
Contents of the 5th issue of the Cybersecurity Issues journal for 2024:
Title | Pages |
Shevchenko, V. I. 70 YEARS ON GUARD OF CYBERNETICS AND CYBERSECURITY / V. I. Shevchenko // Cybersecurity issues. – 2024. – № 5(63). – С. 2-3. – DOI: 10.21681/2311-3456-2024-5-2-3. | 2–3 |
Epishkina, A. V. TRAFFIC NORMALIZATION FOR INFORMATION LEAKAGE PROTECTION VIA COVERT CHANNELS / A. V. Epishkina , K. G. Kogos // Cybersecurity issues. – 2024. – № 5(63). – С. 4-17. – DOI: 10.21681/2311-3456-2024-5-4-17.
AbstractThe possibility of building covert channels in an information system entails a potential leak of secured information. There are many methods of countering covert channels, but not all of them are applicable in practice. The purpose of the investigation is to develop counteraction tools to prevent information leakage via storage and timing covert channels by traffic normalization. The authors investigate storage and timing covert channels and suggest algorithms for full and partial traffic normalization to counteract these covert channels. Using the methods of information theory, probability theory, differential and integral calculus, and data on the distribution of the lengths of inter-packet intervals of network traffic packets, formulas are derived to estimate the effective capacity of a communication channel in conditions of countering covert channels and the residual capacity of a covert channel. When the traffic is fully normalized in memory, storage covert channel based on changing the length of transmitted packets is completely destroyed due to the fact that all packets become the same length. With partial normalization of traffic, storage covert channel, based on changing the lengths of transmitted packets, is not completely destroyed, therefore, a binary storage covert channel remains, estimates of the capacity of which show the inexpediency of using partial normalization of timing covert channel and indicate the need for its full normalization. If full normalization of packet lengths has been carried out, and the residual capacity of the covert channel is still large, it is possible to additionally normalize traffic in time. The paper proposes a method of counteraction in which timing covert channel is completely destroyed. Quantitative values of the effective capacity of the communication channel and the residual capacity of the covert channel when using IPv4 and IPv6 protocols are calculated, which can be useful when applying traffic normalization methods in practice. Keywords: information security, information leakage, counteraction tool, network covert channel, storage covert channel, timing covert channel, traffic normalization, partial normalization нормализация, channel capacity. References1. Zhang, X., Pang, L., Guo, L., Li, Y. Building Undetectable Covert Channels Over Mobile Networks with Machine Learning // Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science, vol 12486, 2020, pp. pp 331–339. https://doi.org/10.1007/978-3-030-62223-7_28. 2. Dakhane, D. M., Narawade, V. E. Reference Model Storage Covert Channel for Secure Communications // Advanced Computing Technologies and Applications. Algorithms for Intelligent Systems, 2020, pp. 489–496. https://doi.org/10.1007/978-981-15-3242-9_46. 3. Sattolo T. A. V., Jaskolka J. Evaluation Of Statistical Tests For Detecting Storage-Based Covert Channels // IFIP Advances in Information and Communication Technology, vol. 580, 2020, pp. 17–31. 4. Dua A., Jindal V., Bedi P. Detecting And Locating Storage-Based Covert Channels In Internet Protocol Version 6 // IEEE Access, vol. 10, 2022, pp. 110661–110675. 5. Kogos K. G., Finoshin M. A., Ajrapetjan S. V. Metod identifikacii skrytyh kanalov po pamjati v setjah paketnoj peredachi dannyh // Bezopasnost' informacionnyh tehnologij, t. 28, № 3, 2021, s. 56–64. 6. Wang, C., Chen, RL. & Gu, L. Improving Performance of Virtual Machine Covert Timing Channel Through Optimized Run-Length Encoding // Journal of Computer Science and Technology, vol. 38, 2023, pp. 793–806. https://doi.org/10.1007/s11390-021-1189-z. 7. Nasseralfoghara, M., Hamidi, H. R. Covert timing channels: analyzing WEB traffic // Journal of Computer Virology and Hacking Techniques, vol. 18, pp. 117–126. https://doi.org/10.1007/s11416-021-00396-w. 8. Nasseralfoghara, M., Hamidi, H. R. Covert timing channels: analyzing WEB traffic // Journal of Computer Virology and Hacking Techniques, vol. 18, 2022, pp. 117–126. https://doi.org/10.1007/s11416-021-00396-w. 9. Massimi, F., Benedetto, F. Performance Improvements of Covert Timing Channel Detection in the Era of Artificial Intelligence // Advances in Distributed Computing and Machine Learning. Lecture Notes in Networks and Systems, vol. 955, 2024, pp. pp 399–410. https://doi.org/10.1007/978-981-97-1841-2_30. 10. Zhang, Z., Zhang, X., Xue, Y., Li, Y. Building a Covert Timing Channel over VoIP via Packet Length // Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol. 1453, 2021, pp. pp 81–88. https://doi.org/10.1007/978-981-16-7476-1_8. 11. Zhang, X., Guo, L., Xue, Y., Jiang, H., Liu, L., Zhang, Q. A Hybrid Covert Channel with Feedback over Mobile Networks // Security and Privacy in Social Networks and Big Data. Communications in Computer and Information Science, vol. 1095, 2019, pp. 87–94. https://doi.org/10.1007/978-981-15-0758-8_7. 12. Belozubova A., Kogos K., Epishkina A. On/Off Covert Channel Capacity Limitation by Adding Extra Delays // Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus, 2021, pp. 2318–2322. 13. Epishkina, A., Karapetyants, N., Kogos, K. et al. Covert channel limitation via special dummy traffic generating // Journal of Computer Virology and Hacking Techniques, vol. 19, 2023, pp. 341–349. https://doi.org/10.1007/s11416-022-00428-z. 14. Epishkina, A., Frolova, D., Kogos, K. A technique to limit hybrid covert channel capacity via random increasing of packets’ lengths // Procedia Computer Science, vol. 190, 2020, pp. 231–240. https://doi.org/10.1016/j.procs.2021.06.029. 15. Anna I. Belozubova, Konstantin G. Kogos, Filipp V. Lebedev. Ogranichenie propusknoj sposobnosti setevyh skrytyh kanalov po vremeni putem vvedenija dopolnitel'nyh sluchajnyh zaderzhek pered otpravkoj paketa // Bezopasnost' informacionnyh tehnologij, tom 28, № 4, 2021, s. 74–89. 16. Gorokhov D. E., Ryabokon V. V., Kuzkin A. A., Sherbakov V. S., Kutsakin M. A. // Packet Fragmentation As Data Protection Method In Automated Systems // IOP Conference Series: Materials Science and Engineering, 2020, c. 52027. | 4–17 |
