lu C., Wang Z.-Y., Qin W.-L., Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoen-coder-based health state identification // Signal Process, 2017. №130, pp. 377–388. DOI: 10.1016/j.sigpro.2016.07.028.
22. Li Z., Li J., Wang Y., Wang K. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment // International Journal of Advanced Manufacturing Technology, 2019. №103, pp. 499–510. DOI: 10.1007/s00170-019–03557-w.
23. Mallak A., Fathi M. Sensor and component fault detection and diagnosis for hydraulic machinery integrating LSTM auto-encoder detector and diagnostic classifiers // Sensors, 2021. №21, 433. DOI:10.3390/s21020433.
24. Mahdavi A., Amirzadeh V., Jamalizadeh A., Lin T.-I. A Multivariate flexible skew-symmetric-normal distribution: Scale-shape mixtures and parameter estimation via selection representation // Symmetry, 2021. №13, 1343. DOI:10.3390/sym13081343.
25. Aljohani N., Bretas A. A Bi-level model for detecting and correcting parameter cyber-attacks in power system state estimation // Applied Sciences, 2021. №11, 6540. DOI:10.3390/app11146540.
26. Aljohani H.M., Akdoğan Y., Cordeiro G.M., Afify A.Z. The uniform Poisson–Ailamujia distribution: Actuarial measures and applications in biological science // Symmetry, 2021. №13, 1258. DOI:10.3390/sym13071258.
27. Răstoceanu F., Rughiniș R., Ciocîrlan Ș.-D., Enache M. Sensor-based entropy source analysis and validation for use in IoT environments // Electronics, 2021. №10, 1173. DOI:10.3390/electronics10101173.
28. Basan E., Basan A., Nekrasov A., Fidge C., Gamec J., Gamcová M. A self-diagnosis method for detecting UAV cyber-attacks based on analysis of parameter changes // Sensors, 2021. №21, 509. DOI:10.3390/s21020509.
29. Zeng Z., Sun J., Xu C., Wang H. Unknown SAR target identification method based on feature extraction network and KLD–RPA joint discrimination // Remote Sensors, 2021. №13, 2901. DOI:10.3390/rs13152901.
30. Wang, J., Zhang, P., He, Q., Li, Y., Hu, Y. Revisiting label smoothing regularization with knowledge distillation // Appl. Sci., 2021. №11, 4699. DOI:10.3390/app11104699.
31. Basan E., Basan A., Nekrasov A. Method for detecting abnormal activity in a group of mobile robots // Sensors, 2019. №19, 4007. DOI:10.3390/s19184007.
32. Larmo A., Ratilainen A., Saarinen J. Impact of CoAP and MQTT on NB-IoT system performance // Sensors, 2019. №19, 7. DOI:10.3390/s19010007.
33. Guillen-Perez A., Montoya A.-M., Sanchez-Aarnoutse J.-C., Cano M.-D. A comparative performance evaluation of routing protocols for flying Ad-Hoc networks in real conditions // Applied Sciences, 2021. №11, 4363. DOI:10.3390/app11104363.
34. Hsu F.-H., Lee C.-H., Wang C.-Y., Hung R.-Y., Zhuang Y. DDoS flood and destination service changing sensor // Sensors, 2021. №21, 1980. DOI:10.3390/s21061980.
35. Milliken J., Selis V. K., Yap M., Marshall A. Impact of metric selection on wireless deauthentication DoS attack performance // IEEE Wirel. Commun. Le., 2013. №2, pp. 571–574. DOI:10.1109/WCL.2013.072513.130428.
36. Tancev G. Relevance of drift components and unit-to-unit variability in the predictive maintenance of low-cost electrochemical sensor systems in air quality monitoring // Sensors, 2021. №21, 3298. DOI:10.3390/s21093298.
37. Martí L., Sanchez-Pi N., Molina J.M., Garcia A.C.B. Anomaly detection based on sensor data in petroleum industry appli-cations // Sensors, 2015. №15, pp. 2774–2797. DOI:10.3390/s150202774.
38. Okamoto T., Ishida Y. An immunity-based anomaly detection system with sensor agents // Sensors, 2009. №9, pp. 9175–9195. DOI:10.3390/s91109175.
22-39
Livshitz, I. I. RESEARCH OF METHODS FOR MONITORING THE LEVEL OF INFORMATION SECURITY AT CRITICAL INFORMATION INFRASTRUCTURE FACILITIES / I. I. Livshitz, A. S. Baksheev // Cybersecurity issues. – 2022. – № 6(52). – С. 40-52. – DOI: 10.21681/2311-3456-2022-6-40-52.

Abstract
Purpose of work is to analyze the existing practices of performing security analysis and IT-security audit (NIST, OWASP, Cobit, OSSTMM, PTES and GOST R ISO/IEC), used to obtain objective and reliable data for operational security assessments of the CII objects and development of an IT-security audit model for CII objects.Research method: methods of analysis and structural decomposition from the theory of system analysis, identifying signs essential for optimizing the process of IT-security audit for CII objects.Research result: include the detailed analysis and comparison of the existing best practices for performing security analysis and IT-security audit (NIST, OWASP, Cobit, OSSTMM, PTES and GOST R ISO/IEC) for CII objects. A model of IT-security audit for CII objects has been developed.Scientific novelty: an IT-security audit model for CII facilities, characterized by the possibility of a “dual” mode for a full cycle of ensuring the safety of CII facilities - a full national conditional mode and a combined conditional mode, which allows, if necessary, to include additional functional blocks.
Keywords: threats, vulnerabilities, standard, risk, audit, controls, information security, NIST, OWASP, Cobit,
OSSTMM, PTES, ISSAF. 
