№ 4 (62)

Contents of the 4th issue of the Cybersecurity Issues journal for 2024:

TitlePages
PROMISING DIRECTIONS FOR APPLYING ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN INFORMATION PROTECTION / R. V. Meshcheryakov, S. Yu. Melnikov, V. A. Peresypkin, A. A. Horev // Cybersecurity issues. – 2024. – № 4(62). – С. 2-12. – DOI: 10.21681/2311-3456-2024-4-2-12.
Abstract
Purpose of the work: identifying current areas of threats implementation to information security of various systems using artificial intelligence technologies and the main tasks of information protection, in which artificial intelligence technologies are used. Research method: system analysis of open sources and publication on the state of development of modern artificial intelligence technologies that create new threats to information security and privacy, and the possibility of using ar tificial intelligence technologies to improve the efficiency of the information security system.
Result: the results of the analysis of the main tasks of information protection in various areas of information security are presented, including the use of artificial intelligence in computer systems and networks: detection of computer attacks; detection of malware; detection of modification and substitution of data and messages; detection and prevention of leaks of confidential data in corporate networks; assessment of information security risks; increasing the reliability and cyber stability of computer systems and networks, in computing and technical systems. Scientific novelty: the methods of information protection are systematized from the point of view of the application of artificial intelligence technologies and systems in relation to the task of information protection. The threats implemented using artificial intelligence technologies are classified: «forgery» of biometric identification features in order to gain access to an object or system by forming identification features belonging to a trusted subject; formation of false speech messages imitating the speech of a specific person; creation of false photos and videos involving specific persons; «forgery» of texts imitating the style of certain authors and others.
Keywords: information security, information protection, artificial intelligence technologies, threats to information security, cybersecurity
References
1. Markov A. S. Kiberbezopasnost' i informacionnaja bezopasnost' kak bifurkacija nomenklatury nauchnyh special'nostej // Voprosy kiberbezopasnosti. 2022, № 1(47), s. 2–10.
2. Jazov Ju. K. O nauchnyh special'nostjah «kiberbezopasnost'» i «Metody i sistemy zashhity informacii. Informacionnaja bezopasnost'» // Voprosy kiberbezopasnosti. 2022, № 2(48), s. 5-6.
3. Tolstoj A. I. Sistematika ponjatij v oblasti informacionnoj bezopasnosti. Bezopasnost' informacionnyh tehnologij, 2023, t. 30, № 1, s. 130–148.
4. Mel'nikov S. Ju., Peresypkin V. A. Ob jevoljucii klassicheskih verojatnostnyh modelej jazyka v estestvenno-jazykovyh prilozhenijah. Vestnik sovremennyh cifrovyh tehnologij. 2023, № 16, s. 4–14.
5. Informacionnye izmerenija jazyka. Programmnaja sistema ocenki chitaemosti iskazhennyh tekstov / A. V. Germanovich, S. Ju. Mel'nikov, V. A. Peresypkin [i dr.] // Izvestija JuFU. Tehnicheskie nauki. 2019, № 7 (209), s. 6–17.
6. Ivanov A. I., Sulavko A. E. Proekt tret'ego nacional'nogo standarta Rossii po bystromu avtomaticheskomu obucheniju bol'shih setej korreljacionnyh nejronov na malyh obuchajushhih vyborkah biometricheskih dannyh // Voprosy kiberbezopasnosti. 2021, № 3(43), s. 84–93.
7. Mashkina I. V., Belova E. P. Razrabotka nejrosetevoj bazy dannyh biometricheskih obrazov na osnove neskol'kih parametrov spektrov glasnyh zvukov dlja sistemy autentifikacii i avtorizacii po golosu // Bezopasnost' informacionnyh tehnologij. 2019, t. 26, № 3, s. 90–102.
8. Kostjuchenko E. Ju., Meshherjakov R. V. Identifikacija po biometricheskim parametram pri ispol'zovanii apparata nejronnyh setej // Nejrokomp'jutery: razrabotka, primenenie. 2007, № 7, c. 39–50.
9. Matveev Ju. N. Tehnologii biometricheskoj identifikacii lichnosti po golosu i drugim modal'nostjam // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.Je. Baumana. 2012, № 3 (3), c. 5–15.
10. Ziems N., Wu S. Security Vulnerability Detection Using Deep Learning Natural Language Processing, IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops, 2021, pp. 1–6.
11. Morris J. X. et al. Textattack: A framework for adversarial attacks in natural language processing. 2020. DOI: https://doi.org/10.48550/arXiv.2005.05909.
12. Sidnjaev N. I., Sineva E. E. Postroenie sostavnyh kriteriev dlja optimizacii termov i obobshhennogo pokazatelja baz znanij intellektual'nyh sistem // Voprosy kiberbezopasnosti. 2023, № 2(54), s. 23–35.
13. Vasil'ev V. I., Vul'fin A.M., Kuchkarova N. V. Tematicheskoe modelirovanie i summarizacija tekstov v oblasti kiberbezopasnosti // Voprosy kiberbezopasnosti. 2023, № 2(54), s. 2–22.
14. Baek S., Kim K. Recent advances of neural attacks against block ciphers //Proc. of SCIS. 2020.
15. Amigo G., Dong L., Ii R. J. M. Forecasting pseudo random numbers using deep learning // 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). – IEEE, 2021. pp. 1–7.
16. Feng Y., Hao L. Testing randomness using artificial neural network //IEEE Access. 2020, Vol. 8, pp. 163685–163693.
17. Truong N. D. et al. Machine learning cryptanalysis of a quantum random number generator //IEEE Transactions on Information Forensics and Security. 2018, T. 14, №. 2, s. 403–414
18. Jazov Ju. K., Solov'ev S. V., Tarelkin M.A Logiko-lingvisticheskoe modelirovanie ugroz bezopasnosti informacii v informacionnyh sistemah // Voprosy kiberbezopasnosti. 2022, № 4(50), s. 13–25.
19. Vasil'ev V. I., Vul'fin A. M., Gerasimova I. B., Kartak V. M. Analiz riskov kiberbezopasnosti s pomoshh'ju nechetkih kognitivnyh kart // Voprosy kiberbezopasnosti. 2020, № 2(36), s. 11–21.
20. Vasil'ev V. I., Vul'fin A. M., Kuchkarova N. V. Ocenka aktual'nyh ugroz bezopasnosti informacii s pomoshh'ju tehnologii transformerov // Voprosy kiberbezopasnosti. 2022, № 2(48), s. 27–38.
21. Plugatarev A. V. i dr. Primenenie nejronnyh setej v sistemah obespechenija informacionnoj bezopasnosti // Bezopasnost' informacionnyh tehnologij, 2021, t. 28, № 3, s. 73–80.
22. Par'ev S. E., Pravikov D. I., Karantaev V. G. Osobennosti primenenija risk-orientirovannogo podhoda dlja obespechenija kiberbezopasnosti promyshlennyh ob#ektov // Bezopasnost' informacionnyh tehnologij. 2020, t. 27, № 4, s. 37–52.
23. Voevodin V. A. Model' ocenki funkcional'noj ustojchivosti jelementov informacionnoj infrastruktury dlja uslovij vozdejstvija mnozhestva komp'juternyh atak. Informatika i avtomatizacija, 2023, 22(3), s. 691–715
24. Selifanov V. V., Soldatov A. Ju., Soldatov E. Ju., Podlegaev A. P., Skorikov V. S. Metod ocenivanija riskov v sistemah prinjatija reshenij s uchetom zashhity informacii. Vestnik SibGUTI. 2023; 17(2). s. 84–92.
25. Ermakov S. A., Chursin A. G., Bolgov A. A. Nechetko-mnozhestvennaja metodika ocenki riskov avtomatizirovannoj sistemy «Umnyj dom» s dinamicheskoj topologiej Informacija i bezopasnost'. 2022, Tom: 25, № 4, s. 495–500.
26. Ermakov S. A., Bolgov A. A. Ocenka riska s ispol'zovaniem nejro-nechetkoj sistemy // Informacija i bezopasnost'. 2022, Tom: 25, № 4, s. 583–592.
27. Ermakov S. A., Gusareva Ju. A., Bolgov A. A., Kostrova V. N. Povyshenie zashhishhennosti avtomatizirovannoj sistemy «umnyj dom»: algoritm ocenki riskov narushenija konfidencial'nosti informacii // Informacija i bezopasnost'. 2022, Tom: 25, № 3, s. 377–388.
28. Kosmacheva I. M., Davidjuk N. V., Sibikina I. V., Kuchin I. Ju. Model' ocenki jeffektivnosti konfiguracii sistemy zashhity informacii na baze geneticheskih algoritmov // Modelirovanie, optimizacija i informacionnye tehnologii. 2020; 8(3). Dostupno po: https://moit.
vivt.ru/wp-content/uploads/2020/08/KosmachevaSoavtors_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.022.
29. Semenov V. V. Ocenivanie sostojanija informacionnoj bezopasnosti na osnove analiza vremennyh rjadov // Nauchno-tehnicheskij vestnik Povolzh'ja. 2021, № 10, s. 127–129.
30. Rychkova A. A., Bur'kova E. V., Konnov A. L. Analiz ugroz informacionnoj bezopasnosti na osnove metoda klasterizacii dannyh // Nauchno-tehnicheskij vestnik Povolzh'ja. 2023, № 6, s. 307–310.
31. Promyslov V. G., Akimov N. N., Abdulova E. A., Golubev P. A., Zharko E. F., Zhmajlov V. V., Lepehin I. Ju., Lobanok O. I., Ishakov A. Ju., Meshherjakov R. V., Poletykin A. G., Musihin A. M., Pronin V. V., Semenkov K. V., Cyrenov D. V. Ocenka riska i obespechenie kiberbezopasnosti atomnyh jelektrostancij. M.: IPU RAN, 2022. – 193 s.
32. Zharko E. F., Promyslov V. G., Ishakov A. Ju., Meshherjakov R. V., Semenkov K. V., Abdulova E. A., Bajbulatov A. A., Ishakov S. Ju. Kiberbezopasnost' bespilotnyh transportnyh sredstv. Arhitektura. Metody proektirovanija. M.: Radiotehnika, 2021. – 160 s. 
33. Vetrov I. A., Podtopel'nyj V. V. Osobennosti formirovanija vektora sovremennyh setevyh atak. Vestnik SibGUTI. 2022, № 3, s. 3–13. 