Shevchenko, V. A. PRIVACY-PRESERVING INFERENCE OF PRE-TRAINED GRAPH NEURAL NETWORKS WITH AN ATTENTION MECHANISM / V. A. Shevchenko , S. V. Zapechnikov // Cybersecurity issues. – 2024. – № 5(63). – С. 18-27. – DOI: 10.21681/2311-3456-2024-5-18-27.AbstractThe article proposes a set of cryptographic protocols for privacy-preserving machine learning (PPML) system based on graph neural networks with an attention mechanism. The classification of artificial neural networks underlying deep learning is given. The main tasks of ensuring privacy that arise during the training and inference of machine learning models based on artificial neural networks are highlighted. The main cryptographic primitives underlying secure multiparty computations are described, namely secret sharing schemes, an oblivious transfer protocol. It is provided a brief description of the methodology for proving the security of cryptographic protocols, including protocols for secure multi-party computations, known as universal composability (UC-security). The main and auxiliary protocols underlying the PPML system are described and analyzed: the correlated oblivious transfer, as well as protocols for private matrix multiplication, private ReLU and LeakyReLU functions computation, and the proof of their security is provided. The rest of the protocols used in the PPML system are listed in the article with a brief description of their input and output data. The security of the PPML system as a whole is proved based on the universal composability paradigm. Keywords: cryptography, information security, confidential machine learning, secure multi-party computing, graph neural networks with an attention mechanism, secret sharing schemes, transmission protocol with forgetting. References1. Younes L. Introduction to Machine Learning. arXiv, 2024. – 649 p. DOI: https://doi.org/10.48550/arXiv.2409.02668. 2. Brody S., Alon U., Yahav E. How Attentive are Graph Attention Networks? arXiv, 2022. – 26 p. DOI: https://doi.org/10.48550/arXiv.2105.14491. 3. Liao Y. Zhang X. Ferrie C. Graph Neural Networks on Quantum Computers. arXiv, 2024. – 50 p. DOI: https://doi.org/10.48550/arXiv.2405.17060. 4. Xu R., Baracaldo N., Joshi J. Privacy-Preserving Machine Learning: Methods, Challenges and Directions. aXiv, 2021. – 40 p. DOI: http://dx.doi.org/10.48550/arXiv.2108.04417 5. Zapechnikov S. V. Modeli i algoritmy konfidencial'nogo mashinnogo obuchenija // Bezopasnost' informacionnyh tehnologij. T. 27. № 1. 2020. S. 51–67. DOI: https://doi.org/10.26583/bit.2020.1.05. 6. Zapechnikov S. V. Konfidencial'noe mashinnoe obuchenie na osnove chetyrehstoronnih protokolov bezopasnyh vychislenij // Bezopasnost' informacionnyh tehnologij. T. 29. № 2. 2022. S. 46–56. DOI: http://dx.doi.org/10.26583/bit.2022.2.04. 7. Mishra P., Lehmkuhl R., Srinivasan A., Zheng W., Popa R. A. Delphi: A cryptographic inference service for neural networks. Proc. of USENIX Security 2020 (USENIX Security Symposium). URL: https://eprint.iacr.org/2020/050.pdf. 8. Liu X., Wu B., Yuan X., Yi X. Leia: A Lightweight Cryptographic Neural Network Inference System at the Edge. IEEE Transactions on Information Forensics and Security, vol. 17, 2022, pp. 237-252. DOI: https://doi.org/10.1109/TIFS.2021.3138611. 9. Catrina O., de Hoogh S. Improved Primitives for Secure Multiparty Integer Computation. Security and Cryptography for Networks. Lecture Notes in Computer Science, vol 6280, Springer, 2010, pp 182–199. DOI: https://doi.org/10.1007/978-3-642-15317-4_13. 10. Patra A., Schneider T., Suresh A., Yalame H. ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation. Cryptology ePrint Archive, 2020. – 29 p. DOI: https://eprint.iacr.org/2020/1225. 11. Catrina O. Round-Efficient Protocols for Secure Multiparty Fixed-Point Arithmetic. Proc. of 12th IEEE International Conference on Communications, 2018, pp 431-436. DOI: https://doi.org/10.1109/ICComm.2018.8484794. 12. Yadav V., Andola N., Verma S, Venkatesan S. A Survey of Oblivious Transfer Protocol. ACM Comput. Surv., 2022. – 37 p. DOI: https://doi.org/10.1145/3503045. 13. Catrina O., Saxena A. Secure Computation With Fixed-Point Numbers. Lecture Notes in Computer Science, vol. 6052, Springer, 2010, pp 35–50. DOI: https://doi.org/10.1007/978-3-642-14577-3_6. 14. Blanton M., Kang A., Yuan C. Improved Building Blocks for Secure Multi-Party Computation based on Secret Sharing with Honest Majority. Cryptology ePrint Archive, 2019. – 26 p. URL: https://eprint.iacr.org/2019/718. 15. Zheng Y., Zhang Q., Chow S., Peng Y., Tan S., Li L., Yin S. Secure Softmax/Sigmoid for Machine-Learning Computation. Proc. of the 39th Annual Computer Security Applications Conference, 2023, pp 463-476. DOI: https://doi.org/10.1145/3627106.3627175. | 18–27 |
3DGOST STOCHASTIC TRANSFORMATION ALGORITHM / M. A. Ivanov, T. I. Komarov, M. A. Kondakhchan , A. V. Starikovsky // Cybersecurity issues. – 2024. – № 5(63). – С. 28-33. – DOI: 10.21681/2311-3456-2024-5-28-33.AbstractA promising direction in solving information security problems is the use of stochastic methods, the main result of which is the introduction of unpredictability into the operation of a computer system and network security tools. The purpose of this work is to substantiate the possibility of effective use of 64-bit stochastic data transformation algorithms, which have proven themselves well in the past. The method to achieve the goal is to use the Cube architecture. Results obtained: a 3D algorithm for nonlinear data transformation is presented, oriented towards implementation using heterogeneous supercomputer technologies. Testing the algorithm in pseudorandom number generation mode showed its statistical safety. Keywords: pseudorandom number generator, stochastic transformation, unpredictability, stochastic methods of information security. References1. Ivanov М. А. Stohasticheskie medody zashchity infomacii. – Vserossijskaj nauchno-technicheskaya Conferentsya «Kibernetica i informatcionnaya bezopasnost» (KIB 2023). Sbornik nauchnih trudov, Moskva, 2023, с. 42-43. (in Russian). 2. Ivanov М. А., Skitev A. A., Starikovskij A. V. Klassifikatciya generatorov psevdosluchainyh chisel orientirovannyh na ispolsovanie v zadachah zachity informatsii. (2016). [Electronic resource]. https://www.aha.ru/~msa/papers11.pdf (Date Views: 10.06.2024). (in Russian). 3. Joan Daemen, Daemen, Joan, Lars Knudsen, Vincent Rijmen. The Block Cipher Square. (1998). [Electronic resource]. https://www.ime.usp.br/~rt/cranalysis/square.pdf (Date Views: 07.06.2016). 4. Joan Daemen, Vincent Rijmen. The Design of Rijndael. AES – The Advanced Encryption Standard. Springer-Verlag, Berlin, Heidelberg, NewYork, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 2001, 253 p. 5. Jorge Nakahara Jr. 3D: A Three-Dimensional Block Cipher. In: Franklin M. K., Hui L. C. K., Wong D. S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 252–267. Springer, Heidelberg, 2008. 6. P. Barreto, V. Rijmen. The WHIRLPOOL Hashing Function. (2003). [Electronic resource]. https://cryptospecs.googlecode.com/svn/trunk/hash/specs/whirlpool.pdf (Date Views: 10.06.2024). 7. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. Keccak specifications. (2009). [Electronic resource]. https://keccak.noekeon.org/Keccak-specifications-2.pdf (Date Views: 10.06.2024). 8. Keccak sponge function family. Main document. Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche. [Electronic resource]. http://keccak.noekeon.org/Keccak-main-2.1.pdf (Date Views 07.06.2016) 9. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, Y. Seurin. SHA-3 proposal: ECHO. (2009). [Electronic resource]. http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf (Date Views: 10.06.2024). 10. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schlaffer and S. S. Thomsen. Grøstl – a SHA-3 candidate. (2011). [Electronic resource]. https://perso.uclouvain.be/fstandae/ source_codes/hash_atmel/specs/groestl.pdf (Date Views: 10.06.2024). 11. Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. (2009). [Electronic resource]. https://ehash.iaik.tugraz.at/uploads/f/f5/Shavite.pdf (Date Views: 10.06.2024). 