References
1. Robertovich A.V., Tabakaeva V.A., Selifanov V. V. Razrabotka metodiki audita kiberbezopasnosti gosudarstvennyh informacionnyh sistem, otnosyashchihsya k znachimym ob”ektam kriticheskoj informacionnoj infrastruktury, funkcioniruyushchih na baze centrov obrabotki dannyh // Interekspo Geo-Sibir’. 2020. №1.
2. Nesterovskij O.I., Pashkovskaya E.S., Butrik E.E. Metodicheskij podhod k organizacii provedeniya kontrolya zashchishchennosti informacii na ob”ektah kriticheskoj informacionnoj infrastruktury // Vestnik VI MVD Rossii. — 2021. — № 2. — S.126-133.
3. Moudoubah L., Yamami A.E., Mansouri K., Qbadou M. From IT-Service management to IT-Service Governance: An ontological approach for integrated use of ITIL and Cobit Frameworks. International Journal of Electrical and Computer Engineering. 2021. T. 11. № 6. S. 5292-5300.
4. Moudoubah L., Mansouri K., Qbadou M. Cobit 5 concepts: Towards the development of an ontology model. Lecture Notes in Networks and Systems. 2022. T. 357 LNNS. S. 247-256.
5. Bernanda D.Y., Angelia M. Evaluation and recommendation IT Governance based on Cobit 5 Framework in Harris Vertu Harmoni Hotel. International Journal of Open Information Technologies. 2021. T. 9. № 1. S. 86-94.
6. Dorofeev A.V., Lemberskaya E.H., Rautkin YU.V. Analiz zashchishchennosti: normativnaya baza, metodologii i instrumenty // Zashchita informacii. Insajd. 2018. № 4 (82). S. 63-69.
7. Isahin G.V., Karunas A.YU. Obzor normativnyh dokumentov NIST po bezopasnosti //V sbornike: Sbornik izbrannyh statej po materialam nauchnyh konferencij GNII “Nacrazvitie”. Mezhdunarodnye nauchnye konferencii. Sankt-Peterburg, 2021. S. 290-292.
8. Choquette S.J., Duewer D.L., Sharpless K.E. NIST Reference Materials: Utility and Future. Annual Review of Analytical Chemistry. 2020. T. 13. S. 453-474.
9. Eggers S., Le Blanc K. Survey of Cyber risk analysis techniques for use in the Nuclear industry. Progress in Nuclear Energy. 2021. T. 140. S. 103908.
10. Shahid J., Hameed M.K., Javed I.T., Qureshi K.N., Ali M., Crespi N. A comparative study of Web application security parameters: Current trends and future directions Applied Sciences (Switzerland). 2022. T. 12. № 8.
11. Rodríguez G.E., Benavides D.E., Torres J.G., Flores P. Cross-site (XSS) attacks and mitigation: A survey. Computer Networks. 2020. T. 166. S. 106960.
12. Archana Devi R., Amritha C., Sai Gokul K., Ramanuja N., Yaswant L. Prevention and detection of SQL injection using query tokenization. Lecture Notes in Networks and Systems. 2021. T. 127. S. 165-172.
13. Caturano F., Perrone G., Romano S.P. Hacking Goals: A Goal-centric Attack classification framework. Lecture Notes in Computer Science. 2020. T. 12543 LNCS. S. 296-301.
14. Sanjaya I.G.A.S., Sasmita G.M.A., Arsa D.M.S. Information technology risk-management using ISO 31000 based on ISSAF framework penetration testing (Case study). International Journal of Computer Network and Information Security. 2020. T. 12. № 4. S. 30-40.
15. Makarenko S.I., Smirnov G.E. Analiz standartov i metodik testirovaniya na proniknovenie // Sistemy upravleniya, svyazi i bezopasnosti. 2020. №4.
16. Livshitz I.I., Lontsikh P.A., Lontsikh N.P., Golovina E.Y., Safonova O.M. Industrial system security assessment study // V sbornike: Proceedings of the 2021 IEEE International Conference «Quality Management, Transport and Information Security, Information Technologies», T and QM and IS 2021. 2021. S. 161-164
17. Livshitz I.I., Lontsikh P.A., Lontsikh N.P., Golovina E.Y., Safonova O.M. A study of modern risk managent methods for industrial safety assurance in the fuel and energy industry // V sbornike: Proceedings of the 2021 IEEE International Conference «Quality Management, Transport and Information Security, Information Technologies», T and QM and IS 2021. 2021. S. 165-167.
18. Livshic I.I. Menedzhment riskov v oblasti promyshlennoj bezopasnosti v toplivno-energeticheskih kompaniyah // Standarty i kachestvo. 2021. № 1. S. 42-48.
19. Livshic I.I. K voprosu ocenivaniya bezopasnosti promyshlennyh sistem upravleniya // Avtomatizaciya v promyshlennosti. 2021. № 7. S. 3-7.
20. Parviainen T., Haapasaari P., Kuikka S., Helle I., Goerlandt F. Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-Art, implementation benefits and challenge, and future research directions. Journal of Environmental Management. 2021. T. 278. S. 111520.
21. Lukashuk N.A., Hisham H.A. International experience in business planning and risk assessment. Proceeedings of BSTU. Issue 5. Economics and management. 2021. № 1 (244). S. 169-173.
22. ji Z., Yang S.-H., Cao Y., Wang Y., Zhou C., Yue L., Zhang Y. Harmonizing Safety and security risk analysis and prevention in Cyber-Physical systems. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B. 2021. T. 148. S.
1279-1291.