34. Meshherjakov R. V., Ishakov A. Ju., Evsjutin O. O. Sovremennye metody obespechenija celostnosti dannyh v protokolah upravlenija kiberfizicheskih sistem. Informatika i avtomatizacija. 2020, 19(5), s. 1089–1122.
35. Bukin A. V., Samonov A. V., Tihonov Je. I. Obnaruzhenie incidentov informacionnoj bezopasnosti na osnove tehnologii nejronnyh setej // Voprosy kiberbezopasnosti. 2022, № 5(51), s. 61–73.
36. Saenko I. B., Kotenko I. V., Al'-Barri M. H. Primenenie iskusstvennyh nejronnyh setej dlja vyjavlenija anomal'nogo povedenija pol'zovatelej centrov obrabotki dannyh // Voprosy kiberbezopasnosti. 2022, № 2(48), s. 87–97.
37. Merkal'do F., Martinelli F., Santone A. Proverka modeli dlja obnaruzhenija atak v real'nom vremeni v sistemah raspredelenija vody. Informatika i avtomatizacija. 2022, 21(2), s. 219–242.
38. Shtyrkina A. A. Metod rekonfiguracii topologii kiberfizicheskoj sistemy na osnove grafovoj iskusstvennoj nejronnoj seti // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, 2 (54), s. 173–182.
39. Sergadeeva A. I., Lavrova D. S. Primenenie modul'noj nejronnoj seti dlja obnaruzhenija DDOS-atak // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy 2023, № 1 (53), s. 111–118.
40. Aleksandrova E. B., Shtyrkina A. A. Metod adaptivnoj nejtralizacii strukturnyh narushenij kiberfizicheskih sistem na osnove grafovyh iskusstvennyh nejronnyh setej // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, № 4 (52), s. 89-100.
41. Car'kova E. G. K voprosu primenenija iskusstvennyh nejronnyh setej v sistemah obespechenija transportnoj bezopasnosti // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2022, Tom: 3, № 3 (3), s. 28–34.
42. Kubasov I. A., Sushkov V. I. Primenenie tehnologij iskusstvennogo intellekta v robototehnicheskih kompleksah special'nogo naznachenija v celjah obespechenija pravoohranitel'noj dejatel'nosti // Vestnik Voronezhskogo instituta FSIN Rossii. 2022, № 3, s. 69–76.
43. Alekseenko S. P., Dostov V. V. Nejroseti i informacionnaja bezopasnost' v pravoohranitel'nyh strukturah // Ohrana, bezopasnost', svjaz'. 2022, № 7-2, s. 11–16.
44. Ataki na iskusstvennyj intellekt. Kak zashhitit' mashinnoe obuchenie v sistemah bezopasnosti. Aleksandr Chistjakov, Aleksej Andreev «Laboratorija Kasperskogo», Departament issledovanija ugroz. https://media.kaspersky.com/ru/business-security/attacks-onartificial-intelligence-whitepaper.pdf
45. Kotenko I. V., Saenko I. B., Lauta O. S., Kribel' A. M. Metodika obnaruzhenija anomalij i kiberatak na osnove integracii metodovfraktal'nogo analiza i mashinnogo obuchenija. Informatika i avtomatizacija, 2022, 21(6), s. 1328–1358.
46. Zegzhda D. P., Kalinin M. O., Krundyshev V. M., Lavrova D. S., Moskvin D. A., Pavlenko, E. Ju. Primenenie algoritmov bioinformatiki dlja obnaruzhenija mutirujushhih kiberatak // Informatika i avtomatizacija, 2021, 20(4), s. 820–844.
47. Kalinin M. O., Tkacheva E. I. Decentralizovannyj podhod k obnaruzheniju vtorzhenij v dinamicheskih setjah interneta veshhej na baze mnogoagentnogo obuchenija s podkrepleniem i mezhagentnym vzaimodejstviem // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, № 2 (54), s. 202–211.
48. Kalinkin A. O. i dr. Obnaruzhenie programm-shifroval'shhikov na osnove dannyh mehanizma trassirovki sobytij i primenenija metoda mashinnogo obuchenija // Bezopasnost' informacionnyh tehnologij. 2022, t. 29, № 3, s. 82–93.
49. Sinjuk A. D., Ostroumov O. A., Tarasov A. A. (). Teoretiko-informacionnoe predstavlenie virtualizacii setevogo kanala perehvata // Informatika i avtomatizacija. 2023, 22(4), s. 721–744.
50. Makarova O. S., Porshnev S. V. Ocenivanie verojatnostej komp'juternyh atak na osnove funkcij // Bezopasnost' informacionnyh tehnologij. 2020, t. 27, № 2, s. 86-96.
51. Markov G. A., Krundyshev V. M., Kalinin M. O., Zegzhda D. P., Busygin A. G. Obnaruzhenie komp'juternyh atak v setjah promyshlennogo interneta veshhej na osnove vychislitel'noj modeli ierarhicheskoj vremennoj pamjati // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, № 2 (54), s. 163–172.
52. Meshherjakov R. V., Ishakov S. Ju. Issledovanie indikatorov komprometacii dlja sredstv zashhity informacionnyh i kiberfizicheskih sistem // Voprosy kiberbezopasnosti. 2022, № 5 (51), s. 82–99.
53. Pavlova K. S. Primenenie predmetnyh ontologij v oblasti obespechenija bezopasnosti informacii // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, Tom: 1, № 1 (1), s. 24–29.
54. Ruchaj A. N., Tokarev I. V., Gribachjov A. S. Metody mashinnogo obuchenija i iskusstvennogo intellekta v sfere informacionnoj bezopasnosti: analiz sovremennogo sostojanija i perspektivy razvitija // Vestnik UrFO. Bezopasnost' v informacionnoj sfere. 2022, 4 (46), s. 76–87.
55. Artamonov V. A., Artamonova E. V., Safonov A. E. Bezopasnost' iskusstvennogo intellekta // Zashhita informacii. Insajd. 2022, № 6 (108), s. 8–17.
56. Artamonov V. A., Artamonova E. V. Iskusstvennyj intellekt v sistemah bezopasnosti // Zashhita informacii. Insajd. 2022, № 5 (107), s. 40–49.
57. Lebedev I. S., Suhoparov M. E. Ispol'zovanie informacii o vlijajushhih faktorah dlja razbienija vyborok dannyh v metodah mashinnogo obuchenija dlja ocenki sostojanija IB // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023, №2 (54), s. 125–134.
58. Sarker I., Kayes A., Badsha S., Alqahtani H., Watters P., Ng A. Cybersecurity data science: an overview from machine learning perspective. Journal of Big Data, 2020.
59. Musser M., Garriott A. Machine Learning and Cybersecurity. Center for Security and Emerging Technology, 2021.
60. Chekmarev M. A., Kljuev S. G., Bobrov N. D. Analiz metodov obespechenija bezopasnosti sistem mashinnogo obuchenija. Modelirovanie, optimizacija i informacionnye tehnologii. 2022; 10(1). DOI: 10.26102/2310-6018/2022.36.1.006
61. Evsutin O., Melman A., Meshcheryakov R. Digital steganography and watermarking for digital images: a review of current research directions IEEE Access. 2020, Vol. 8, pp. 166589–166611.
62. Horev A. A. Nekotorye podhody k ocenke vozmozhnostej perehvata pobochnyh jelektromagnitnyh izluchenij sredstv vychislitel'noj tehniki, ispol'zujushhih cifrovye interfejsy // Vestnik UrFO. Bezopasnost' v informacionnoj sfere. 2022, № 3 (45), s. 5–16.
63. Sychev M. P., Mazin A. V., Zelencova E. V., Krylov V. O., Sidel'nikov A. P. Funkcional'nye aspekty modelirovanija processa perehvata informativnyh signalov po parametricheskim kanalam // Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2022, № 2, s. 22–33.
64. Sychev M. P., Nikulin S. S., Man'kov E. A. Perehvat informacii po parametricheskim kanalam: strukturizacija funkcional'nogo predstavlenija jetapa obrabotki perehvachennyh informativnyh signalov s cel'ju formirovanija celostnogo ob#ema informacii ob ob#ekte razvedki // Vestnik Voronezhskogo instituta MVD Rossii. 2023, № 2, s. 87–93.
65. Meshherjakov R. V., Los' V. P., Shherbakov V. A., Rekunkov I. S. Matematicheskoe modelirovanie zashhitnyh jekranov dlja predotvrashhenija utechki informacii po tehnicheskim kanalam v radiodiapazone // Voprosy zashhity informacii. 2023, № 1 (140), s. 47–52.
66. Kopytov P. D., Koroljov I. D., Kulish O. A., Stepancov S. V. Postroenie formal'nyh modelej rasprostranenija pobochnyh jelektromagnitnyh
izluchenij po tehnicheskim kanalam utechki informacii dlja ob#ektov vychislitel'noj tehniki ot tehnicheskih sredstv razvedki // Vestnik UrFO. Bezopasnost' v informacionnoj sfere. 2023, № 1 (47), s. 102–111.
67. Zaharov A. V. Trebovanija k sovremennomu programmno-apparatnomu kompleksu radiokontrolja i cifrovogo analiza signalov // Zashhita informacii. Insajd. 2022, № 1 (103), s. 24–33.
68. Alekseenko S. P., Antilikatorov A. B., Astahov N. V. Metodika vybora modeli ohrany ob#ekta radiotehnicheskimi sredstvami obnaruzhenija // Vestnik Voronezhskogo instituta MVD Rossii. 2023, № 1, s. 57–62.
69. Aver'janov A. A., Shadriv V. V., Berdjugin V. Ju. Matematicheskaja model' ocenki ugroz fizicheskogo proniknovenija zloumyshlennika na zashhishhennyj ob#ekt // Vestnik UrFO. Bezopasnost' v informacionnoj sfere. 2022, № 4 (46), s. 52–57.
70. Jazov Ju. K., Solov'ev S. V., Tarelkin M. A. Primenenie sostavnyh setej Petri-Markova pri matematicheskom modelirovanii ugroz bezopasnosti informacii // Ohrana, bezopasnost', svjaz'. 2023, № 8–2, s. 185–196.
71. Avsent'ev A. O. Problema postroenija mnogoagentnyh sistem zashhity informacii na ob#ektah informatizacii ot utechki po tehnicheskim kanalam // Vestnik Voronezhskogo instituta MVD Rossii. 2022, № 3, s. 68–77.