12. GOST R 34.11-2012. Information Technology. Cryptographic Information Defense. Hash Finction.– Moscow, Standartinform, 2012. (in Russian). 13. GOST 34.12-2018. Information Technology. Cryptographic Information Defense. Block Ciphers. –Moscow, Standartinform, 2018. (in Russian). 14. Ivanov М. А., Vasilyev N. P., Chugunkov I. V. Three-dimensional data stochastic transformation algorithms for hybrid supercomputer implementation. (2012). [Electronic resource]. https://2012.nscf.ru/Tesis/Ivanov.pdf (Date Views: 10.06.2024). 15. Using Sequential and Parallel Composition for Stochastic Data Processing/ Ivanov M. A., Kozyrsky B. L., Komarov T. I., et.al. – Proceedings of The Radio-Electronic Devices and Systems for the Infocommunication Technologies (REDS-2013), Moscow, Russia, May 22-23, 2013, pp.144–148. 16. Three New Methods of Stochastic Data Transformaion/M. A. Ivanov, I. V. Matveychikov, A. A. Skitev, et. al. – Proceedings of The RadioElectronic Devices and Systems for the Infocommunication Technologies (REDS-2016), Moscow, Russia, May 25-26, 2016, pp.351–355. 17. Ivanov M. A., Starikovskiy A. V., Shchustova L. I. Novaya zhizn' starogo GOSTa: perekhod ot odnomernoy versii k 3D. – REDS: Telekommunikatsionnyye ustroystva i sistemy, 2017, T. 7, № 4, s. 488–491. (in Russian). 18. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. A. Rukhin, J. Soto, J. Nechvatal, et.al. NIST Special Publication 800-22, Revision 1a. 2010. 19. Chugunkov I. V. Metody i sredstva otsenki kachestva generatorov psevdosluchaynyh posledovatel'nostey. Uchebnoe posobie. – М.: NRNU MEPhI, 2012. (in Russian). 20. Boreskov A. V., Harlamov A. A. Osnovy raboty s tehnologiey CUDA. М.: DMK Press, 2011. (in Russian). 21. CUDA C++ Programming Guide. Release 12.5. NVIDIA, 2024. | 28–33 |
Dvoryankin, S. V. FAST SYNTHESIS OF AUDIO SIGNALS FROM SPECTROGRAM IMAGES IN SPEECH INFORMATION PROTECTION TASKS / S. V. Dvoryankin, N. S. Dvoryankin, A.M. Alyushin // Cybersecurity issues. – 2024. – № 5(63). – С. 34-46. – DOI: 10.21681/2311-3456-2024-5-34-46. AbstractPurpose of the work: development of methods and algorithms for spectrogram inversion: determination of the waveform of a signal using the previously known data of its amplitude spectral sweeps in the absence of phase information - for real-time generation of audio signals with specified frequency-temporal properties with their subsequent application in speech information protection systems. Research methods: applied system analysis, digital spectral-temporal analysis, digital signal and image processing, image analysis of sonograms. Research results: methods and algorithms of synthesis of sound and speech signals by a priori given spectrogram, realized within the framework of the concept of image analysis-synthesis, working in real time and providing good qualitative estimates of the phase of peak values of spectral slices in one fully deterministic pass, are proposed. They can be used alone or in obtaining initial phase estimates to improve the results of iterative algorithms like Griffin-Lim et al. The estimates of positions and phase of spectral peaks obtained from the processed spectrogram images are determined more accurately using quadratic interpolation, and the recalculation of the phase increment by time steps is performed in a specially introduced phase accumulator, without requiring the calculation of arctangents. Scientific novelty: а new method of spectrogram inversion based on dissection-dissection of the original spectrogram image is proposed to obtain more accurate spectral descriptions of the audio signal synthesized from it, better corresponding to the original than known iterative methods of spectral inversion. Practical value: a computationally efficient real-time algorithm for single-pass spectrogram inversion has been developed. The obtained results will allow to expand the capabilities of existing systems of speech information protection and to design more effective ones on the basis of the described approaches. Keywords: information security, spectrogram inversion, image analysis, protection against unauthorized access, speechlike signal, sinusoidal speech model. References1. Khorev A. A., Dvoryankin S. V., Kozlachkov S. B., Vasilevskaya N. V. Analiz predel'nykh vozmozhnostei metodov shumoponizheniya i rekonstruktsii rechevykh signalov, maskiruemykh razlichnymi tipami pomekh //Voprosy kiberbezopasnosti. 2024. № 1 (59). S. 89–100. 2. Dvoryankin S. V., Dvoryankin N. S., Ustinov R. A. Rechepodobnaya pomekha, stoikaya k shumoochistke, kak rezul'tat skremblirovaniya zashchishchaemoi rechi // Voprosy kiberbezopasnosti. 2022. № 5 (51). S. 14–27. 3. Minaev V. A., Dvoryankin S. V., Alyushin A. M. Metody biomarkirovaniya zashchishchaemykh ob"ektov // Informatsiya i bezopasnost'. 2023. T. 26. № 3. S. 321–328. 4. Dvoryankin S. V., Dvoryankin N. S., Ustinov R. A. Razvitie tekhnologii obraznogo analiza-sinteza akusticheskoi (rechevoi) informatsii v sistemakh upravleniya, bezopasnosti i svyazi // Bezopasnost' informatsionnykh tekhnologii, 2019. T. 26, № 1. C. 64–76. 5. Dvoryankin S. V., Zenov A. E., Ustinov R. A., Dvoryankin N. S. Kodirovanie izobrazhenii spektrogramm dlya obespecheniya peremennoi skorosti peredachi audiodannykh s sokhraneniem kachestva ikh zvuchaniya // Bezopasnost' informatsionnykh tekhnologii. 2021. T. 28. № 4. S. 22–38. 6. Dvoryankin S. V., Ulengov S. V., Ustinov R. A., Dvoryankin N. S., Antipenko A. O. Sistemnoe modelirovanie rechepodobnykh signalov i ego primenenie v sfere bezopasnosti, svyazi i upravleniya // Bezopasnost' informatsionnykh tekhnologii. 2019. T. 26. № 4. S. 101–119. 7. Dvoryankin S. V., Dvoryankin N. S. Sredstva, sposoby i priznaki klonirovaniya rechi // Sbornik statei po materialam IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Informatsionnaya bezopasnost': vchera, segodnya, zavtrA» pod redaktsiei V. V. Arutyunova. Moskva, RGGU, 2021. S. 103–111. 8. Alyushin A. M., Dvoryankin S. V. Acoustic pattern recognition technology based on the Viola-Jones approach for VR and AR systems. В сборнике: Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020. Proceedings of the 11th Annual Meeting of the BICA Society. Сер. «Advances in Intelligent Systems and Computing» 2021. С. 1–8. 9. Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin,Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron C Courville. Melgan: Generative adversarial networks for conditional waveform synthesis. In Advances in Neural Information Processing Systems, pages 14881–14892, 2019. 10. Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network for speech synthesis. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3617–3621, 2019. 11. Engel J. Resnick C. Roberts A. Dieleman S. Norouzi M. Eck D., Simonyan K. Waveglow: A flow-based generative network for speech synthesis. // ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. 2019. Pp. 3617–3621. 12. Y. Masuyama, K. Yatabe, and Y. Oikawa, «Griffin–Lim like phase recovery via alternating direction method of multipliers», IEEE Signal Process. Lett., vol. 26, pp. 184–188, Jan. 2019. 13. T. Peer, S. Welker, and T. Gerkmann,«Beyond Griffin–Lim: Improved iterative phase retrieval for speech» in Proc. Int. Workshop Acoust. Signal Enhance. (IWAENC), Sept. 2022, pp. 1–5. 14. Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, «Deep Griffin–Lim iteration», in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 2019, pp. 61–65. 15. «Deep Griffin–Lim iteration: Trainable iterative phase reconstruction using neural network», IEEE J. Sel. Top. Signal Process., vol. 15, pp. 37–50, Jan. 2021. 16. Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Y. Liu, «Fastspeech 2: Fast and high-quality end-to-end text to speech», in Proc. Int. Conf. Learn. Represent. (ICLR), May 2021. 17. T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, «CycleGAN-VC3: Examining and improving CycleGANVCs for mel-spectrogram conversion», in Proc. Interspeech, Oct. 2020, pp. 2017–2021. 18. T. Hayashi, W. C. Huang, K. Kobayashi, and T. Toda, «Nonautoregressive sequence-to-sequence voice conversion», in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), June 2021, pp. 7068–7072. 19. R. Prenger, R. Valle, and B. Catanzaro, «Waveglow: A flowbased generative network for speech synthesis» in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 2019, pp. 3617–3621. 20. K. Kumar, R. Kumar, T. De Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo, A. de Br´ebisson, Y. Bengio, and A. C. Courville, «Melgan: Generative adversarial networks for conditional waveform synthesis», in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 32, Dec. 2019. 21. J. Kong, J. Kim, and J. Bae, «Hifi-gan: Generative adversarial networks for efficient and high-fidelity speech synthesis», in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Dec. 2020. 22. T. Kaneko, K. Tanaka, H. Kameoka, and S. Seki, «ISTFTNET: Fast and lightweight mel-spectrogram vocoder incorporating inverse shorttime fourier transform», in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Apr. 2022, pp. 6207–6211. 23. J. J. Webber, C. Valentini-Botinhao, E. Williams, G. E. Henter, and S. King, «Autovocoder: Fast waveform generation from a learned speech representation using differentiable digital signal processing», arXiv:2211.06989, 2022. 24. Y. Okamoto, K. Imoto, S. Takamichi, R. Yamanishi, T. Fukumori, and Y. Yamashita, «Onoma-to-wave: Environmental sound synthesis from onomatopoeic words», APSIPA Trans. Signal, Inf. Process., vol. 11, May 2022. 25. B. D. Giorgi, M. Levy, and R. Sharp, «Mel spectrogram inversion with stable pitch», in Proc. Int. Soc. Music Inf. Retr. Conf. (ISMIR), Dec. 2022, pp. 233–239. | 34–46 |
Tolstoy, A. I. SYSTEM ENGINEERING FOR ENSURING SECURITY OF OBJECTS IN THE INFORMATION SPHERE / A. I. Tolstoy // Cybersecurity issues. – 2024. – № 5(63). – С. 47-57. – DOI: 10.21681/2311-3456-2024-5-47-57. AbstractThe article considers the fundamentals of the methodology for ensuring the security of objects using modern information technologies (Objects), based on the concepts, principles and methods of systems engineering. Within the framework of systems engineering, the process, system and management approaches to ensuring the security of Objects were developed, based on the developed process models of the Object as a part of the Organization, the Object itself and its security ensuring systems (SES). In the work, four groups of processes are substantiated among the processes of ensuring the security of the Object - this is ensuring of information security, resilience, information and psychological security of personnel and physical protection of the Object, taking into account the need to ensure the secure state of the main assets of the Object and the formulation of separate goals of ensuring the security of the Object. In each of these groups, within the framework of the development of the process approach, a part of the processes were identified, the implementation of which is aimed at achieving the required secure state of the assets of the Object, and a part of management processes for the processes from the first part, which should ensure the necessary effectiveness at the stages of their planning, implementation, control and improvement. At the same time, the adaptive nature of the management of such processes is shown. Taking into account the identified groups of processes, a structure of systems included in the Object's SES and a structure of the system of its support processes (dynamic and static representation of the SES respectively), as well as a structure of the Object's integrated SES were proposed. The usage of systems engineering in the Object's security ensuring allowed us to substantiate the direction of training professionals in the field of Object's security ensuring on a single methodological basis, defining their qualifications (systems engineer) and a possible list of specialties included in this direction. The usage of systems engineering in solving Object's security ensuring problems allowed us to implement a systemic (integrated) approach necessary for conducting research, designing, implementing and developing SESs for specific Objectss. The solutions proposed are generalized and do not contradict the currently existing approach related to ensuring information security. Keywords: methodology, concept, principles, method, model, process, system, asset, management, information security, resilience, information and psychological security, physical security. References1. Tolstoy, Alexandr I. Obespechenie bezopasnosti ob’ektov v informatcionnoi sferi. Bezopasnost informacionnih tehnologiy, v. 31, no 3, p. 105–123, 2024. ISSN 2074-7136. URL: https://bit.spels.ru/index.php/bit/article/view/1677. DOI: http://dx.doi.org/10.26583/bit.2024.3.05. 2. Tolstoy, Alexandr I. Sistematika poniytii v oblasti informacionnoy bezopasnosti. Bezopasnost informacionnih tehnologiy, [S.l.], v. 30, no. 1, p. 130–148, 2023. ISSN 2074-7136. URL: https://bit.spels.ru/index.php/bit/article/view/1478. DOI: http://dx.doi.org/10.26583/bit.2023.1.10. 3. Obespechenie informacionnoi bezopasnosti biznesa / V. V. Andrianov, S. L. Zefirov, V. B. Golovanov, N. A. Golduev.- M.: Alpina Паблишерз, 2011. – 373 p. 4. Kravchenko S. I. Bezopasnost sociotehnicheskih system// NBI tehnologii. 2018. v. 12. № 2, p. 20–24. DOI: https://doi.org/10.15688/NBIT.jvolsu.2018.2.3 5. Korganova O. G., Panfilova I. E. Model upravleniya informatsionnymi riskami sotsiotekhnicheskoi sistemy na osnove povedencheskikh osobennostei cheloveka [Model of information risk management of a sociotechnical system based on human behavioral features]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Transaction of scientific papers of the Novosibirsk state technical university, 2020, no. 1–2 (97), pp. 89–98. DOI: 10.17212/2307-6879-2020-1-2-89-98. 6. Batovrin V. K., Goldberg F. N., Aleksandrov P. S., Maler E. A. Sistemnaia inhzeneria / Gumanitarnii portal: Koncepti [Elektrronnii resurs] // Centr gumanitarnih tehnologii, 2002–2023 (posledniy redakciya 20.08/2024). URL: https://gtmarket.ru/concepts/7110. 7. Gorohov V. G, Metodologicheskiy analiz sistemotehniki. – Radio i sviyz, 1982. 162 p. 8. Nikolaev V. I., Bruk V. M. Sistemotehnika: metodi i prilozheniy. – L.: Mashinostroenie, 1985.– 199 p. 9. Blanchard B. S., Fabrycky W. J. Systems Engineering and Analysis. – Prentice Hall, 2006. 10. Niv G. Prostranstvo doktora Deminga. M.: Alpina Niznes Buks, 2007 11. Hitchins D. What are the General Principles Applicable to Systems? – INCOSE INSIGHT. – V. 12, Issue 4. – December 2009.– pp. 59–64). 12. Boehm B. et al. Principles for Successful Systems Engineering. – Procedia Computer Science – № 8, 2012. – pp. 297–302. 13. Audit informacionnoy bezopasnosti / A. P.Kurilo, S. L. Zefirov, V. B. Golovanov i dr. – M.: Izdatelskaya gruppa «BDC-press», 2006.– 304 p. | 47–57 |