40-52
Sheluhin, O. I. PREDICTION OF THE PROFILE FUNCTIONING OF A COMPUTER SYSTEM BASED ON MULTIVALUED PATTERNS / O. I. Sheluhin, D. I. Rakovskiy // Cybersecurity issues. – 2022. – № 6(52). – С. 53-70. – DOI: 10.21681/2311-3456-2022-6-53-70.

Abstract
Purpose of work is to create a new algorithm for predicting anomalous states of computer systems (CS) using the mathematical apparatus of multivalued dependencies (Multivalued Dependencies Prognosus Algorithm, MDPA), which are categorical concepts.The research method is the analysis of historical data using the mathematical apparatus of multivalued dependencies.Objects of study are theoretical and practical issues of solving and visualizing information security problems.Results of the study. A methodology and algorithm for predicting the state of CS have been developed. The boundaries of the input parameters of the algorithm are derived and justified. The boundaries of the input parameters need to be pre-configured for the correct generation of the prognosis.A software implementation of the proposed prediction algorithm has been developed. The efficiency of the algorithm has been tested on real experimental data. A spatial analysis of the prediction results was carried out.The main disadvantage of the proposed algorithm is the need to fine-tune the input parameters for each set of “historical data”.Scientific significance. The scope of application of multivalued dependencies has been expanded; a new algorithm for predicting anomalous states of CS, which are categorical concepts, has been proposed. The developed prediction algorithm can be generalized to any subject area containing historical data of any type.
Keywords: historical data, time series analysis, forecasting model, time series forecasting, computer system, 
anomaly forecast, system state.
References
1. Gayfulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniya v zadachakh kiberbezopasnosti. Chast’ 1 // Voprosy kiberbezopasnosti. 2020. No 3 (37). Pp. 76-86. DOI: 10.21681/2311-3456-2020-03-76-86
2. Gayfulina D.A., Kotenko I.V. Primenenie metodov glubokogo obucheniya v zadachakh kiberbezopasnosti. Chast’ 2 // Voprosy kiberbezopasnosti. 2020. No 4 (38). Pp. 11-21. DOI: 10.21681/2311-3456-2020-04-11-21
3. Emaletdinova L.Yu., Mukhametzyanov Z.I., Kataseva D.V., Kabirova A.N. Metod postroeniya prognoznoy neyrosetevoy modeli vremennogo ryada // Komp’yuternye issledovaniya i modelirovanie. 2020. No 4. Pp. 737-756. DOI: 10.20537/2076-7633-2020-12-4-737-756
4. Tsymbler M.L., Kraeva Ya.A. Parallel’nyy algoritm poiska leytmotivov vremennogo ryada dlya graficheskogo protsessora // Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Vychislitel’naya matematika i informatika. 2020. № 3. Pp. 17-34. DOI: 10.14529/cmse200302
5. Shatnawi M., Hefeeda M. Real-time failure prediction in online services // IEEE Conference on Computer Communications (INFOCOM). 2015. Pp. 1391–1399. DOI: 10.1109/INFOCOM.2015.7218516
6. Sheluhin, O.I., Osin, A.V., Kostin, D.V. Monitoring and diagnostics of anomalous states in a computer network based on the study of “historical data”, T-Comm. 2020. No. 4. Pp. 23–30. DOI: 10.36724/2072-8735-2020-14-4-23-30
7. Sheluhin O. I., Kostin D. V., Polkovnikov M. V. Forecasting of Computer Network Anomalous States Based on Sequential Pattern Analysis of “Historical Data” // Automatic Control and Computer Sciences. 2021. No 6. Pp. 522–533. DOI: 10.3103/S0146411621060067
8. Williams, B. A., Catherine F. B., Shmargad Y. How Algorithms Discriminate Based on Data They Lack: Challenges, Solutions, and Policy Implications. // Journal of Information Policy. 2018. No8. Pp. 78–115. DOI: 10.5325/jinfopoli.8.2018.0078.
9. Graber C., Meshi O., Schwing A. Deep structured prediction with nonlinear output transformations // 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. 2018. Pp. 1 – 14. DOI: 10.48550/arXiv.1811.00539
10. Zhang H., Liu J., Li K., Tan H., Wang G. Gait learning based authentication for intelligent things // IEEE Transactions on Vehicular Technology. 2020. No 4. Pp. 4450-4459. DOI: 10.1109/TVT.2020.2977418
11. Bodyanskiy Y., Boiko O. Online fuzzy clustering of data streams // Studies in Computational Intelligence. 2020. No 876. Pp. 211-241. DOI: 10.1007/978-3-030-35480-0_5
12. YanPing Z., XiaoLai Z. K-means Clustering Algorithm and Its Improvement Research // Journal of Physics: Conference Series. 2020. No 1873(1):012074. Pp. 1-6. DOI: 10.1088/1742-6596/1873/1/012074.
13. Yingwen Z., Songcan C. Growing neural gas with random projection method for high-dimensional data stream clustering // Soft Computing. 2020. No 24. Pp. 1-19. DOI:10.1007/s00500-019-04492-4.
14. Amos B., Xu L., J. Z. Kolter Input convex neural networks // Proceedings of the 34th International Conference on Machine Learning. 2017. No 70. Pp. 146–155.
15. M. Gygli, M. Norouzi, Angelova A. Deep value networks learn to evaluate and iteratively refine structured outputs // Proceedings of the 34-th International Conference on Machine Learning, Sydney, Australia. 2017. Pp. 1341–1351. DOI: 10.48550/arXiv.1703.04363.
16. Molodtsov, D. A. Ekstrapolyatsiya mnogoznachnykh zavisimostey // Nechetkie sistemy i myagkie vychisleniya. 2017. No 1. Pp. 45-63.