72. Kalach A. V., Zdol'nik V. V. Matematicheskaja model' pokazatelja jeffektivnosti mer, napravlennyh na predotvrashhenie utechki informacii po kanalam pobochnyh jelektromagnitnyh izluchenij i navodok. Vestnik Voronezhskogo instituta FSIN Rossii. 2022, № 1, s. 54-61.
73. Minaev V. A., Korobec B. N., Sychev M. P., Sevrjukov D. V., Dudoladov V. A. Kljuchevye funkcional'nye pokazateli radiotehnicheskih sredstv obnaruzhenija proniknovenija na ohranjaemye ob#ekty // Voprosy oboronnoj tehniki. Serija 16: Tehnicheskie sredstva protivodejstvija terrorizmu. 2019, № 5–6 (131-132), s. 3–7.
74. Alekseev D. S., Kozlov R. S. Metod prakticheskoj ocenki jeffektivnosti sredstv aktivnoj zashhity ot utechki konfidencial'noj informacii po tehnicheskomu kanalu // Nauchno-tehnicheskij vestnik Povolzh'ja. 2023, № 4, s. 201–204.
75. Bur'kova E. V., Rychkova A. A. Metodika prinjatija reshenij pri vybore sredstv fizicheskoj zashhity na osnove metoda analiza ierarhii // Nauchno-tehnicheskij vestnik Povolzh'ja. 2021, № 5, s. 119–123.
76. Avsent'ev O. S., Val'de A. G. Verbal'naja model' zashhity informacii ot utechki po tehnicheskim kanalam v processe formirovanija sistemy zashhity informacii na ob#ektah informatizacii // Vestnik Voronezhskogo instituta MVD Rossii. 2022, № 2, s. 18–27.
77. Pantjuhov D. V., Loginov I. V. Varianty postroenija intellektual'nyh sistem fizicheskoj bezopasnosti s uchetom razvitija tehnologij intellektualizacii // Ohrana, bezopasnost', svjaz'. 2023, № 8-1, s. 155–159.
78. Kostogryzov A. I. Podhod k verojatnostnomu prognozirovaniju zashhishhennosti reputacii politicheskih dejatelej ot «fejkovyh» ugroz v publichnom informacionnom prostranstve // Voprosy kiberbezopasnosti. 2023, № 3 (55), s. 114–133
79. Avetisjan A. I. Ispol'zovanie doverennogo PO pri sozdanii sistem iskusstvennogo intellekta kak osnova bezopasnosti (doklad) // XXVII nauchno-prakticheskaja konferencija «Kompleksnaja zashhita informacii», 24–26 maja 2022 goda, Moskovskaja oblast'.
80. Garbuk S. V. Zadachi normativno-tehnicheskogo regulirovanija intellektual'nyh sistem informacionnoj bezopasnosti // Voprosy kiberbezopasnosti. 2021, № 3 (43), s. 68–83.
2–12
Izrailov, K. E. PREDICTING THE SIZE OF THE SOURCE CODE OF A BINARY PROGRAM IN THE INTERESTS OF ITS INTELLECTUAL REVERSE ENGINEERING / K. E. Izrailov // Cybersecurity issues. – 2024. – № 4(62). – С. 13-25. – DOI: 10.21681/2311-3456-2024-4-13-25.
Abstract
The goal of the investigation: increasing the efficiency of searching for vulnerabilities in machine code of programs by reverse engineering it based on genetic algorithms, for which the particular problem of predicting the size of source code in the C programming language from its compiled version is solved. Research methods: works survey, system analysis, synthesis, computer modeling, experiment.
Result: a method has been created for obtaining the dependence of the size of the source code (expressed in programming language tokens) on the corresponding machine code, which allows solving the particular problem of determining the length of an individual's chromosome within the framework of reverse engineering based on genetic algorithms; a software prototype was developed that implements the specified method, with the help of which an experiment was carried out (using the ExeBench dataset containing about 200 thousand functions in the C programming language), which made it possible to derive an analytical relationship between the sizes of the source and machine codes. The scientific novelty consists both in the general development of a new intellectual direction of reverse engineering of machine code, and in the author's solution to the particular problem of predicting the size of a program's source code from its binary representation.
Keywords: reengineering, reverse engineering, genetic algorithm, vulnerability, machine code, method, prototype,
experiment, analytical dependence.
References
1. Abdullin T.I., Baev V.D., Bujnevich M.V., Burzunov D.D., Vasil'eva I.N., Galiullina Je.F. i dr. Cifrovye tehnologii i problemy informacionnoj bezopasnosti: monografija. SPb: SPGJeU 2021. 163 s.
2. Katz D. S., Ruchti J., Shulte E. Using recurrent neural networks for decompilation // The proceedings of 25th International Conferenceon Software Analysis, Evolution and Reengineering (Campobasso, Italy, 20–23 March 2018). 2018. PP. 346–356. DOI: 10.1109/SANER.2018.8330222.
3. Fokin A., Troshina K., Chernov A. Reconstruction of class hierarchies for decompilation of C++ programs // The proceedings of 14th European Conference on Software Maintenance and Reengineering (Madrid, Spain, 15–18 March 2010). 2011. PP. 240–243. DOI: 10.1109/CSMR.2010.43.
4. Revnivyh A. V., Velizhanin A. S. Metodika avtomatizirovannogo formirovanija struktury dizassemblirovannogo listinga // Kibernetika i programmirovanie. 2019. № 2. S. 1–16. 10.25136/2306-4196.2019.2.28272
5. Poudyal S., Dasgupta D. AI-powered ransomware detection framework // The proceedings of Symposium Series on Computational Intelligence (Canberra, ACT, Australia, 01-04 December 2020). 2021. PP. 1154–1161. DOI: 10.1109/SIKI47803.2020.9308387.
6. Izrailov K. E. Metodologija revers-inzhiniringa mashinnogo koda. Chast' 3. Dinamicheskoe issledovanie i dokumentirovanie. Trudy uchebnyh zavedenij svjazi. 2024. T. 10. № 1. S. 86–96. DOI: 10.31854/1813-324X-2024-10-1-86-96.
7. Izrailov K. E. Metodologija revers-inzhiniringa mashinnogo koda. Chast' 2. Staticheskoe issledovanie. Trudy uchebnyh zavedenij svjazi // 2023. T. 9. № 6. S. 68–82. DOI: 10.31854/1813-324X-2023-9-6-68-82.
8. Izrailov K. E. Metodologija revers-inzhiniringa mashinnogo koda. Chast' 1. Podgotovka ob#ekta issledovanija // Trudy uchebnyh zavedenij svjazi. 2023. T. 9. № 5. S. 79–90. DOI: 10.31854/1813-324X-2023-9-5-79-90.
9. Kotenko I., Izrailov K., Buinevich M. The Method and Software Tool for Identification of the Machine Code Architecture in Cyberphysical Devices // Journal of Sensor and Actuator Networks. 2023. Vol. 12. Iss. 1. PP. 11. DOI: 10.3390/jsan12010011
10. Chastikova V. A., Chich A. I. Geneticheskie algoritmy i geneticheskoe programmirovanie: osobennosti realizacii // Perspektivy nauki. 2019. № 1 (112). S. 13–16.
11. Xia B., Ge Y., Yang R., Yin J., Pang J., Tang C. BContext2Name: naming functions in stripped binaries with multi-label learning and neural networks // The proceedings of 10th International Conference on Cyber Security and Cloud Computing (CSCloud) / 9th International Conference on Edge Computing and Scalable Cloud (Xiangtan, Hunan, China, 01–03 July 2023). 2023. PP. 167–172. DOI: 10.1109/CSCloud-EdgeCom58631.2023.00037.
12. A. Jaffe, J. Lacomis, Schwartz E. J., Goues C. L., Vasilescu B. Meaningful variable names for decompiled code: a machine translation approach // The proceedings of 26th International Conference on Program Comprehension (Gothenburg, Sweden, 27 May 2018 – 03 June 2018). 2020. PP. 20–2010.
13. Shudrak M., Zolotarev V. The new technique of decompilation and its application in information security // The proceedings of Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation (Malta, Malta, 14-16 November 2012). 2013. PP. 115–120. DOI: 10.1109/EMS.2012.20.
14. Alrabaee S., Choo K. -K. R., Qbea'h M., Khasawneh M. BinDeep: binary to source code matching using deep learning // The proceedings of 20th International Conference on Trust, Security and Privacy in Computing and Communications (Shenyang, China, 20–22 October 2021). 2022. PP. 1100–1107. DOI: 10.1109/TrustCom53373.2021.00150.
15. Katz D. S., Ruchti J., Schulte E. Using recurrent neural networks for decompilation // The proceedings of 25th International Conference
on Software Analysis, Evolution and Reengineering (Campobasso, Italy, 20-23 March 2018). 2018. PP. 346-356. DOI: 10.1109/SANER.2018.8330222.
16. Ahmed T., Devanbu P., Sawant A. A. Learning to find usages of library functions in optimized binaries // IEEE Transactions on Software 
Engineering. 2021. Vol. 48. No. 10. PP. 3862–3876. DOI: 10.1109/TSE.2021.3106572.
17. Badri M., Badri L., Flageol W., Toure F. Source code size prediction using use case metrics: an empirical comparison with use case
points // Innovations in Systems and Software Engineering. 2016. Vol. 13. PP. 143–159. DOI: 10.1007/s11334-016-0285-7.
18. Tjutjunnikov N. N. Ocenka razmera programmnogo sredstva s uchetom adaptirovannogo i povtorno ispol'zuemogo ishodnogo koda v modeli COCOMO II // Fundamental'nye i prikladnye issledovanija: problemy i rezul'taty. 2014. № 11. S. 136–141.
19. Chastikova V. A., Chich A. I. Geneticheskie algoritmy i geneticheskoe programmirovanie: osobennosti realizacii // Perspektivy nauki. 2019. № 1 (112). S. 13–16.
20. Arhipov A. N., Panov A. V. Primenenie koda Greja v geneticheskom algoritme pri kodirovanii priznakov, predstavljaemyh celymi chislami // IT-Standart. 2020. № 4 (25). S. 25–30.
21. Vavilina E. A., Varlamova S. A., Chesnov V. V. Issledovanie vlijanija izmenenija parametrov geneticheskogo algoritma na skorost' reshenija zadachi o rjukzake // Informacionnye tehnologii v upravlenii i jekonomike. 2021. № 1 (22). S. 15–22.
22. Fajzullin R. F. Potencial geneticheskih algoritmov v zadachah pokrytija territorii gruppoj BLA // Vestnik RGGU. Serija: Informatika. Informacionnaja bezopasnost'. Matematika. 2024. № 1. S. 36–50. DOI: 10.28995/2686-679X-2024-1-36-50.