Durakovskiy, A. P. EVOLUTION AND DIRECTIONS OF DEVELOPMENT OF TECHNOLOGIES FOR MASKING CONFIDENTIAL SPEECH MESSAGES / A. P. Durakovskiy, S. V. Dvoryankin, N. S. Dvoryankin // Cybersecurity issues. – 2024. – № 5(63). – С. 58-66. – DOI: 10.21681/2311-3456-2024-5-58-66. AbstractPurpose of the research: analysis of methods and algorithms of technical closure of speech information in networks and systems of voice communication, evaluation of directions and prospects of development of speech masking technologies with machine learning. Research methods: applied systems analysis, digital spectral-time analysis, digital signal and image processing, image analysis of spectrograms, machine learning Research results: the problems of ensuring the security of confidential voice communication in modern conditions are outlined. The review of speech protection methods used in practice in public voice communication channels is given. Traditional and perspective algorithms of masking of speech messages, methods of their realization are considered. The advantages of the latter over the ones are noted. Science significance: New methods of technical speech masking based on modification and reconstruction of dynamic spectrogram images using artificial intelligence are proposed Practical: effective speech masking algorithms are proposed. The obtained results will allow to expand the possibilities of existing solutions for protection of speech information in voice communication systems and networks and to design more effective ones based on the described approaches. Keywords: methodology, concept, principles, method, model, process, system, asset, management, information security, resilience, information and psychological security, physical security. References1. Tolstoy, Alexandr I. Obespechenie bezopasnosti ob’ektov v informatcionnoi sferi. Bezopasnost informacionnih tehnologiy, v. 31, no 3, p. 105–123, 2024. ISSN 2074-7136. URL: https://bit.spels.ru/index.php/bit/article/view/1677. DOI: http://dx.doi.org/10.26583/bit.2024.3.05. 2. Tolstoy, Alexandr I. Sistematika poniytii v oblasti informacionnoy bezopasnosti. Bezopasnost informacionnih tehnologiy, [S.l.], v. 30, no. 1, p. 130–148, 2023. ISSN 2074-7136. URL: https://bit.spels.ru/index.php/bit/article/view/1478. DOI: http://dx.doi.org/ 10.26583/bit.2023.1.10. 3. Obespechenie informacionnoi bezopasnosti biznesa / V. V. Andrianov, S. L. Zefirov, V. B. Golovanov, N. A. Golduev.- M.: Alpina Паблишерз, 2011. – 373 p. 4. Kravchenko S. I. Bezopasnost sociotehnicheskih system// NBI tehnologii. 2018. v. 12. № 2, p. 20–24. DOI: https://doi.org/10.15688/NBIT.jvolsu.2018.2.3 5. Korganova O. G., Panfilova I. E. Model upravleniya informatsionnymi riskami sotsiotekhnicheskoi sistemy na osnove povedencheskikh osobennostei cheloveka [Model of information risk management of a sociotechnical system based on human behavioral features]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Transaction of scientific papers of the Novosibirsk state technical university, 2020, no. 1–2 (97), pp. 89–98. DOI: 10.17212/2307-6879-2020-1-2-89-98. 6. Batovrin V. K., Goldberg F. N., Aleksandrov P. S., Maler E. A. Sistemnaia inhzeneria / Gumanitarnii portal: Koncepti [Elektrronnii resurs] // Centr gumanitarnih tehnologii, 2002–2023 (posledniy redakciya 20.08/2024). URL: https://gtmarket.ru/concepts/7110. 7. Gorohov V. G, Metodologicheskiy analiz sistemotehniki. – Radio i sviyz, 1982. 162 p. 8. Nikolaev V. I., Bruk V. M. Sistemotehnika: metodi i prilozheniy. – L.: Mashinostroenie, 1985.– 199 p. 9. Blanchard B. S., Fabrycky W. J. Systems Engineering and Analysis. – Prentice Hall, 2006. 10. Niv G. Prostranstvo doktora Deminga. M.: Alpina Niznes Buks, 2007 11. Hitchins D. What are the General Principles Applicable to Systems? – INCOSE INSIGHT. – V. 12, Issue 4. – December 2009.– pp. 59–64). 12. Boehm B. et al. Principles for Successful Systems Engineering. – Procedia Computer Science – № 8, 2012. – pp. 297–302. 13. Audit informacionnoy bezopasnosti / A. P.Kurilo, S. L. Zefirov, V. B. Golovanov i dr. – M.: Izdatelskaya gruppa «BDC-press», 2006.– 304 p. | 58–66 |
Morozov, V. Е. COMPREHENSIVE SOLUTIONS TO MINIMISE INTERNAL INFORMATION SECURITY THREATS / Morozov V. Е., Miloslavskaya N. G. // Cybersecurity issues. – 2024. – № 5(63). – С. 67-78. – DOI: 10.21681/2311-3456-2024-5-67-78. AbstractPurpose of the work: development of methods and algorithms for spectrogram inversion: determination of the waveform of a signal using the previously known data of its amplitude spectral sweeps in the absence of phase information - for real-time generation of audio signals with specified frequency-temporal properties with their subsequent application in speech information protection systems. Research methods: applied system analysis, digital spectral-temporal analysis, digital signal and image processing, image analysis of sonograms. Research results: methods and algorithms of synthesis of sound and speech signals by a priori given spectrogram, realized within the framework of the concept of image analysis-synthesis, working in real time and providing good qualitative estimates of the phase of peak values of spectral slices in one fully deterministic pass, are proposed. They can be used alone or in obtaining initial phase estimates to improve the results of iterative algorithms like Griffin-Lim et al. The estimates of positions and phase of spectral peaks obtained from the processed spectrogram images are determined more accurately using quadratic interpolation, and the recalculation of the phase increment by time steps is performed in a specially introduced phase accumulator, without requiring the calculation of arctangents. Scientific novelty: а new method of spectrogram inversion based on dissection-dissection of the original spectrogram image is proposed to obtain more accurate spectral descriptions of the audio signal synthesized from it, better corresponding to the original than known iterative methods of spectral inversion. Practical value: a computationally efficient real-time algorithm for single-pass spectrogram inversion has been developed. The obtained results will allow to expand the capabilities of existing systems of speech information protection and to design more effective ones on the basis of the described approaches. Keywords: information security, speech information protection, image analysis-synthesis, technical speech closure, speech-like signal, machine learning. References1. Horev A. A., Dvoryankin S. V., Kozlachkov S. B., Vasilevskaya N. V. Analiz predel'nyh vozmozhnostej metodov shumoponizheniya i rekonstrukcii rechevyh signalov, maskiruemyh razlichnymi tipami pomekh. //Voprosy kiberbezopasnosti. 2024. № 1 (59). S. 89–100. 2. Dvoryankin S. V., Dvoryankin N. S., Ustinov R. A. Rechepodobnaya pomekha, stojkaya k shumoochistke, kak rezul'tat skremblirovaniya zashchishchaemoj rechi. // Voprosy kiberbezopasnosti. 