17. Molodtsov D. A., Osin A. V. Novyy metod primeneniya mnogoznachnykh zakonomernostey // Nechetkie sistemy i myagkie vychisleniya. 2020. No 2. Pp. 83-95. DOI 10.26456/fssc72
18. Rastegari Y, Shams F. Optimal Decomposition of Service Level Objectives into Policy Assertions // The Scientific World Journal. 2015. No 3. Pp. 1-9. DOI:10.1155/2015/465074
19. Molodtsov D. A. Sravnenie i prodolzhenie mnogoznachnykh zavisimostey // Nechetkie sistemy i myagkie vychisleniya. 2016. No 2. Pp. 115–145 
20. Shelukhin O.I., Rakovskiy D.I. Vybor metricheskikh atributov redkikh anomal’nykh sobytiy komp’yuternoy sistemy metodami intellektual’nogo analiza dannykh // T-Comm: Telekommunikatsii i transport. 2021. No 6. Pp. 40-47 DOI: 10.36724/2072-8735-2021-15-6-40-47
21. Shelukhin O.I., Osin A.V., Kostin D.V. Diagnostika “zdorov’ya” komp’yuternoy seti na osnove sekventsial’nogo analiza posledovatel’nostnykh patternov // T-Comm: Telekommunikatsii i transport. 2020. No 2. Pp. 9-16. doi:10.36724/2072-8735-2020-14-2-9-16
22. Shelukhin O.I., Rakovskiy D.I. Binarnaya klassifikatsiya mnogoatributnykh razmechennykh anomal’nykh sobytiy komp’yuternykh sistem s pomoshch’yu algoritma SVDD // Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2021. No 2. Pp. 74-84. DOI: 10.36724/2409-5419-2021-13-2-74-84
23. Bose A., Bhattacharjee M. Kernel density estimates in a non-standard situation // Journal of Statistical Theory and Practice. 2021. No 1. Pp. 22. DOI: 10.1007/s42519-020-00161-0
24. Lv Y., Zhang J., Qin W., Yang J. Adjustment mode decision based on support vector data description and evidence theory for assembly lines // Industrial Management & Data Systems. 2018. No. 8. Pp. 1711-1726. DOI: 10.1108/IMDS-01-2017-0014
53-70
Kostogryzov, A. I. ON MODELS AND METHODS OF PROBABILISTIC ANALYSIS OF INFORMATION SECURITY IN STANDARDI ZED PROCESSES OF SYSTE M ENGINEERING / Kostogryzov A. I. // Cybersecurity issues. – 2022. – № 6(52). – С. 71-82. – DOI: 10.21681/2311-3456-2022-6-71-82.

Abstract
Purpose: rational and description of the methodological apparatus of system engineering in terms of risk prediction, taking into account the requirements for information protection.Research methods include: methods of probability theory, risk-oriented models for predictive analysis of standardized processes of system engineering.Result: interrelated models and methods systematized for use in the planning and implementation of standardized processes of system engineering are described. Their use makes it possible to analyze the impact of information security in terms of predicted risks. Methods and models are implemented in a set of system engineering standards and analytically support the effective implementation of agreement, organizational project-enabling, technical management and technical processes according to GOST R 57193 (ISO/IEC/IEEE 15288) in relation to systems for various purposes (a total of 30 processes). The proposed models and methods of system analysis of information security in standardized processes of system engineering develop established approaches to risk prediction, ensuring and improving system security. The use of the proposed models and methods in the life cycle of systems helps to identify «bottlenecks», rational ways to reduce risks in the implemented standardized processes, taking into account the requirements for information protection, supports the making decisions in analytical problems of system engineering.Scientific novelty: the proposed methodological apparatus develops the existing approaches to risk prediction, ensuring and improving systems security. The ideas are implemented in the national standards GOST R 59329 - GOST R 59357. They allow enterprises to move to the pragmatic implementation of a risk-based approach using the analytical capabilities of solving inverse problems of effective security control, based on the specified level of acceptable risk.
Keywords:  risk-based approach, probabilistic models, information security, risk prediction, systems engineering
standards, systems analysis.
References
1. Bezopasnost’ Rossii. Pravovye, social’no-jekonomicheskie i nauchno-tehnicheskie aspekty. /Pod red. Mahutova N.A./. M.: MGOF «Znanie», 1998-2022. Toma 1-64.
2. Kostogryzov A.I. Prognozirovanie riskov po dannym monitoringa dlja sistem iskusstvennogo intellekta / BIT. Sbornik trudov Desjatoj mezhdunarodnoj nauchno-tehnicheskoj konferencii – M.: MGTU im. N.Je. Baumana, 2019, C. 220-229.
3. Kostogryzov A.I., Stepanov P.V., Nistratov A.A., Grigor’ev L.I., Chervjakov L.M. Prognozirovanie riskov dlja obespechenija kachestva informacii v clozhnyh sistemah // Sistemy vysokoj dostupnosti No3, t.2, 2016, s. 25-37
4. Artemyev V., Kostogryzov A., Rudenko J., Kurpatov O., Nistratov G., Nistratov A. Probabilistic methods of estimating the mean residual time before the next parameters abnormalities for monitored critical systems. Proceedings of the 2nd International Conference on System Reliability and Safety (ICSRS- 2017), December 20-22, 2017, Milan, Italy, pp. 368-373
5. Kershenbaum V., Grigoriev L., Kanygin P. and Nistratov A. / Probabilistic modeling in system engineering. Probabilistic modeling processes for oil and gas systems. IntechOpen, 2018, pp. 55-79. DOI: 10.5772/intechopen.74963.