23. Kotenko, I., Izrailov, K., Buinevich, M., Saenko I., Shorey R. Modeling the Development of Energy Network Software, Taking into Account the Detection and Elimination of Vulnerabilities // Energies. 2023. Vol. 16. Iss. 13. PP. 5111. DOI: 10.3390/en16135111.
24. Kaleybar H. J., Davoodi M., Brenna M., Zaninelli D. Applications of genetic algorithm and its variants in rail vehicle systems: a bibliometric analysis and comprehensive review // Access. 2023. Vol. 11. PP. 68972–68993. DOI: 10.1109/ACCESS.2023.3292790.
25. Yu C. -Y., Huang C. -Y., Utilizing multi-objective evolutionary algorithms to optimize open source software release management // IEEE Access. 2023. Vol. 11. PP. 112248–112262. DOI: 10.1109/ACCESS.2023.3323615.
26. Jiacheng L., Lei L. A hybrid genetic algorithm based on information entropy and game theory // IEEE Access. 2020. Vol. 8. PP. 36602–36611. DOI: 10.1109/ACCESS.2020.2971060.
27. Bin Z., Zhichun G., Qiangqiang H. A genetic clustering method based on variable length string // The proceedings of 2nd International Conference on Safety Produce Informatization (Chongqing, China, 8-30 November 2019). 2020. PP. 460–464. DOI: 10.1109/IICSPI48186.2019.9095977.
28. Armengol-Estapé J., Woodruff J, Brauckmann A., Magalhães J. W. de S., O'Boyle M. F. P. ExeBench: an ML-scale dataset of executable C functions // The proceedings of 6th ACM SIGPLAN International Symposium on Machine Programming New York, NY, USA, 13 June 2022). 2022. PP. 50–59. DOI:10.1145/3520312.353486
29. Pashinska-Gadzheva M. Comparison of compiler efficiency with SSE and AVX instructions // The proceedings of International Conference Automatics and Informatics (Varna, Bulgaria, 06–08 October 2022). 2022. PP. 56–59. DOI: 10.1109/ICAI55857.2022.9960080.
30. Si G., Zhang Y., Li M., Jing S. Malicious code utilization chain detection scheme based on Abstract Syntax Tree // The proceedings of 6th Advanced Information Technology, Electronic and Automation Control Conference (Beijing, China, 03-05 October 2022). 2022. PP. 1108–1111. DOI: 10.1109/IAEAC54830.2022.9929773.
31. Kurta P. A., Izrailov K. E. Obzor sposobov postroenija dinamicheskih adaptivnyh interfejsov i ih intellektualizacija // Nauchnoanaliticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MChS Rossii». 2023. № 4. S. 119–132. DOI: 10.61260/2218-130X-2024-2023-4-119-132.
32. Bujnevich M. V., Izrailov K. E. Antropomorficheskij podhod k opisaniju vzaimodejstvija ujazvimostej v programmnom kode. Chast' 1. Tipy vzaimodejstvij // Zashhita informacii. Insajd. 2019. № 5 (89). S. 78–85.
33. Bujnevich M. V., Izrailov K. E. Antropomorficheskij podhod k opisaniju vzaimodejstvija ujazvimostej v programmnom kode. Chast' 2. Metrika ujazvimostej // Zashhita informacii. Insajd. 2019. № 6 (90). S. 61–65.
13–25
APPLICATION OF THE LOGICAL-PROBABILISTIC METHOD IN INFORMATION SECURITY. Part 5 / A. O. Kalashnikov, E. V. Anikina, K. A. Bugajskij, D. S. Birin, B. O. Deryabin, S. O. Tsependa, K. V. Tabakov // Cybersecurity issues. – 2024. – № 4(62). – С. 26-37. – DOI: 10.21681/2311-3456-2024-4-26-37.
Abstract
The purpose of the article: adaptation of the logical-probabilistic method of evaluating complex systems to the tasks of building information security systems in a multiagent system. Research method: during the research, the main provisions of the methodology of structural analysis, system analysis, decision theory, methods of evaluating events under the condition of incomplete information were used. The result: this article continues the consideration of information security issues based on the analysis of the relationship between the subjects and the object of protection. It is shown that the state of the agent's relations can be obtained on the basis of appropriate assessments of states at the level of information resources and information flows from the agent. It is shown that the assessment of states can be carried out at the qualitative and quantitative levels on the basis of sets of events and messages formed in the agent as a result of external influences. The mechanisms of qualitative and quantitative assessment of the states of relations are proposed. The obtained results provide a reasonable acquisition and application of probabilistic characteristics for the subsequent application of the logical-probabilistic method in the analysis of relations between subjects and the object of protection. Scientific novelty consideration of information security issues using the apparatus of mathematical and logical relations. A hypothesis about the structure of a multiagent system from the point of view of information security is formulated. Methods of qualitative determination of the states of relations at the agent level have been developed. Methods for obtaining probabilistic estimates of the states of relations at the level have been developed. The possibility of obtaining integral probabilistic estimates for various subsystems of modern information systems by aggregating the corresponding estimates of agents is shown.
Keywords: information security model, assessment of complex systems, logical-probabilistic method, theory of relations, system analysis.
References
1. Rjabinin I. A. Reshenie odnoj zadachi ocenki nadezhnosti strukturno-slozhnoj sistemy raznymi logiko-verojatnostnymi metodami / I. A. Rjabinin, A. V. Strukov // Modelirovanie i analiz bezopasnosti i riska v slozhnyh sistemah, Sankt-Peterburg, 19–21 ijunja 2019 goda. – Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet ajerokosmicheskogo priborostroenija, 2019. – S. 159–172.
2. Demin A. V. Glubokoe obuchenie adaptivnyh sistem upravlenija na osnove logiko-verojatnostnogo podhoda / A.V. Demin // Izvestija Irkutskogo gosudarstvennogo universiteta. Serija: Matematika. – 2021. – T. 38. – S. 65–83.
3. Viktorova V. S. Vychislenie pokazatelej nadezhnosti v nemonotonnyh logiko-verojatnostnyh modeljah mnogourovnevyh sistem / V. S. Viktorova, A. S. Stepanjanc // Avtomatika i telemehanika. – 2021. – № 5. – S. 106–123.
4. Leont'ev A. S. Matematicheskie modeli ocenki pokazatelej nadezhnosti dlja issledovanija verojatnostno-vremennyh harakteristik mnogomashinnyh kompleksov s uchetom otkazov / A. S. Leont'ev, M. S. Timoshkin // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. – 2023. – № 1(127). S. 1–13.
5. Puchkova F. Ju. Logiko-verojatnostnyj metod i ego prakticheskoe ispol'zovanie / F. Ju. Puchkova // Informacionnye tehnologii v processe podgotovki sovremennogo specialista: Mezhvuzovskij sbornik nauchnyh trudov / Ministerstvo prosveshhenija Rossijskoj Federacii; Federal'noe gosudarstvennoe bjudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovanija «Lipeckij gosudarstvennyj
pedagogicheskij universitet imeni P.P. Semenova-Tjan-Shanskogo». Tom Vypusk 25. – Lipeck: Lipeckij gosudarstvennyj pedagogicheskij universitet imeni P.P. Semenova-Tjan-Shanskogo, 2021. – S. 187–193.
6. Rossihina L. V. O primenenii logiko-verojatnostnogo metoda I.A. Rjabinina dlja analiza riskov informacionnoj bezopasnosti / L. V. Rossihina, O. O. Gubenko, M. A. Chernositova // Aktual'nye problemy dejatel'nosti podrazdelenij UIS: Sbornik materialov Vserossijskoj nauchno-prakticheskoj konferencii, Voronezh, 20 oktjabrja 2022 goda. – Voronezh: Izdatel'sko-poligraficheskij centr «Nauchnaja kniga», 2022. – S. 108–109.
7. Karpov A. V. Model' kanala utechki informacii na ob#ekte informatizacii / A. V. Karpov // Aktual'nye problemy infotelekommunikacij v nauke i obrazovanii (APINO 2018): VII Mezhdunarodnaja nauchno-tehnicheskaja i nauchno-metodicheskaja konferencija. Sbornik nauchnyh statej. V 4-h tomah, Sankt-Peterburg, 28 fevralja – 01 marta 2018 goda / Pod redakciej S. V. Bachevskogo. Tom 2. – SanktPeterburg: Sankt-Peterburgskij gosudarstvennyj universitet telekommunikacij im. prof. M. A. Bonch-Bruevicha, 2018. – S. 378–382.
8. Metodika kiberneticheskoj ustojchivosti v uslovijah vozdejstvija targetirovannyh kiberneticheskih atak / D. A. Ivanov, M. A. Kocynjak, O. S. Lauta, I. R. Murtazin // Aktual'nye problemy infotelekommunikacij v nauke i obrazovanii (APINO 2018): VII Mezhdunarodnaja nauchno-tehnicheskaja i nauchno-metodicheskaja konferencija. Sbornik nauchnyh statej. V 4-h tomah, Sankt-Peterburg, 28 fevralja – 01 marta 2018 goda / Pod redakciej S.V. Bachevskogo. Tom 2. – Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet telekommunikacij im. prof. M.A. Bonch-Bruevicha, 2018. – S. 343–346.
9. Eliseev N. I. Ocenka urovnja zashhishhennosti avtomatizirovannyh informacionnyh sistem juridicheski znachimogo jelektronnogo dokumentooborota na osnove logiko-verojatnostnogo metoda / N. I. Eliseev, D. I. Tali, A. A. Oblanenko // Voprosy kiberbezopasnosti. – 2019. – № 6(34). – S. 7–16.
10. Kocynjak M. A. Matematicheskaja model' targetirovannoj komp'juternoj ataki / M. A. Kocynjak, O. S. Lauta, D. A. Ivanov // Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. – 2019. – T. 11, № 2. – S. 73–81.
11. Beljakova T. V. Funkcional'naja model' processa vozdejstvija celevoj komp'juternoj ataki / T. V. Beljakova, N. V. Sidorov, M. A. Gudkov // Radiolokacija, navigacija, svjaz': Sbornik trudov XXV Mezhdunarodnoj nauchno-tehnicheskoj konferencii, posvjashhennoj 160-letiju so dnja rozhdenija A. S. Popova. V 6 tomah, Voronezh, 16–18 aprelja 2019 goda. Tom 2. – Voronezh: Voronezhskij gosudarstvennyj universitet, 2019. – S. 108–111.