2022. № 5 (51). S. 14–27. 3. Dvoryankin S. V., Dvoryankin N. S., Ustinov R. A. Razvitie tekhnologij obraznogo analiza-sinteza akusticheskoj (rechevoj) informacii v sistemah upravleniya, bezopasnosti i svyazi // Bezopasnost' informacionnyh tekhnologij =IT Security. Tom 26, № 1. 2019. C. 64–76. DOI: http://dx.doi.org/10.26583/bit.2019.1.07 4. Golikov A. M. Issledovanie metodov analogovogo skremblirovaniya: Uchebno-metodicheskoe posobie po laboratornoj rabote [Elektronnyj resurs] / A. M. Golikov. – Tomsk: TUSUR, 2019. – 25 s. 5. Stolbov M. B. Osnovy analiza i obrabotki rechevyh signalov / M. B. Stolbov – SPb.: NIU ITMO, 2021. – 101 s. 6. Tom Backstrom. Privacy in Speech Technology. arXiv:2305.05227v1 [eess.AS] 9 May 2023/ 7. Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, Yonghui Wu Direct speech-to-speech translation with a sequence-to-sequence model. arXiv:1904.06037v1 [cs.CL] 12 Apr 2019. 8. Robert J. Summers, Brian Roberts. Informational masking of speech by acoustically similar intelligible and unintelligible interferers. The Journal of the Acoustical Society of America 147(2):1113-1125. February 2020. DOI:10.1121/10.0000688 9. Jennifer Williams, Karla Pizzi, Paul-Gauthier Noé , Sneha Das. Exploratory Evaluation of Speech Content Masking. arXiv:2401.03936v1 [eess.AS] 8 Jan 2024. 10. Sonia Yasmin, Vanessa C. Irsik, Ingrid S. Johnsrude, Björn Herrmann. The Effects of Speech Masking on Neural Tracking of Acoustic and Semantic Features of Natural Speech. Neuropsychologia doi: 10.1016/j.neuropsychologia.2023.108584. doi:https://doi.org/10.1101/2023.02.10.527537. 11. Y. Chen, Y. Assael, B. Shillingford, D. Budden, S. Reed, H. Zen, Q. Wang, L. C. Cobo, A. Trask, B. Laurie et al., «Sample efficient adaptive text-to-speech», in Proc. ICLR, 2019. 12. Y. Jia, M. Johnson, W. Macherey, R. J. Weiss, Y. Cao, C. -C. Chiu, N. Ari et al., «Leveraging weakly supervised data to improve endto-end speech-to-text translation», in Proc. ICASSP, 2019. 13. A. Haque, M. Guo, and P. Verma, «Conditional end-to-end audio transforms», in Proc. Interspeech, 2018. [23] J. Zhang, Z. Ling, L. -J. Liu, Y. Jiang, and L. -R. Dai, «Sequenceto-sequence acoustic modeling for voice conversion», IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019. 14. F. Biadsy, R. J. Weiss, P. J. Moreno, D. Kanevsky, and Y. Jia, «Parrotron: An end-to-end speech-to-speech conversion model and its applications to hearing-impaired speech and speech separation», arXiv:1904.04169, 2019. 15. J. Shen, P. Nguyen, Y. Wu, Z. Chen et al., «Lingvo: a modular and scalable framework for sequence-to-sequence modeling», 2019. 16. K. Irie, R. Prabhavalkar, A. Kannan, A. Bruguier, D. Rybach, and P. Nguyen, «Model unit exploration for sequence-to-sequence speech recognition», arXiv:1902.01955, 2019. 17. W. -N. Hsu, Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Y. Wang, Y. Cao, Y. Jia, Z. Chen, J. Shen et al., «Hierarchical generative modeling for controllable speech synthesis», in Proc. ICLR, 2019. | 67–78 |
COMPARATIVE ANALYSIS OF STATIC CODE SAFETY ANALYSERS / A. S. Markov, I. S. Antipov, S. S. Arustamyan, N. A. Magakelova // Cybersecurity issues. – 2024. – № 5(63). – С. 79-88. – DOI: 10.21681/2311-3456-2024-5-79-88. AbstractPurpose of work: development of a methodical approach to comparative analysis of static source code security analysers applicable to the certification of information protection tools by the criteria of performance, applicability, functionality and convenience, as well as its demonstration on examples. Research method: analysis of normative and methodical documents on conducting static analysis and on evaluating static analysers of software source code in order to form a method of their comparison and selection. Obtained result: the results of analysis and synthesis of the system of quality indicators of proprietary code safety analyzers and opensource code analyzers are given, as well as the results of their comparison on real products, which allows to form the necessary tool base for certification tests of software information protection means on information safety requirements and certification of safe software development processes. Scientific novelty: normative documents in the field of static code analysis are analysed in relation to the solution of the task of analysis and selection of several static security analysers, selection criteria are given, test products are chosen and an experiment is carried out which demonstrated different efficiency of code security analysers during certification. Authors' contribution: Markov A. S. - development of methodical approach, editing, Varenitsa V. V. - development of test bench architecture, Antipov I. S., Arustamyan S. S., Magakelova N. S. - conducting the experiment. Keywords: software security, secure software resources, software security analysis, vulnerabilities, undeclared capabilities, backdoors, certification testing toolkit. References1. Markov A. S., Cirlov V. L., Barabanov A. V. Metody ocenki nesootvetstviya sredstv zashchity informacii. M.: Radio i svyaz', 2012. 192 з. 2. Arustamjan S. S., Varenica V. V., Markov A. S. Metodicheskie i realizacionnye aspekty vnedrenija processov razrabotki bezopasnogo programmnogo obespechenija // Bezopasnost' informacionnyh tehnologij. 2023. T. 30. № 2. S. 23–37. 3. Static Analysis Technologies Evaluation Criteria v1.0./Ed. by Sherif Koussa; Russian translation by Alec Shcherbakov and Alexey Markov, Web Application Security Consortium, 2013. – Rezhim dostupa: http://projects.webappsec.org/w/page/71979863/Static%20Analysis%20Technologies%20Evaluation %20Criteria %20-%20Russian/. 4. Markov A. S., Fadin A. A., Shvec V. V. Sravnenie staticheskih analizatorov bezopasnosti programmnogo koda // Zashhita informacii. Insajd. 2015. № 6 (66). S. 38–47. 5. Markov A., Fadin A., Shvets V., Tsirlov V. The Experience of Comparison of Static Security Code Analyzers // International Journal of Advanced Studies. 2015. V. 5. N 3. S. 55–63. 6. Galatenko V. A., Kostjuhin K. A., Shmyrev N. V., Aristov M. S. Ispol'zovanie svobodno rasprostranjaemyh sredstv staticheskogo analiza ishodnyh tekstov programm v processe razrabotki prilozhenij dlja operacionnyh sistem real'nogo vremeni // Programmnaja inzhenerija. 2012. № 5. S. 2–5. 7. Ponomarev N. S., Talanov K. E. Issledovanie osobennostej analizatorov koda na vyjavlenie ujazvimostej s ispol'zovaniem metoda analiza ierarhij T. L. Saati. V sbornike: XXXVI Mezhdunarodnye Plehanovskie chtenija. Sbornik statej uchastnikov konferencii. V 4-h tomah. Moskva, 2023. S. 232–238. 8. Fedorov A. Ju., Portnov E. M., Kokin V. V. Issledovanie vozmozhnostej staticheskih analizatorov koda po poisku oshibok pamjati v jazykah S/S++ // Informatizacija i svjaz'. 2017. № 4. S. 45–49. 9. Fatima A. and etc. Comparative study on static code analysis tools for C/C++, In: 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2018, pp. 465–469, DOI: 10.1109/IBCAST.2018.8312265. 10. Kuszczyński K., Walkowski M. Comparative Analysis of Open-Source Tools for Conducting Static Code Analysis // Sensors. 2023. V. 23. № 18. P. 7978. 11. Shaukat R. and etc. Probing into code analysis tools: A comparison of C# supporting static code analyzers. In: 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2018, pp. 455–464, DOI: 10.1109/IBCAST.2018.8312264. 