6. Kostogryzov A, Nistratov A. Probabilistic methods of risk predictions and their pragmatic applications in life cycle of complex systems. In “Safety and Reliability of Systems and Processes”, Gdynia Maritime University, 2020. pp. 153-174. DOI: 10.26408/srsp-2020
7. Kostogryzov A. Risks prediction for artificial intelligence systems using monitoring data. CEUR Workshop Proceedings. 2019. V. 2603. P. 29-33.
8. Kostogryzov A., Nistratov A., Nistratov G. (2020) Analytical Risks Prediction. Rationale of System Preventive Measures for Solving Quality and Safety Problems. In: Sukhomlin V., Zubareva E. (eds) Modern Information Technology and IT Education. SITITO 2018. Communications in Computer and Information Science, vol 1201. Springer, pp.352-364.
9. Kostogryzov A., Stepanov P., Nistratov A., Nistratov G., Atakishchev O. and Kiselev V. Risks Prediction and Processes Optimization for Complex Systems on the Base of Probabilistic Modeling. Proceedings of the 2016 International Conference on Applied Mathematics, Simulation and Modelling (AMSM2016), May 28-29, 2016, Beijing, China, pp. 186-192.
10. Kostogryzov A.I. Analysis of the impact of information security on the performance of decision management process. CEUR Workshop Proceedings. 2021. V. 3035. P. 66-75.
11. Kostogryzov A.I., Avdonin R.Y., Nistratov A.A. The estimation of probabilistic risks for the performance of system human resource management process. CEUR Workshop Proceedings. 2021. V. 3035. P. 76-87.
12. Probabilistic Modeling in System Engineering / By ed. A. Kostogryzov – London: IntechOpen, 2018. 287 p. DOI: 10.5772/intechopen.71396.
13. Vasil’ev V.I., Kirillova A.D., Vul’fin A.M. Modelirovanie kiberatak na ob#ekty ASU TP s pomoshh’ju nechetkih kognitivnyh kart // Prioritetnye napravlenija razvitija nauki i tehnologij: doklady XXVIII mezhdunarodnoj nauch.- praktich. konf.; pod obshh. red. V.M. Panarina. — Tula: Innovacionnye tehnologii. 2021. — S. 132-132
14. Kaljaev I.A., Zaborovskij V.S., Antonov A.P. Arhitektura rekonfiguriruemoj geterogennoj raspredelennoj superkomp’juternoj sistemy dlja reshenija zadach intellektual’noj obrabotki dannyh v jepohu cifrovoj transformacii jekonomiki // Voprosy kiberbezopasnosti. 2019. No 5 (33). S. 2-11. DOI: 10.21681/231-3456-2019-3-02-11
15. Kiberbezopasnost’ cifrovoj industrii. Teorija i praktika funkcional’noj ustojchivosti k kiberatakam / Pod. red. D.P.Zegzhda. — M.: Gorjachaja linija — Telekom, 2021. — 560 s
16. Kostogryzov A.I., Nistratov A.A. Podhody k prognosticheskoj obrabotke dannyh v sistemah iskusstvennogo intellekta. Chast’ 2. dostizhenie prakticheskih jeffektov. // IT-Standart. 2022. No 1 (30). S. 4-23.
17. M.I. Arpishkin, A.M. Vulfin, V.I. Vasilyev, A.V. Nikonov. Intelligent integrity monitoring system for technological process data. Journal of Physics: Conference Series. IOP Publishing. - 2019 — Vol. 1368, No. 5.- P. 1-16. DOI: 10.1088/1742-6596/1368/5/052029
18. Markov A., Markov G., Tsirlov V. Simulation of Software Security Tests by Soft Computational Methods. In Proceedings of the VIth International Workshop ‘Critical Infrastructures: Contingency Management, Intelligent, Agent-Based, Cloud Computing and Cyber Security’ (IWCI 2019). (March 17-24, 2019 in Irkutsk, Baikalsk, Russia). Advances in Intelligent Systems Research vol. 169. Pp. 257-261. DOI: 10.2991/iwci-19.2019.45. DOI: 10.2991/iwci-19.2019.45.
19. Andrjuhin E.V., Ridli M.K., Pravikov D.I. Prognozirovanie sboev i otkazov v raspredelennyh sistemah upravlenija na osnove modelej prognozirovanija vremennyh rjadov // Voprosy kiberbezopasnosti. 2019. No 3 (31). S. 24-32. DOI: 10.21681/231-3456-2019-3-24-32
20. Kostogryzov A.I. Analiz napravlenij razvitija mezhdunarodnoj standartizacii v oblasti sistemnoj i programmnoj // Kostogryzov A.I. ITStandart. 2015. No 3 (4). S. 37-48.
21. Markov A.S., Timofeev Ju.A. Standarty kiberbezopasnosti Chetvertoj promyshlennoj revoljucii i Industrii 4.0 // Zashhita informacii. Insajd. 2021. No 3 (99). S. 54-60.
22. Petrenko S.A., Petrenko A.S. Praktika primenenija GOST R MJeK 61508 // Zashhita informacii. Insajd. 2016. No 2 (68). S. 42-49.
23. Kostogryzov A.I. Verojatnostnoe modelirovanie v sistemnoj inzhenerii. V sbornike: Rossija v HHI veke v uslovijah global’nyh vyzovov: problemy upravlenija riskami i obespechenija bezopasnosti social’no-jekonomicheskih i social’no-politicheskih sistem i prirodnotehnogennyh kompleksov. Sbornik materialov Vserossijskoj nauchno-prakticheskoj konferencii. Rossijskaja akademija nauk, Mezhdunarodnyj nezavisimyj jekologo-politologicheskij universitet, Gosudartvennyj universitet upravlenija. Moskva, 2022. S. 214-219.