12. Kalashnikov A. O. Primenenie logiko-verojatnostnogo metoda v informacionnoj bezopasnosti (Chast' 1) / A. O. Kalashnikov, K. A. Bugajskij, D. S. Birin, B. O. Derjabin, S. O. Cependa, K. V. Tabakov // Voprosy kiberbezopasnosti. – 2023. – № 4 (56). – S. 23–32.
13. Kalashnikov A. O. Primenenie logiko-verojatnostnogo metoda v informacionnoj bezopasnosti (Chast' 2) / A. O. Kalashnikov, K. A. Bugajskij, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Hramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2023. – № 5 (57). – S. 113–127.
14. Kalashnikov A. O. Primenenie logiko-verojatnostnogo metoda v informacionnoj bezopasnosti (Chast' 3) / A. O. Kalashnikov, K. A. Bugajskij, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Hramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2023. – № 6 (58). – S. 20–34.
15. Kalashnikov A. O. Primenenie logiko-verojatnostnogo metoda v informacionnoj bezopasnosti (Chast' 4) / A. O. Kalashnikov, E. V Anikina, K. A. Bugajskij, D. S. Birin, B. O. Derjabin, S. O. Cependa, K. V. Tabakov // Voprosy kiberbezopasnosti. – 2024. – № 3 (61). – S. 23–32.
16. Bugajskij K. A. Rasshirennaja model' otkrytyh sistem (Chast' 1) / K. A. Bugajskij, D. S. Birin, B. O. Derjabin, S. O. Cependa // Informacija i bezopasnost'. – 2022. – T. 25, № 2. – S. 169–178.
17. Bugajskij K. A. Rasshirennaja model' otkrytyh sistem (Chast' 2) / K. A. Bugajskij, I. S. Pereskokov, A. O. Petrov, A. O. Petrov // Informacija i bezopasnost'. – 2022. – T. 25, № 3. – S. 321–330.
18. Bugajskij K. A. Rasshirennaja model' otkrytyh sistem (Chast' 3) / K. A. Bugajskij, B. O. Derjabin, K. V. Tabakov, E. S. Hramchenkova, S. O. Cependa // Informacija i bezopasnost'. – 2022. – T. 25, № 4. – S. 501–512.
19. Kalashnikov A. O. Model' kolichestvennogo ocenivanija agenta slozhnoj seti v uslovijah nepolnoj informirovannosti / A. O. Kalashnikov, K. A. Bugajskij // Voprosy kiberbezopasnosti. – 2021. – № 6 (46). – S. 26–35.
20. Kalashnikov A. O. Metodika ocenki vozmozhnosti realizacii informacionnyh ugroz / A. O. Kalashnikov, K. A. Bugajskij // Informacija i bezopasnost'. – 2020. T. 23, № 2. S. 163–178.
21. Bugajskij K. A. Opredelenie uspeshnosti dejstvij narushitelja v odnorodnoj srede / K. A. Bugajskij // Problemy upravlenija bezopasnost'ju slozhnyh sistem: Materialy XXIX mezhdunarodnoj nauchno-prakticheskoj konferencii, Moskva, 15 dekabrja 2021 goda. – Moskva: Institut problem upravlenija im. V. A. Trapeznikova RAN, 2021. – S. 227–232.
22. Kalashnikov A. O. Model' ocenki bezopasnosti slozhnoj seti. (chast' 1) / A. O. Kalashnikov, K. A. Bugajskij // Voprosy kiberbezopasnosti. – 2022. – № 4 (50). – S. 26–38.
23. Kalashnikov A. O. Model' ocenki bezopasnosti slozhnoj seti (Chast' 2) / A. O. Kalashnikov, K. A. Bugajskij, A. A. Molotov // Voprosy kiberbezopasnosti. – 2022. – № 5 (51). – S. 47–60.
24. Burkov V. N. Identifikacija mehanizmov kompleksnogo ocenivanija na osnove unitarnogo koda / V. N. Burkov, V. A. Sergeev, N. A. Korgin // Upravlenie bol'shimi sistemami: sbornik trudov. – 2020. – № 87. – S. 67–85.
25. Burkov V. N. Problemy sinteza mehanizma kompleksnogo ocenivanija na osnove obuchajushhego nabora dannyh /
V. N. Burkov, N. A. Korgin, O. L. Marin // XIII Vserossijskoe soveshhanie po problemam upravlenija VSPU-2019: Sbornik trudov XIII Vserossijskogo soveshhanija po problemam upravlenija VSPU-2019, Moskva, 17–20 ijunja 2019 goda / Institut problem upravlenija im. V. A. Trapeznikova RAN. – Moskva: Institut problem upravlenija im. V.A. Trapeznikova RAN, 2019. – S. 2280–2284.
26. Burkov V. N. Metod sinteza sistemy kompleksnogo ocenivanija / V. N. Burkov, I. V. Burkova, A. V. Shhepkin // Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Serija: Komp'juternye tehnologii, upravlenie, radiojelektronika. – 2020. – T. 20, № 4. – S. 63–73.
27. Sergeev V. A. Sintez mehanizmov kompleksnogo ocenivanija na osnove razdelitel'noj dekompozicii / V. A. Sergeev // Problemy upravlenija. – 2022. – № 6. – S. 3–13.
28. Kazakova E. A. Avtomatizirovannoe postroenie matrichnyh procedur kompleksnogo ocenivanija na osnove optimizacionnogo podhoda / E. A. Kazakova, P. N. Kurochka, A. I. Polovinkina // Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo universiteta. – 2010. – T. 6, № 10. – S. 140–146.
26–37
Devitsyna, S. N. METHOD FOR ENSURING COMPATIBILITY OF TECHNICAL COMPONENTS WHEN CREATING A SYSTEM FOR MONITORING INFORMATION SECURITY INCIDENTS
/ S. N. Devitsyna, P. V. Pilkevich // Cybersecurity issues. – 2024. – № 4(62). – С. 38-44. – DOI: 10.21681/2311-3456-2024-4-38-44.
Abstract
The purpose of the research is to create a prototype of a pre-commit information security incident monitoring system at software developers' workstations to implement DevSecOps in the process of developing technical products. Research methods: analysis of ways to modernize the source code of the monitoring system components, synthesis of the information security incident monitoring system, simulation modeling of information security incidents processed by the monitoring system, experiment. Results of the study. The paper proposes a solution to ensure the security of the developed software within the framework of the DevSecOps methodology. The article describes the process of editing the source code to ensure the compatibility of the gitleaks and Filebeat software modules when creating an information security incident monitoring system. It is shown that the processes of creating a software product should be carried out in parallel with the procedures for ensuring the security of the source code. As a result, a prototype of a multicomponent pre-commit incident monitoring system that detects and provides statistics on events related to the retention of critical information within arbitrary source code. Approbation of the work and assessment of the effectiveness of the monitoring system was implemented on the basis of simulation modeling and experiment. The operability and efficiency of the monitoring system were proved, as part of the experiment, load testing was carried out in the format of sending a large stream of incidents to the system in order to check the correctness of processing each of them, and exclude the loss of incidents due to a heavy load on the network and technical modules. As a result of the research and modeling, an effective prototype of an information security incident monitoring system is proposed, which can be used by domestic development companies to ensure and improve the efficiency of cybersecurity of informatization objects, taking into account the requirements of import substitution. Novelty: for the first time, it is proposed to use a monitoring system to investigate DevSecOps incidents with an automated search for vulnerabilities in the analyzed source code.
Keywords: information security, cybersecurity, SIEM systems, monitoring systems, information security incidents, Opensearch, DevSecOps, software security, import substitution.
References
1. Stepanov Ja. V. i dr. Sozdanie sobstvennogo SOC pri pomoshhi klassifikacii MITRE i Opensource steka ELK / Ja. V. Stepanov, T. N. Kopysheva, T. V. Mitrofanova, T. N. Smirnova // Informacionnye tehnologii v nauke, upravlenii i obrazovanii: mezhdisciplinarnyj podhod i tendencii razvitija: Sb. mater. Vserossijskoj nauchno-prakticheskoj konferencii (Dimitrovgrad, 12 nojabrja 2021 goda). — Dimitrovgrad: Izd-vo Dimitrovgradskogo inzhenerno-tehnologicheskogo instituta — filiala federal'nogo gosudarstvennogo avtonomnogo obrazovatel'nogo uchrezhdenija vysshego obrazovanija "Nacional'nyj issledovatel'skij universitet «MIFI», 2021. S. 229—236.
2. Petrov V. V., Brjuhanov, K. V., Avksent'eva, E. Ju. Setevoj monitoring: analiz setevogo trafika s pomoshh'ju ELK // Sovremennaja nauka: aktual'nye problemy teorii i praktiki. Serija: Estestvennye i tehnicheskie nauki. 2020. №. 5. S. 102–105.
3. Erovleva R. V., Erovlev, P. A. Monitoring s pomoshh'ju Micrometer, Prometheus i Grafana // Postulat. 2021. № 7.
4. Dhakal K. et al. Log Analysis and Anomaly Detection in Log Files with Natural Language Processing Techniques. — Appl. Sci. 2022, 12.
5. Shelepina O. D., Hadorich D. D. Sravnitel'nyj analiz instrumentov upravlenija zhurnalami na primere ELK i Graylog // Vyzovy globalizacii i razvitie cifrovogo obshhestva v uslovijah novoj real'nosti: Sb. mater. IV Mezhdunarodnoj nauchno-prakticheskoj konferencii. Moskva, 2022. – Izd-vo: Alef. 2022. S. 137–141.
6. Mashanov V. V. Kak obezopasit' git-repozitorii: obzor instrumentov dlja obnaruzhenija utechek i ujazvimostej // Aktual'nye voprosy sovremennoj nauki: sbornik statej. — Izd-vo: Nauka i Prosveshhenie (IP Guljaev G.Ju.). 2023. S. 53–56.
7. Vahramov S. V. i dr. Ispol'zovanie prettier i git hooks dlja avtomaticheskogo podderzhanija kul'tury koda v typescript-proekte // Nauchnoe obozrenie. Tehnicheskie nauki. 2020. №. 4. S. 24–28.
8. Sarnavskij A. P. Razrabotka instrumenta upravlenija ujazvimostjami na osnove Elasticsearch: vypusknaja kvalifikacionnaja rabota bakalavra: napravlenie 10.03.01 «Informacionnaja bezopasnost'»; obrazovatel'naja programma 10.03.01_03 «Bezopasnost' komp'juternyh sistem». 2022.