12. Stefanović D., Nikolić D., Dakić D., Spasojević I., Ristić S. Static Code Analysis Tools: A Systematic Literature Review // In: Annals of DAAAM and Proceedings of the International DAAAM Symposium. 31. 2020. P. 565–573. 13. Budarnyj G. S., Pestov I. E., Shterenberg I. G. Sravnenie metodov staticheskogo analiza ishodnogo koda programmy // Vestnik SanktPeterburgskogo gosudarstvennogo universiteta tehnologii i dizajna. Serija 1: Estestvennye i tehnicheskie nauki. 2024. № 1. S. 5–12. 14. Markov A. S. Modeli ocenki i planirovanija ispytanij programmnyh sredstv po trebovanijam bezopasnosti informacii. Vestnik MGTU im.N. Je. Baumana. Ser. «Priborostroenie». 2011. Specvypusk «Tehnicheskie sredstva i sistemy zashhity informacii». S.90–103. 15. Barabanov A. V., Dorofeev A. V., Markov A. S., Cirlov V. L. Sem' bezopasnyh informacionnyh tehnologij/Pod. red. A.S .Markova. M.: DMK Press, 2017. 224 s. 16. NIST 500-268. Source Code Security Analysis Tool Function Specification / Black P. E, Kass M., Koo M. Fong E. – SSD ITL NIST, 2011. – v.1.1. – 14 p. 17. Static Analysis Technologies Evaluation Criteria / Ed. by Sherif Koussa - Web Application Security Consortium, 2013. – v.1.0. – 19 p. | 79–88 |
Marchenko, I. V. PROTECTING UNIX-LIKE SYSTEM ENVIRONMENTS FROM EXPLOITATION OF MEMORY SECURITY WEAKNESSES / I. V. Marchenko // Cybersecurity issues. – 2024. – № 5(63). – С. 89-94. – DOI: 10.21681/2311-3456-2024-5-89-94. AbstractNowadays one of the most common weaknesses of software written in the C and C++ programming languages is incorrect memory handling. It can lead to unauthorized access to information, executing arbitrary code, and other negative consequences. The purpose of this work is increasing the protection of programs from attacks using memory safety weaknesses by implementing a protected system environment using hardware memory integrity monitoring technology. Methods. A comparative analysis and selection of hardware and software memory integrity monitoring technology, as well as software technologies supporting the selected hardware platform, are performed. A methodology for creating system environments for Secure computing mode is proposed, taking into account the features of this technology. The methodology takes into account the need to compile the source code of the program to support Secure computing mode compilation option, as well as the possible existence of incompatible constructions. Results. Based on the proposed methodology, a basic Secure computing mode protected system environment has been developed. During the development of the system environment in C language open source packages, constructions corresponding to memory security threats were identified and corrected. Practical significance. The proposed methodology can be used for further development of protected system environments based on the Secure computing mode while using software technologies other than those presented in the article. The developed system environment allows preventing the exploitation of memory safety weaknesses in the software included in it, without reducing functionality for the user. Keywords: Elbrus hardware and software platform, Secure computing mode, ARM MTE, CHERI, C language, memory tagging. References1. Gavin, T. A proactive approach to more secure code. URL: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-moresecure-code/ (accessed: 22.07.2024). 2. Tseytin G. S. UNIX and the Statement of Software Portability Problem // SORUCOM-2011. – 2011. – P. 320–322. (in Russian). URL: https://sorucom.iis.nsk.su/files/page/sorucom-2011_0.pdf (accessed: 27.07.2024). 3. Tanenbaum A. Modern Operating Systems. Fourth Edition. // Vrije Universiteit, 2014. – 1106 p. 4. Jero S. TAG: Tagged Architecture Guide / S. Jero, N. Burow, B. Ward, R. Skowyra // ACM Computing Surveys. 2022. – Vol. 55. – № 6. – Article 124. DOI: https://doi.org/10.1145/3533704. 5. Serebryany K. ARM Memory Tagging Extension and How It Improves C/C++ Memory Safety // ;login:. – Summer 2019. – Vol. 44. – № 2. URL: https://www.usenix.org/system/files/login/articles/ login_summer19_03_serebryany.pdf (accessed: 26.07.2024). 6. Watson R. An Introduction to CHERI. // University of Cambridge, 2019. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf (accessed: 28.07.2024). 7. Neiman-Zade M. I., Korolev S. D. Guide to Effective Programming on the Elbrus Platform. MCST. 2024. (in Russian). URL: http://www.mcst.ru/doc/elbrus_prog/elbrus-prog-1.2_2024-02-28.pdf (accessed: 26.07.2024). 8. Partap A. Memory Tagging: A Memory Efficient Design / A. Partap, D. Boneh // arXiv. Cryptography and Security. – 2022. DOI: https://doi.org/10.48550/arXiv.2209.00307. 9. Watson R. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 9). // University of Cambridge, 2023. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-987.pdf (accessed: 28.07.2024). 10. Mustafin T. R. Secure execution environment for critical applications in embedded systems based on Elbrus family computing facilities / T. R. Mustafin, A. I. Alekhin, E. M. Kravtsunov, B. O. Makaev // Radio Inustry. – 2019. – № 1 – P. 16–22. (in Russian). – EDN YXUUPJ. 11. Artemiev I. A. Comparative analysis of technologies for the safe use of memory, taking into account the hardware and software features of computing complexes / I. A. Artemiev, I. V. Marchenko, D. V. Yarapov, N. A. Shamenkov // Digital technologies and solutions in the field of transport and education. 2023. P. 11–20. (in Russian). – EDN BVFFDD. 12. Volkonskii V. Y. Secure implementation of programming languages based on hardware and system support // Issues of radio electronics. – 2008. – Т. 4. – № 2. – P. 98–141. (in Russian). – EDN JTNBAR. | 89–94 |
Gorbatov, V. S. CYBER PARADIGM OF INFORMATION SECURITY IN THE INTERNAL AFFAIRS BODIES / V. S. Gorbatov, A. S. Erdniev // Cybersecurity issues. – 2024. – № 5(63). – С. 95-104. – DOI: 10.21681/2311-3456-2024-5-95-104. AbstractThe purpose of the study is to study the possibility and necessity of using a terminological description of the security of information technologies and systems. Research methods: dialectical and polyparadigm approaches, system analysis, synthesis of solutions. The results obtained can be useful to information security specialists in the creation and improvement of the internal (local) regulatory framework, as well as in the creation of educational and methodological materials in the field of educational services in the field of information security. The results obtained can also be recommended to potential authors of scientific publications in the aspect of dialectical presentation of their scientific achievements. Scientific novelty: the author pays attention to the discussion of the cybernetic essence of the phenomenon under consideration, which from a pragmatic point of view has a relatively general nature and determines a more general interpretation of various concepts with the prefix cyber-..., in particular, the relationship between the terms information security and cybersecurity. Practical value: from a practical point of view, this study is considered as a solution to a particular problem within the framework of the general problem of improving the training of personnel for internal affairs bodies. Keywords: laws of dialectics, information security, cybernetics, cybersecurity, critical information infrastructure, metasubjectivity, paradigm, conceptual apparatus, terminology. References1. Gorbatov, Viktor S.; Erdniev, Aleksandr S. Sovershenstvovanie podgotovki kadrov po obespecheniju bezopasnosti informacionnoj infrastruktury organov vnutrennih del. IT Security, [S.l.], v. 31, no. 1, p. 100–119, 2024. ISSN 2074-7136. DOI: http://dx.doi.org/10.26583/bit.2024.1.06. 