71-82
NEURAL NETWORK METHODS FOR RECOGNIZING SPEECH EMOTIONS TO COUNTER FRAUD IN TELECOMMUNICATION SYSTEMS / A. V. Filimonov, A. V. Osipov, E. S. Pleshakova, S. T. Gataullin // Cybersecurity issues. – 2022. – № 6(52). – С. 83-92. – DOI: 10.21681/2311-3456-2022-6-83-92.

Abstract

Keywords: Neural networks, association rules, phone fraud, manipulation, phishing, extortion.
References
1. Mashtalyar, N., Ntaganzwa, U. N., Santos, T., Hakak, S., & Ray, S. (2021, July). Social engineering attacks: Recent advances and challenges. In International Conference on Human-Computer Interaction (pp. 417-431). Springer, Cham.
2. Natarajan, A., Kannan, A., Belagali, V., Pai, V. N., Shettar, R., & Ghuli, P. (2021, November). Spam detection over call transcript using deep learning. In Proceedings of the Future Technologies Conference (pp. 138-150). Springer, Cham.
3. Kenton JDMWC, Toutanova LK (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies (NAACL-HLT), pp 4171–4186
4. Kale, N., Kochrekar, S., Mote, R., & Dholay, S. (2021, July). Classification of Fraud Calls by Intent Analysis of Call Transcripts. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
5. Meng, C. X., & ShangGuan, L. C. (2021, July). Abnormal Telephone Recognition Based on Ensemble Learning. In The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (pp. 1037-1044). Springer, Cham.
6. Yang, X., Yu, W., Wang, R., Zhang, G., & Nie, F. (2020). Fast spectral clustering learning with hierarchical bipartite graph for large-scale data. Pattern Recognition Letters, 130, 345-352.
7. Jiang, Z. H., Yu, W., Zhou, D., Chen, Y., Feng, J., & Yan, S. (2020). Convbert: Improving bert with span-based dynamic convolution.
Advances in Neural Information Processing Systems, 33, 12837-12848.
8. Abid, M. A., Ullah, S., Siddique, M. A., Mushtaq, M. F., Aljedaani, W., & Rustam, F. (2022). Spam SMS filtering based on text features
and supervised machine learning techniques. Multimedia Tools and Applications, 1-19.
9. Tukaev R.D. The evolution of hypnotherapy: methodological aspects / Bulletin of psychotherapy. 2020. No. 76 (81). pp. 7-29.
10. Kubekova A.S., Mamina V.P. Techniques of Ericksonian hypnosis in the activity of a psychologist / Psychology of official activity: achievements and development prospects. St. Petersburg, 2020, pp. 879-880.
11. Kale, N., Kochrekar, S., Mote, R., & Dholay, S. (2021, July). Classification of Fraud Calls by Intent Analysis of Call Transcripts. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
12. Asha, R. B., & KR, S. K. (2021). Credit card fraud detection using artificial neural network. Global Transitions Proceedings, 2(1), 35-41.
13. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE access, 7, 53040-53065.
14. Roh, Y., Heo, G., & Whang, S. E. (2019). A survey on data collection for machine learning: a big data-ai integration perspective. IEEE
Transactions on Knowledge and Data Engineering, 33(4), 1328-1347.
15. Edastama, P., Bist, A. S., & Prambudi, A. (2021). Implementation of data mining on glasses sales using the apriori algorithm. International Journal of Cyber and IT Service Management, 1(2), 159-172.
16. Singh, P. K., Othman, E., Ahmed, R., Mahmood, A., Dhahri, H., & Choudhury, P. (2021). Optimized recommendations by user profiling using apriori algorithm. Applied Soft Computing, 106, 107272.
17. Subudhi, S. R. I. H. A. R. I. (2019). Banking on artificial intelligence: Opportunities & challenges for banks in India. International Journal of Research in Commerce, Economics & Management, 9(7).
18. Makhija, P., & Chacko, E. (2021). Efficiency and advancement of artificial intelligence in service sector with special reference to banking industry. In Fourth Industrial Revolution and Business Dynamics (pp. 21-35). Palgrave Macmillan, Singapore.
19. Theuri, J., & Olukuru, J. (2022). The impact of Artficial Intelligence and how it is shaping banking (No. 61). KBA Centre for Research on Financial Markets and Policy Working Paper Series.
83-92
RECOGNITION OF CYBER THREATS ON THE ADAPTIVE NETWORK TOPOLOGY OF LARGE-SCALE SYSTEMS BASED ON A RECURRENT NEURAL NETWORK / E. Y. Pavlenko, N. V. Gololobov, D. S. Lavrova, A. V. Kozachok // Cybersecurity issues. – 2022. – № 6(52). – С. 93-99. – DOI: 10.21681/2311-3456-2022-6-93-99.

Abstract
The purpose of the article: the development of a method for recognizing cyber threats in adaptive network topologies of large-scale systems based on a recurrent neural network with a long short-term memory.Main research methods: system analysis of existing recognition methods, theoretical formalization, experiment.
Result: The approach showed a satisfactory efficiency of cyber threat recognition, and the results of the research made it possible to put forward proposals for the further development of this area. Scientific novelty: A model of adaptive network topology is formulated and a new way of recognizing cyber threats on the adaptive network topology of large-scale systems is proposed.
Keywords: Cyber security, cyber threat detection, recurrent neural networks, anomaly detection, adaptive network topology.
References
1. Issledovanie algoritmov adaptivnyh nejro-nechetkih setej ANFIS dlja reshenija zadachi identifikacii setevyh atak / D. I. Parfenov, I. P. Bolodurina, L. S. Zabrodina, A. Ju. Zhigalov // Sovremennye informacionnye tehnologii i IT-obrazovanie. 2020. T. 16. № 3. S. 533-542. – DOI: 10.25559/SITITO.16.202003.533-542. EDN RGBMIK.