9. Simankov V. S., Petrova V. A. Monitoring informacionnoj bezopasnosti v intellektual'nom situacionnom centre // Povedencheskie teorii i praktika rossijskoj nauki. 2021. S. 29–35.
10. Kopteva A. V., Knjazev I. V. Analiz problemy preobrazovanija dannyh formata JSON v strogo tipizirovannyh jazykah programmirovanija na primere Golang // Problemy nauki. 2021. №. 7 (66). S. 5.
11. Kutuzov K. O. Programmirovanie RESTful prilozhenij na jazyke programmirovanija Golang // Molodost'. Intellekt. Iniciativa. 2021. S. 23–24.
12. Razumkov I. A. Avtomatizacija poiska ujazvimostej v programmah na jazyke Golang: vypusknaja kvalifikacionnaja rabota bakalavra:
napravlenie 10.03.01 «Informacionnaja bezopasnost'»; obrazovatel'naja programma 10.03.01_03 «Bezopasnost' komp'juternyh
sistem». 2023. 
13. Palash B. V., Golubnichij A. A. Osnovnye sposoby obespechenija bezopasnosti klient-servernyh prilozhenij // Modern Science. 2020. №. 2-1. S. 383–385.
14. Chernikov A. S. i dr. Obzor primenenija podhoda mikroservisnoj arhitektury pri proektirovanii klientskoj chasti veb-prilozhenija // Dnevnik nauki. 2020. №. 4. S. 31.
15. Devicyna S. N., Pil'kevich P. V., Udod E. V. Sposoby uluchshenija zashhishhjonnosti servisov, ispol'zujushhih JWT-tokeny // Jekonomika. Informatika. 2023. T. 50. №1. S. 144–151.
16. Adgemov I. Je., Devicyna S. N. Upravlenie bezopasnost'ju besprovodnoj lokal'noj vychislitel'noj seti // Jekonomika. Informatika. 2023. T. 50. № 1. S. 183–190.
38–44
Baraboshin, A. Y. ANALYSIS REQUIREMENTS OF APPLICATION AND TECHNOLOGICAL CAPABILITIES OF RADIO SIGNALS, PROMISING FOR 6G NETWORKS / A. Y. Baraboshin, D. V. Luchin, E. N. Maslov // Cybersecurity issues. – 2024. – № 4(62). – С. 45-56. – DOI: 10.21681/2311-3456-2024-4-45-56.
Abstract
Purpose of the study: to investigate the technological capabilities of various signal constructions (SC) of radio signals in order to identify the types that can most fully provide functionality of 6G communication systems. Research methods: system analysis of the parameters of promising SC options in the direction of providing enhanced Mobile Broadband (eMBB), Ultrareliable LowLatency Communication (URLLC) and massive Machine Type of Communication (mMTC) in terms of minimization OutofBand Emission (OOBE), PeaktoAverage Power Ratio (PAPR), compatibility ensuring with MIMO, taking into account the need to provide highspeed data transmission of multiple access and simultaneous sensing/radaring stochastic of radio channel with timefrequency dispersing (ISAC/DFRC). Results obtained: the technologicalability of the SC is defined as the ability to most fully ensure the established quality indicators and the required communication scenarios, with maximum unification of the signal structure and algorithms for its processing. A methodology for researching the technological capabilities of SC in terms of the effectiveness of their application in 6G is proposed. Estimates have been obtained and the technological capabilities of various variants of SC with multiple carrier type OFDM and with single carrier (SC), including SC type DFT-s-OFDM, have been classified. It is shown that the signal of the CP-OFDM multiple carrier technology has high OOBE and PAPR values, and the ways to improve these parameters are not technologicalability, since they are implemented through difficult and specific technical solutions. It is shown that the signal of a single broadband carrier technology DFT-s-OFDM, by definition, has a low PAPR index and, through the spectral precoding procedure, provides flexibility to software control of the parameters of the signal structure in accordance with various communication scenarios in 6G systems using typical transmitters DFT-s-OFDM. Scientific novelty: according to the proposed methodology for studying the technological capabilities of SC, it was concluded that, in accordance with the criteria of established requirements in promising 6G networks, the technologicalability of using SC CP-OFDM is inferior to the technologicalability of using SC DFT-s-OFDM, which, thanks to the procedure of spectral preliminary coding, has the flexibility of adapting (SDR) its unified structure to a wide range of application, according to the required communication scenarios.
Keywords: functional and requirements of 6G, technologicalability of signal constructions, comparison technologicalability's of application in 6G CP-OFDM and DFT-s-OFDM.
References
1. Tong V., Chzhu P. Put' ot 5G k 6G glazami razrabotchikov. Ot podkljuchennyh ljudej i veshhej k podkljuchennomu intellektu; pod red. V. Tong, P. Chzhu / Vjen' Tong, Pejin Chzhu; per. s angl. V.S. Jacenkova. – M. : DMK Press, 2022. – 624 c.
2. Luchin D. V. Tendencii i perspektivy razvitija radiosistem subteragercovogo diapazona. V sbornike: Aktual'nye problemy radiojelektroniki i telekommunikacij; pod redakciej A. I. Danilina / D. V. Luchin. – Samara : Materialy Vserossijskoj nauchno-tehnicheskoj konferencii APRiT, 2022. – S. 8–11.
3. Tripathi S., Sabu N. V., Gupta A. K., Dhillon H. S. Millimeter-wave and Terahertz Spectrum for 6G Wireless // Computer Communications and Networks. – 20 Feb. 2021.
4. Liu X., Xu T., Darwazeh I. Coexistence of orthogonal and nonorthogonal multicarrier signals in beyond 5G scenarios // In Proc. 2020 2nd 6G Wireless Summit (6G SUMMIT). – IEEE, 2020. – pp. 1–5.
5. Tourki K., Zakaria R., Debbah M. Lagrange Vandermonde Division Multiplexing // In Proc. 2020 IEEE International Conference on Communications (ICC). – IEEE, 2020. – pp. 1–6.
6. Munir M., Youssef M. I., Abosha A. M. Low-Complexity Selective Mapping Technique for PAPR Reduction in Downlink Power Domain OFDM-NOMA // EURASIP Journal on Advances in Signal Processing. – 2023, 10.
7.	 Buritica A. From Waveforms to MIMO: 5 Things for 5G New Radio // Microwave Journal. – 14 May 2019.
8. Cho L., Kuo Y. M., Wu Y. S., Hsu C. Y. Polynomial Cancellation Coded DFT-s-OFDM for Low-PAPR uplink signaling // Electronics (Switzerland). – November 2019. – 8(11):1349.
9. Sahin A., Hosseini N., Hosseinali J., Shams S., Hoque M., Matolak D. W. DFT-spread-OFDM Based Chirp Transmission // IEEE Communications Letters. – March 2021. – vol.25. – Issue 3.
10. Antonova V. M., Klygin D. S., Kondrashova D. A., Babahanov S. A. Vlijanie 5G na nashu zhizn' // Colloquium-Journal. – 2021. – № 34-1 (121). – S. 9–12.
11. Milicevic Z. M., Bojkovic Z. S. Review of 5G and 6G applications for mobile wireless communication in the military environment // Military Technical Courier. – 2024. – V. 72. – № 1. – pp. 435–451.
12. Gulyaev Y. V., Oleinikov A. Ya., Makarenko S. I. Russian approach to interoperability formalization of network-centric systems // In Proceedings of 2021 IV International Conference on Control in Technical Systems (CTS). – IEEE, 2021. – pp. 72–75.
13. Ryzhkov A. V., Shvarc M. L. Predposylki sozdanija kogerentnoj seti svjazi obshhego pol'zovanija - osnovy skvoznyh cifrovyh tehnologij // T-Comm: Telekommunikacii i transport. – 2021. – T. 15. – № 7. – S. 14–22.
14. Luchin D. V., Gavlievskij S. L., Maslov E. N. Masshtabiruemaja telematicheskaja sistema dlja arkticheskih regionov RF s ispol'zovaniem KV-radiosvjazi // Jelektrosvjaz'. – 2019. – № 9. – S. 22–31.
15. Luchin D. V., Klimov D. A. Troposfernye stancii NIIR obespechat internetom zhitelej krajnego severa // Jelektrosvjaz'. – 2021. – № 9. – S. 13–15.
16. Ajmetdinova U. A., Veden'kin D. A., Ali Al'-Mufti, Misbahov R. Sh., Morozov O. G., Morozov G. A., Kuznecov A. A. Analiz metoda dvuhchastotnoj inicializacii kanalov svjazi transportnogo domena setej 5G/6G // Nauchno-tehnicheskij vestnik Povolzh'ja. – 2023. – № 9. – S. 140-143.
17. Ajmetdinova U. A., Buldakova K. Je., Ali Al'-Mufti, Vasilec S. A., Vasilec A. A., Misbahov R. Sh., Morozov G. A. Formirovanie uzkopolosnogo signala upravlenija dlja mobil'nogo transportnogo domena setej 5G/6G // Nauchno-tehnicheskij vestnik Povolzh'ja. – 2023. – № 11. – S. 324–326.
18. Devjatkin E. E., Ivankovich M. V., Pastuh A. S. Analiz vozmozhnosti postroenija trehmernoj arhitektury setej 6G // Sistemy sinhronizacii, formirovanija i obrabotki signalov. – 2021.– T. 12. – № 6. – S. 91–99.
19. Makarenko S. I. Testirovanie na proniknovenie na osnove standarta NIST SP 800-115 // Voprosy kiberbezopasnosti. – 2022. – № 3 (49). – S. 44–57.
45–56
Prudnikov, V. A. ANALYSIS OF EXISTING APPROACHES TO THE SYNTHESIS OF PSEUDO-DYNAMIC SBOX / V. A. Prudnikov // Cybersecurity issues. – 2024. – № 4(62). – С. 57-64. – DOI: 10.21681/2311-3456-2024-4-57-64.