2. Devdariani N. V., Rubtsova E. V. Zakony dialektiki v jazyke. Baltic Humanitarian Journal. 2018, v. 7, no. 2(23), p. 31–34 – EDN XULTMD. 3. Markov A.S. Kiberbezopasnost' i Informacionnaja Bezopasnost' kak Bifurkacija Nomenklatury Nauchnyh Special'nostej. Issues of cybersecurity 2022, no. 1(47), p. 2–9 – EDN XMKFJH. 4. Stolyarov A. V. Informacionnaja svoboda i informacionnoe nasilie: special'nost' 09.00.11 «Social'naja filosofija»: avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata filosofskih nauk, A. V. Stolyarov M. 2012 – 27 p. 5. Koryagin V. V. Informacionnaja real'nost': sushhnost' i osobennosti: special'nost' 09.00.11 «Social'naja filosofija»: avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata filosofskih nauk. Ulan-Ude, 2018 – 25 p. 6. Mednyak I. A. Voennaja bezopasnost' sovremennogo obshhestva v uslovijah novoj informacionnoj real'nosti: special'nost' 5.7.7. «Social'naja i politicheskaja filosofija»: dissertacija na soiskanie uchenoj stepeni kandidata filosofskih nauk. Novocherkassk, 2022. – 160 p. 7. Dobrodeev A. Y. Kiberbezopasnost' v Rossijskoj Federacii. Modnyj termin ili prioritetnoe tehnologicheskoe napravlenie obespechenija nacional'noj i mezhdunarodnoj bezopasnosti XXI veka. Issues of cybersecurity. 2021, no. 4(44), p. 61–72. DOI: 10.21681/2311-3456-2021-4-61-72 – EDN MXUVBS. 8. Zhuikov A. E. Informacionnaja bezopasnost' v uslovijah genezisa virtual'nogo prostranstva transformirujushhegosja rossijskogo obshhestva: special'nost' 22.00.04 «Social'naja struktura, social'nye instituty i processy»: dissertacija na soiskanie uchenoj stepeni kandidata sociologicheskih nauk. Krasnodar, 2016. – 155 p. 9. Artamonova Ya. S. Informacionnaja bezopasnost' rossijskogo obshhestva: teoreticheskie osnovanija i praktika politicheskogo obespechenija: special'nost' 23.00.02 «Politicheskie instituty, processy i tehnologii»: avtoreferat dissertacii na soiskanie uchenoj stepeni doktora politicheskih. M., 2014. – 56 p. 10. Tulikov A. V. Informacionnaja bezopasnost' i prava cheloveka v uslovijah postindustrial'nogo razvitija (teoretiko-pravovoj analiz): special'nost' 12.00.01 «Teorija i istorija prava i gosudarstva; istorija uchenij o prave i gosudarstve»: avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata juridicheskih nauk. M., 2017. – 24 p. 11. Mammadov E. F. Terminologija zakonodatel'stva ob informacii, informacionnyh tehnologijah i o zashhite informacii kak sredstvo obespechenija informacionnoj bezopasnosti. 2023, no. 1(30), p. 163–174. DOI: 10.25839/MATGIP_2023_1_163 – EDN NZVWLS. 12. Mnatsakanyan A. V. Informacionnaja bezopasnost' v Rossijskoj Federacii: ugolovno-pravovye aspekty: special'nost' 12.00.08 «Ugolovnoe pravo i kriminologija; ugolovno-ispolnitel'noe pravo»: avtoreferat na soiskanie uchenoj stepeni kandidata juridicheskih nauk. M., 2016. – 40 p. 13. Grigoriev A. N., Loktionov O. V., Druzhkina T. A. et al. Osnovy informacionnoj bezopasnosti v organah vnutrennih del: Uchebnik. SPb: Sankt-Peterburgskij universitet Ministerstva vnutrennih del Rossijskoj Federacii, 2019. – 312 p. – EDN SQGZCB. 14. Tolstoy Alexandr I. Sistematika ponjatij v oblasti informacionnoj bezopasnosti. IT Security (Russia), [S.l.], v. 30, no. 1, p. 130–148, 2023. ISSN 2074-7136. DOI: http://dx.doi.org/10.26583/bit.2023.1.10. 15. Gerasimenko V. A. Osnovy informacionnoj gramoty. M.: Energoatomizdat, 1996. – 320 p. | 95–104 |
Malyuk, A. A. INFORMATION WARFARE AND MODERN PROBLEMS OF INFORMATION SECURITY / A. A. Malyuk // Cybersecurity issues. – 2024. – № 5(63). – С. 105-114. – DOI: 10.21681/2311-3456-2024-5-105-114. AbstractThe appearance of this article is a consequence of the rapid development of means and technologies of information warfare in recent years, its practical transformation into the main form of military-force confrontation in the 21st century. In this regard, the task of developing conceptual and methodological approaches to the formation of an integrated information security system that takes into account the fundamentally interdisciplinary nature of this type of activity and the need to make decisions in conditions of incompleteness and unreliability of initial information is becoming particularly acute. From this point of view, the article proposes to consider information security as a set of processes of information protection and protection against information, which leads to new approaches to the development of relevant regulatory and methodological documents and rationalization of schemes and structures for managing integrated protection at the object, regional and state levels. Keywords: information war, information security, information protection, protection from information, integrated information security, culture of information security. References1. Strel'cov A. A. Obespechenie informacionnoj bezopasnosti Rossii. Teoreticheskie i metodologicheskie osnovy / Pod red. V. A. Sadovnichego i V. P. Sherstjuka. – M.: MCNMO, 2002; 2. Manojlo A. V., Petrenko A. I., Frolov D. B. Gosudarstvennaja informacionnaja politika v uslovijah informacionno-psihologicheskoj vojny. – M.: Gorjachaja linija – Telekom, 2003. 3. Rastorguev S. P. Filosofija informacionnoj vojny. – M.: Vuzovskaja kniga, MPSI, 2003. 4. Laminina O. G. Informacionnye vojny: mif ili real'nost'? // Gumanitarnye vedomosti Tul'skogo gosudarstvennogo pedagogicheskogo universiteta im. L. N. Tolstogo (setevoe izdanie), 2018, №1 (25). 5. Druzhinin G. V. Nadezhnost' avtomatizirovannyh sistem. – M.: Jenergija, 1997. 6. Samojlenko S. I., Davydov D. A., Zolotarev V. V., Tret'jakova V. N. Vychislitel'nye seti (adaptivnost', pomehoustojchivost', nadezhnost'). – M.: Nauka, 1981. 7. Pivovarov A. N. Metody obespechenija dostovernosti informacii v ASU. – M.: Radio i svjaz', 1982. 8. Gerasimenko V. A. Osnovy upravlenija kachestvom informacii. – M.: Moskovskij istoriko-arhivnyj institut, 1989, dep. V VINITI 26.06 89, №5392B89. 9. Gerasimenko V. A., Maljuk A. A. Osnovy zashhity informacii: Uchebnik. – M.: MIFI, 1997. 10. Maljuk A. A. Teorija zashhity informacii. – M.: Gorjachaja linija–Telekom, 2012. 11. Problemy sozdanija i organizacii raboty centrov zashhity informacii /pod red. A. A.Maljuka // Bezopasnost' informacionnyh tehnologij, № 4,1997. 12. Maljuk A. A., Poljakov A. A. Regional'nye uchebno-nauchnye centry po problemam informacionnoj bezopasnosti – organizacionnaja osnova realizacii polozhenij Doktriny informacionnoj bezopasnosti Rossijskoj Federacii v sisteme vysshej shkoly. // Materialy VIII Vserossijskoj nauchno-prakticheskoj konferencii «Problemy informacionnoj bezopasnosti v sisteme vysshej shkoly», Moskva, 2001. | 105–114 |
Kessarinsky, L. N. TRUSTED ELECTRONICS ON THE FORUM “MICROELECTRONICS 2024” / L. N. Kessarinsky // Cybersecurity issues. – 2024. – № 5(63). – С. 115-119. – DOI: 10.21681/2311-3456-2024-5-115-119. | 115–119 |
Leave a Reply