2. Voropaj N. I., Kolosok I. N., Korkina E. S. Problemy povyshenija kiberustoj-chivosti cifrovoj podstancii // Relejnaja zashhita i avtomatizacija. 2019. № 1(34). S. 78-83. – EDN ELLPYX.
3. Petrenko, S. A. Kiberustojchivost’ sistem Industrii 4.0 / S. A. Petrenko // Zashhita informacii. Insajd. 2019. № 3(87). S. 6-15. – EDN QWWFXU.
4. Lavrova, D. S. Obespechenie kiberustojchivosti promyshlennyh sistem na osnove Koncepcii molekuljarno-geneticheskih sistem upravlenija // Problemy informacionnoj bezopasnosti. Komp’juternye sistemy. 2019. № 4. S. 67-71. – EDN DAGWGN.
5. Pavlenko, E. Ju. Model’ funkcionirovanija adaptivnoj setevoj topologii krupnomasshtabnyh sistem na osnove dinamicheskoj teorii grafov // Problemy informacionnoj bezopasnosti. Komp’juternye sistemy. 2022. № 3. S. 68-79. – DOI: 10.48612/jisp/tn56-xvah7tf1. – EDN WUDQXX.
6. A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network / X. Kan, Y. Fan, Z. Fang [et al.] // Information Sciences. 2021. Vol. 568. P. 147-162. – DOI 10.1016/j.ins.2021.03.060. – EDN KTZZXY.
7. Towards artificial-intelligence-based cybersecurity for robustifying automated driving systems against camera sensor attacks / C. Kyrkou, A. Papachristodoulou, T. Theocharides [et al.] // Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI : 19, Limassol, 06–08 ijulja 2020 goda. Limassol, 2020. P. 476-481. – DOI 10.1109/ISVLSI49217.2020.00-11.
8. LSTM neural networks for detecting anomalies caused by web application cyber-attacks / I. Kotenko, I. Saenko, O. Lauta, K. Kribel // Frontiers in Artificial Intelligence and Applications. 2021. Vol. 337. P. 127-140. – DOI 10.3233/FAIA210014. – EDN DBNPSR.
9. Budko N. P., Vasil’ev N. V. Obzor grafo-analiticheskih podhodov k monitoringu informacionno-telekommunikacionnyh setej i ih primenenie dlja vyjavlenija anomal’nyh sostojanij // Sistemy upravlenija, svjazi i bezopasnosti. 2021. № 6. S. 53-75. – DOI 10.24412/2410-9916-2021-6-53-75. – EDN KVLWCE.
10. Maslennikov O. V., Nekorkin V. I. Adaptivnye dinamicheskie seti // Uspehi fizicheskih nauk. 2017. T. 187. № 7. S. 745-756. – DOI 10.3367/UFNr.2016.10.037902. – EDN YTNSJV.
11. Pavlenko, E. Ju. Model’ funkcionirovanija adaptivnoj setevoj topologii krupnomasshtabnyh sistem na osnove dinamicheskoj teorii grafov // Problemy informacionnoj bezopasnosti. Komp’juternye sistemy. 2022. № 3. S. 68-79. – DOI: 10.48612/jisp/tn56-xvah7tf1. – EDN WUDQXX.
12. Astapov R. L., Muhamadeeva R. M. Avtomatizacija podbora parametrov mashinnogo obuchenija i obuchenie modeli mashinnogo obuchenija // Aktual’nye nauchnye issledovanija v sovremennom mire. 2021. № 5-2(73). S. 34-37. – EDN GJEUNW.
13. Tormozov V. S., Zolkin A. L., Vasilenko K. A. Nastrojka, obuchenie i testirovanie nejronnoj seti dolgoj kratkosrochnoj pamjati dlja zadachi raspoznavanija obrazov // Promyshlennye ASU i kontrollery. 2020. № 3. S. 52-57. – DOI 10.25791/asu.3.2020.1171.
14. Pustynnyj, Ja. N. Reshenie problemy ischezajushhego gradienta s pomoshh’ju nejronnyh setej dolgoj kratkosrochnoj pamjati // Innovacii i investicii. 2020. № 2. S. 130-132. – EDN MRQIHM.
15. Multihead Self-attention and LSTM for Spacecraft Telemetry Anomaly Detection / S. Gundawar, N. Kumar, P. Yash [et al.] // Communications in Computer and Information Science. 2022. Vol. 1528. P. 463-479. – DOI: 10.1007/978-3-030-95502-1_35. – EDN PYVPLX.
93-99
Romashkina, N. P.  SPACE AS PART OF THE GLOBAL INFORMATION SPACE DURING MILITARY OPERATIONS / N. P. Romashkina // Cybersecurity issues. – 2022. – № 6(52). – С. 100-111. – DOI: 10.21681/2311-3456-2022-6-100-111.

Abstract
Purpose: To identify the current possibilities of the use of artificial earth satellites for military purposes, as well as the problems of illegal destructive use of satellites during hostilities based on analysis and systematization according to various parameters of functions of satellites as part of the modern global information space and to develop proposals that can reduce the likelihood of escalation of the conflict during the crisis.Research method: analysis of open sources on the purposeful use of modern AES, synthesis and scientific forecasting, expert assessment, factological analysis of the AES within the framework of a systematic approach.Result: the article presents an analysis and systematization significant dynamic changes at the cosmic level of the global information space associated with the large-scale spread and significant increase in the number of artificial earth satellites, as well as with the growing importance of satellites for military purposes. The article presents the classification of satellites performing military functions, reveals the possibilities of modern satellites in the period of crisis and military operations and the analysis of the US satellite constellation as a leader in this field. The author poses the problems of the illegal destructive use of artificial earth satellites during military conflicts, associated with this increase in the risk of cyber threats and an increase in the likelihood of escalation of the conflict, threats to Russia, international security and strategic stability. The article proves the quantitative and qualitative characteristics of the satellite constellation are today one of the most important indicators of the influence and potential of the state in the world.Scientific novelty: Proposals have been developed to minimize threats to Russia, as well as to reduce the likelihood of an escalation of the conflict during the crisis.