Abstract
The purpose of the research is to analyze currently existing approaches to the synthesis of pseudo-dynamic substitution operations, to confirm the relevance of the problem of synthesizing substitution operations that satisfy a wide range of mutually exclusive requirements. Research methods: analysis and systematization of existing approaches to the synthesis of cryptographic operations sbox and pseudo-dynamic sbox. The result of the research is the conclusion that at the moment the problem of synthesizing substitution operations as the main nonlinear element of modern block ciphers and pseudo-random functions that satisfy mutually exclusive requirements is relevant. There are a number of ways to solve this problem, implying the selection of substitution operations in accordance with the requirements, the implementation of a nonlinear element of a pseudo-random function or a cryptoalgorithm as an ARX function, the use of dynamic substitutions in ciphers and the synthesis of pseudo-dynamic substitutions, which can be based on either fixed substitution operations, and ARX constructions. Substitution operations, regardless of their type, are subject to about a dozen requirements that directly affect the cryptographic strength of pseudo-random functions, permutations and cryptoalgorithms. Consequently, the problem of synthesizing replacements that satisfy a wide range of mutually exclusive parameters is basic. Synthesis of pseudo-dynamic substitution operations based on specially selected ARX functions that have differential and linear properties of equivalent substitutions, similar to randomly fixed substitution operations of the same dimension, in pseudo-random functions of the pCollapser family, potentially allows for optimal use of processor vector instructions and parallelism of information processing. The practical significance lies in substantiating the relevance of using a new approach to the synthesis of a promising cryptographic transformation pseudo-dynamic sbox, satisfying a wide range of mutually exclusive requirements for problems of cryptographic information protection.
Keywords: cryptography, cryptographic primitives, sbox, pseudo-dynamic sbox, ARX functions, pseudo-random functions.
References
1. Sankaralingam, A., Vivek, U. HPAC-sbox a novel implementation of predictive learning classifier and adaptive chaotic s-box for counterfeiting sidechannel attacks in an IOT networks // Microprocessors and Microsystems. 81. 103737. – 2021. DOI: 10.1016/j.micpro.2020.103737.
2. Artuğer, F., Karakuş, S., Özkaynak, F. Comparison of Nonlinearity Value of Substitution Box Generation Approaches // International Conference on Recent Academic Studies. – 2023. – Vol.1. – P. 46–49. DOI: 10.59287/icras.670.
3. Kökçam, A., Çavuşoğlu, Ü. A new approach to design S-box generation algorithm based on genetic algorithm // International Journal of Bio-Inspired Computation. 2021.– 2021. – Vol.17, No.1. – P. 52–62. DOI: 10.1504/IJBIC.2021.10035835.
4. Yang, S., Tong, X.,Wang, Z. S-box generation algorithm based on hyperchaotic system and its application in image encryption // Multimedia Tools and Applications. – 2023. – Vol.82.– P. 25559-25583. DOI: 10.1007/s11042-023-14394-1.
5. Marochok, S., Zajac, P. Algorithm for Generating S-Boxes with Prescribed Differential Properties // Algorithms. – 2023. – Vol.16. Issue 3. DOI: 10.3390/a16030157.
6. Khadem, B., Rajavzadeh, S. Construction of Side Channel Attack Resistant S-Boxes Using Genetic Algorithms Based on Coordinate Functions // Journal of Electrical and Computer Engineering Innovations (JECEI). – 2022. – Vol.10, No.1. – P. 143–152. DOI: 10.22061/jecei.2021.7801.436.
7. Kang, M., Wang, M. New Genetic Operators for Developing S-Boxes With Low Boomerang Uniformity // IEEE Access. – 2022. – Vol.10. – P. 10898–10906. DOI: 10.1109/ACCESS.2022.3144458.
8. Siddiqui, N., Yousaf, F., Murtaza, F. et al. A highly nonlinear substitution-box (S-box) design using action of modular group on a projective line over a finite field // PLoS ONE. – 2020. – Vol.15(11). DOI: 10.1371/journal.pone.0241890.
9. Coutinho, M., Neto, T. Improved Linear Approximations to ARX Ciphers and Attacks Against ChaCha // Advances in Cryptology – EUROCRYPT 2021. – 2021. – Vol.12696 – P. 711–740. DOI: 10.1007/978-3-030-77870-5_25.
10. Beierle, C., Leander, G., Todo, Y. Improved Differential-Linear Attacks with Applications to ARX Ciphers // Journal of Cryptology. – 2022. – Vol.35. DOI: 10.1007/s00145-022-09437-z.
11. Liu, J., Rijmen, V., Hu, Y. et al. WARX: efficient white-box block cipher based on ARX primitives and random MDS matrix // Science China Information Sciences. – 2022. – Vol.65. DOI: 10.1007/s11432-020-3105-1.
12. Beierle, C., Biryukov, A., Cardoso, D. S. et al. Alzette: A 64-Bit ARX-box (Feat. CRAX and TRAX) // Advances in Cryptology – CRYPTO 2020. 40th Annual International Cryptology Conference, CRYPTO 2020. – 2020. – P. 419–448. DOI: 10.1007/978-3-030-56877-1_15.
13. Polikarpov S. V., Prudnikov V. A., Rumjancev K. E. Issledovanie svojstv miniversii psevdo-sluchajnoj funkcii pCollapser // Izvestija JuFU. Tehnicheskie nauki. – 2023. – Fevral'. – T. 230, No 6. – S. 148–162.
14. Prudnikov V. A. Issledovanie nelinejnyh svojstv psevdodinamicheskoj sbox PD-SBOX 6x4x4 // Sbornik statej V Vserossijskoj nauchnotehnicheskoj konferencii molodyh uchenyh, aspirantov, magistrantov i studentov «Fundamental'nye i prikladnye aspekty komp'juternyh tehnologij i informacionnoj bezopasnosti». – Taganrog, 2019. – S. 96–99.
15. Polikarpov S. V., Rumjancev K. E., Prudnikov V. A. Vysokoproizvoditel'naja psevdosluchajnaja funkcija pCollapserARX256-32x2 // RusKripto’2022. – 2022. – URL: https:// www.ruscrypto.ru/ resource/archive/rc2022/ files /02_polikarpov_ rumyantsev_ prudnikov.pdf.
57–64
Ivanenko, V. G. OPTIMIZATION OF COMPUTATIONS OVER POLYNOMIALS IN POST-QUANTUM SIGNATURE SCHEME / V. G. Ivanenko, I. D. Ivanova, N. D. Ivanova // Cybersecurity issues. – 2024. – № 4(62). – С. 65-70. – DOI: 10.21681/2311-3456-2024-4-65-70.
Abstract
The purpose: accelerating the signature verification in post-quantum cryptographic systems by applying fast algorithms to calculations over polynomials. Research methods: comparative analysis of post-quantum algorithms accepted for standardization, mathematical modeling of the signature verification, optimization by synthesizing fast algorithms.
Results: the areas of application of the Falcon signature scheme are determined based on communication costs, resistance to brute-force attacks, the paradigms and primitives used, and performance on low-power devices, as a result the importance of optimization is justified. A mathematical description of the problem that substantiates the Falcon cryptographic strength is given, and resource-intensive operations used in this problem are determined. The algorithms used to optimize the signature verification in the Falcon reference implementation are considered, and the rationale for their ineffectiveness for Falcon in low-power devices is given. An optimization method by synthesizing fast algorithms for calculating the Number Theoretic Transform and a fast reduction algorithm is proposed. Based on this method, an implementation of the optimization algorithm in C language has been developed. Practical value: the proposed optimization method does not use the architectural features of the environment and does not require storing additional precomputed values, due to which it can be widely used in various fields. The developed implementation of the optimization algorithm based on the proposed optimization method can be embedded in the Falcon reference implementation.
Keywords: lattice theory, Falcon, NTT, multiplicative group, reduction, Montgomery multiplication.
References
1. Vysotskaya V. V., Chizhov I. V. The security of the code-based signature scheme based on the Stern identification protocol // Prikladnaja diskretnaja matematika. 2022. № 57. S. 67–90. DOI:10.17223/20710410/57/5
2. Asif R. Post-Quantum Cryptosystems for Internet-of-Things: A Survey on Lattice-Based Algorithms // IoT. 2021. Vol. 2. N. 1. P. 71–91. DOI:10.3390/IOT2010005
3. Komarova A. V., Korobejnikov A. G. Analiz osnovnyh sushhestvujushhih post-kvantovyh podhodov i shem jelektronnoj podpisi // Voprosy kiberbezopasnosti. 2019. № 2 (30). S. 58–68. DOI: 10.21681/2311-3456-2019-2-58-68
4. Raavi M. et al. Security Comparisons and Performance Analyses of Post-Quantum Signature Algorithms // International Conference on Applied Cryptography and Network Security. 2021. Vol. 12727. 24 p. DOI:10.1007/978-3-030-78375-4_17
5. Singh S. XCRYPT: Accelerating Lattice Based Cryptography with Memristor Crossbar Arrays // IEEE Micro. 2023. Vol. 43. № 5. P. 45–54. DOI:10.1109/MM.2023.3248080
6. Gonzalez R. et al. Verifying Post-Quantum Signatures in 8 kB of RAM // Post-Quantum Cryptography: 12th International Workshop. 2021. P. 215–233. DOI:10.1007/978-3-030-81293-5_12
7. Cherckesova L. et al. Post-Quantum Cryptosystem NTRUEnCrypt and Its Advantage over Pre–Quantum Cryptosystem RSA // E3S Web of Conferences. 2020. Vol. 224. P. 01037. DOI:10.1051/e3sconf/202022401037
8. Espitau T. et al. Shorter Hash-and-Sign Lattice-Based Signatures // Annual International Cryptology Conference. 2022. P. 245–275. DOI:10.1007/978-3-031-15979-4_9
9. Liang Z. et al. Number Theoretic Transform: Generalization, Optimization, Concrete Analysis and Applications // International Conference on Information Security and Cryptology. 2020. P. 415–432. DOI:10.1007/978-3-030-71852-7_28
10. Abdulrahman A. et al. Multi-moduli NTTs for saber on Cortex-M3 and Cortex-M4 // Cryptology ePrint Archive. 2021. 33 p. DOI:10.46586/tches.v2022.i1.127-151
11. Mert A. C. et al. Design and Implementation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture // 2019 22nd Euromicro Conference on Digital System Design (DSD). 2019. P. 253–260. DOI:10.1109/DSD.2019.00045
12. Becker H. et al. Polynomial multiplication on embedded vector architectures // Cryptology ePrint Archive. 2021. 24 p. DOI:10.46586/tches.v2022.i1.482-505
13. Kim Y. et al. Accelerating Falcon on ARMv8 // IEEE Access. 2022. Vol. 10. 15 p. DOI: 10.1109/ACCESS.2022.3169784
14. Nguyen D. T., Gaj K. Fast Falcon Signature Generation and Verification Using ARMv8 NEON Instructions // International Conference on Cryptology in Africa. 2023. P. 417–441. DOI: 10.1007/978-3-031-37679-5_18
15. Seo E. Y. et al. Peregrine Toward Fastest FALCON Based on GPV Framework // Cryptology ePrint Archive. 2022. 21 p.
65–70
Moldovyan, D. N. A METHOD FOR STRENGTHENING SIGNATURE RANDOMIZATION IN SIGNATURE ALGORITHMS ON NON-COMMUTATIVE ALGEBRAS / D. N. Moldovyan, A. A. Kostina // Cybersecurity issues. – 2024. – № 4(62). – С. 71-81. – DOI: 10.21681/2311-3456-2024-4-71-81.