Keywords: artificial earth satellite (AES), military satellite, reconnaissance satellite, Ballistic Missile Early Warning System (BMEWS), cyber weapon, informational threat, cyber threat, strategic stability, critical national infrastructure (CI). 
References
1. Aksyonov E.P. Glavnaya problema teorii dvizheniya ISZ. — M.: Izd-vo “Kim L.A.”, 2019. — 88 p. ISBN 978-5-6042151-7-3. // http://www.sai.msu.ru/neb/kaf/pcm/upos2_Axenov_main_problem.pdf, (accessed 23.07.2022).
2. J. Wynbrandt. The Space Sector’s Digital Launch: New Emphasis on Cutting-Edge Technologies Is Transforming Aerospace, 2020. // https://www.nasdaq.com/articles/the-space-sectors-digital-launch%3A-new-emphasis-on-cutting-edge-technologies-is, (accessed 15.09.2022).
3. Romashkina N.P., Markov A.S., Stefanovich D.V. Mezhdunarodnaya bezopasnost’, strategicheskaya stabil’nost’ i informacionnye tekhnologii / otv. red. A.V. Zagorskij, N.P. Romashkina. – M.: IMEMO RAN, 2020. – 98 p. DOI: 10.20542/978-5-9535-0581-9. // https://www.imemo.ru/publications/info/romashkina-np-markov-as-stefanovich-dv-mezhdunarodnaya-bezopasnosty-strategicheskayastabilynosty-i-informatsionnie-tehnologii-otv-red-av-zagorskiy-np-romashkina-m-imemo-ran-2020-98-s, (accessed 23.07.2022).4. Romashkina N. P., Stefanovich D.V. Strategicheskie riski i problemy kiberbezopasnosti // Voprosy kiberbezopasnosti. 2020. №. 5(39). P. 77–86, DOI: 10.21681/2311–3456-2020-05-77-86.
5. Mihajlov R.L. Sputnikovye sistemy svyazi vooruzhennyh sil inostrannyh gosudarstv: monografiya. – SPb.: Naukoemkie tekhnologii, 2019. – 149 p.
6. US AF Almanac 2018 / Air Force Magazine. 2018. Vol. 100. № 6. 148 p.
7. Pantenkov D. G., Gusakov N. V., Lomakin A. A. Obzor sovremennogo sostoyaniya orbital’nyh gruppirovok kosmicheskih apparatov distancionnogo zondirovaniya Zemli i kosmicheskih retranslyatorov. Obzornaya stat’ya // Izv. vuzov. Elektronika. 2022. T. 27. № 1. P. 120–149. doi: https://doi.org/10.24151/1561-5405-2022-27-1-120-149, (accessed 23.07.2022).
8. Wenxue Fu, Jianwen Ma, Pei Chen and Fang Chen. Remote Sensing Satellites for Digital Earth / Manual of Digital Earth, pp.55-123, November 2019. // https://doi.org/10.1007/978-981-32-9915-3_3, (accessed 23.10.2022).
9. Gura, D. A. Osnovy sputnikovoj navigacii / D. A. Gura, G. G. SHevchenko, T. A. Gura, D. T. Burdinov. // Molodoj uchenyj. — 2016. — № 28 (132). — P. 64 -70. // https://moluch.ru/archive/132/37084/, (accessed 23.07.2022).
10. V. Sinha. Commanders and Soldiers’ GPS-receivers, July 2003. // https://gcn.com/2003/07/soldiers-take-digital-assistants-towar/278045/, (accessed 23.09.2022).
11. Ivanov M. L., Makarov M. I., Golovanyov I. N. Osnovnye tendencii voenno-kosmicheskoj deyatel’nosti na sovremennom etape // Vozdushno-kosmicheskaya sfera. 2020. № 3. P. 72–81.
12. Problemy informacionnoj bezopasnosti v mezhdunarodnyh voenno-politicheskih otnosheniyah / Pod red. A.V. Zagorskogo, N.P. Romashkinoj. M.: IMEMO RAN, 2016. 183 p. // https://www.imemo.ru/files/File/ru/publ/2016/2016_037.pdf, (accessed
23.09.2022).
13. Information Security Threats during Crisis and Conflicts of the XXI Century / Eds.: N.P. Romashkina, A.V. Zagorskii. Moscow: IMEMO, 2016. 134 p. // https://www.imemo.ru/files/File/en/publ/2016/2016_001.pdf, (accessed 23.07.2022).
14. Sung Wook Paek. Synthetic Aperture Radar. // Scholarly Community Encyclopedia // https://encyclopedia.pub/entry/1780, (accessed 23.11.2022).
15. Markov A.S., SHeremet I.A. Bezopasnost’ programmnogo obespecheniya v kontekste strategicheskoj stabil’nosti // Vestnik akademii voennyh nauk. 2019. № 2 (67). P. 82–90.
16. Romashkina N. P. Global’nye voenno-politicheskie problemy mezhdunarodnoj informacionnoj bezopasnosti: tendencii, ugrozy, perspektivy // Voprosy kiberbezopasnosti. 2019. №. 1 (29). P. 2–9, DOI: 10.21681/2311–3456-2019-1-2-9.
100-111

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.