Abstract
Purpose of work is eliminating the vulnerability of well-known algebraic signature algorithms with multiple entry of the signature into the verification equation to potential attacks using a variety of well-known signatures. Research methods: known results on the study of the structure of four-dimensional finite non-commutative associative algebras are used to generate parameters of the signature algorithm. The elimination of the said vulnerability is implemented by strengthening the randomization of the signature. The latter is provided by calculating the digital signature depending on two unique four-dimensional vectors belonging to two different hidden commutative groups of a four-dimensional non-commutative algebra used as an algebraic support, performing a formal proof of ensuring almost complete randomization of the EDS. Results of the study: a number of mathematical statements underlying the justification of the choice of parameters of algebraic signature algorithms, the security of which is based on the computational difficulty of solving large systems of power equations, are proved. It is shown that the calculation of the signature depending on two unique vectors selected from various commutative subalgebras provides almost complete randomization of the signature, which eliminates potential attacks using several known signatures, against which well-known algebraic algorithms of EDS with multiple entry of the signature into the verification equation are vulnerable. Based on the proposed method of randomization enhancement, an algebraic signature algorithm has been developed using four-dimensional finite non-commutative associative algebras as an algebraic support. Unlike the known versions of the signature algorithms with a hidden group and a doubled verification equation, two different hidden groups are used. The assessment of the security to the direct attack and to forging signature attack is given. Practical relevance: the significance of the results of the article consists in the development of a method for enhancing signature randomization, which is attractive for the implementation of practical post-quantum signature algorithms based on it, the security of which being determined by the computational difficulty of solving large systems of power equations. A specific algorithm of this type is proposed, which has relatively small sizes of the signature and of the public and secret keys.
Keywords:  finite associative algebra; non-commutative algebra; computationally difficult problem; hidden group; digital signature; signature randomization; post-quantum cryptography.
References
1. Post-Quantum Cryptography. 13th International Conference, PQCrypto 2022, Virtual Event, September 28–30, 2022, Proceedings. Lecture Notes in Computer Science. 2022. V. 13512. Springer, Cham.
2. Post-Quantum Cryptography. 14th International Conference, PQCrypto 2023, College Park, MD, USA, August 16–18, 2023, Proceedings // Lecture Notes in Computer Science. V. 14154. Springer, Cham.
3. Battarbee C., Kahrobaei D., Perret L., Shahandashti S. F. SPDH-Sign: Towards Efficient, Post-quantum Group-Based Signatures // In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023 / Lecture Notes in Computer Science, 2023, vol. 14154, pp. 113–138. Springer, Cham. https://doi.org/10.1007/978-3-031-40003-2_5
4. Gärtner J. NTWE: A Natural Combination of NTRU and LWE. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023 / Lecture Notes in Computer Science, 2023, vol 14154, pp. 321–353. Springer, Cham. https://doi.org/10.1007/9783-031-40003-2_12
5. Ding J., Petzoldt A., Schmidt D. S. Multivariate Cryptography // In: Multivariate Public Key Cryptosystems. Advances in Information Security. 2020. V. 80. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0987-3_2.
6. Hamlin B., Song F. Quantum Security of Hash Functions and Property-Preservation of Iterated Hashing. In: Ding, J., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2019 / Lecture Notes in Computer Science. 2019, vol. 11505, pp. 329–349. Springer, Cham. https://doi.org/10.1007/978-3-030-25510-7_18
7. Ding J., Petzoldt A., Schmidt D. S. Multivariate Cryptography. In: Multivariate Public Key Cryptosystems. Advances in Information Security. 2020, vol.. 80. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0987-3_2
8. Ding J., Petzoldt A., Schmidt D. S. The Matsumoto-Imai Cryptosystem. In: Multivariate Public Key Cryptosystems. Advances in Information Security. 2020, vol. 80, pp. 25-60. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0987-3_3
9. Moldovyan N. A., Moldovyan A. A. Digital signature scheme on the 2x2 matrix algebra. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 3, pp. 254–261. https://doi.org/10.21638/11701/spbu10.2021.303
10. Moldovyan N. A., Moldovyan A. A. Candidate for practical post-quantum signature scheme. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 4, pp. 455–461. https://doi.org/10.21638/11701/spbu10.2020.410
11. Ikematsu Y., Nakamura S., Takagi T. Recent progress in the security evaluation of multivariate public-key cryptography // IET Information Security. 2022, pp. 1–17. DOI: 10.1049/ise2.12092
12. Ding J., Petzoldt A., Schmidt D.S. Solving Polynomial Systems. In: Multivariate Public Key Cryptosystems. Advances in Information Security. Springer. New York. 2020, vol.. 80, pp. 185-248. https://doi.org/10.1007/978-1-0716-0987-3_8
13. Cartor R., Cartor M., Lewis M., Smith-Tone D. IPRainbow. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography // Lecture Notes in Computer Science. 2022, vol. 13512, pp. 170–184. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_9
14. Ding, J., Petzoldt, A., Schmidt, D.S. Oil and Vinegar. In: Multivariate Public Key Cryptosystems. Advances in Information Security. 2020, vol. 80, pp. 89-151. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0987-3_5
15. Moldovyan A.A., Moldovyan D.N., Moldovyan N.A. A new approach to the development of multidimensional cryptography algorithms. Voprosykiberbezopasnosti [Cibersecurity questtions]. 2023, no. 2(54), pp. 52–64. DOI:10.21681/2311-3456-2023-2-52-6.
16. Moldovyan A.A., Moldovyan N.A. Vector finite fields of characteristic two as algebraic support of multivariate cryptography // Computer Science Journal of Moldova. 2024. V.32. N.1(94). P. 46–60. DOI: 10.56415/csjm.v32.04
17. Moldovyan D.N., Moldovyan A.A., Moldovyan N.A. A new concept for designing post-quantum signature algorithms on non-commutative algebras. Voprosykiberbezopasnosti [Cibersecurity questtions]. 2022, no. 1(47), pp. 18–25. DOI: 10.21681/2311-3456-2022-1-18-25 
18. Moldovyan D.N., Moldovyan A.A. Algebraic Signature Algorithms Based on Difficulty of Solving Systems of Equations.
Voprosykiberbezopasnosti [Cibersecurity questtions]. 2022, no. 2(48), pp. 7–17. DOI: 10.21681/2311-3456-2022-2-7-17
19. Moldovyan A. A., Moldovyan N. A. Signature algorithms on finite on non-commutative algebras over fields of characteristic two. Voprosykiberbezopasnosti [Cibersecurity questtions]. 2022, no. 3(49), pp. 58–68. DOI: 10.21681/2311-3456-2022-3-58-68
20. Moldovyan N. A. Algebraic signature algorithms with a hidden group, based on hardness of solving systems of quadratic equations // Quasigroups and Related Systems. 2022 vol. 30, no. 2(48), pp. 287–298. DOI: https://doi.org/10.56415/qrs.v30.24
21. Moldovyan A. A., Moldovyan D. N., Kostina A. A. Algebraic signature algorithms with complete signature randomization. Voprosykiberbezopasnosti [Cibersecurity questtions]. 2024, No. 2(60). P. 95–102. DOI: 10.21681/2311-3456-2024-2-95-102 
22. Moldovyan N. A., Moldovyan A. A. Finite Non-commutative Associative Algebras as carriers of Hidden Discrete Logarithm Problem. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS), 2019, vol. 12, no. 1, pp. 66–81. DOI: 10.14529/mmp190106
23. Moldovyan N. A. Finite Non-Commutative Associative Algebras for Setting the Hidden Discrete Logarithm Problem and Post-quantum Cryptoschemes on Its Base // Bulletin of Academy of Sciences of Moldova. Mathematics. 2019, no. 1 (89), pp. 71–78.
24. Moldovyan A. A., Moldovyan N. A. Post-quantum signature algorithms with a hidden group and doubled verification equation. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2023, no. 3, pp. 59–69. doi: 10.31799/1684-88532023-3-59-69
25. Moldovyan A. A., Moldovyan N. A. Post-quantum algebraic signature algorithms with a hidden group. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], 2023, no. 1, pp. 29–40. doi:10.31799/1684-8853-2023-1-29-40.
26. Moldovyan N. A., Moldovyan A. A. Structure of a 4-dimensional algebra and generating parameters of the hidden logarithm problem Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2022, vol. 18, iss. 2, pp. 209–217. https//doi.org/10.21638/11701/spbu10.2022.202
27. Moldovyan D. N., Moldovyan A. A., Moldovyan N. A. Structure of a finite non-commutative algebra set by a sparse multiplication table // Quasigroups and Related Systems. 2022, vol. 30, no. 1, pp. 133 – 140. https://doi.org/10.56415/qrs.v30.11
28. Moldovyan N. A., Moldovyan A. A. Digital signature scheme on the 2x2 matrix algebra. Vestnik of Saint Petersburg University.
Applied Mathematics. Computer Science. Control Processes. 2021. V. 17. Iss. 3. P. 254–261. https://doi.org/10.21638/11701/spbu10.2021.303
71–81
Starodubtsev, Yu. I. STRUCTURAL AND FUNCTIONAL ANALYSIS OF THE CONFLICT SITUATION BETWEEN THE STATE INFORMATION SECURITY SYSTEM AND A FOREIGN SYSTEM OF DESTRUCTIVE INFLUENCES / Yu. I. Starodubtsev, P. V. Zakalkin // Cybersecurity issues. – 2024. – № 4(62). – С. 82-91. – DOI: 10.21681/2311-3456-2024-4-82-91.
Abstract
The purpose of the study: to determine the relationship between the concepts of «information infrastructure» of the Russian Federation and «cyberspace»; to determine the prerequisites for the implementation of an increasing set of destructive influences. Research methods: system analysis, classification, comparative analysis. The results obtained: the information security system of the Russian Federation, its participants, the information infrastructure of the Russian Federation are considered and its relationship with cyberspace is determined. The formalization of the considered elements has been carried out. A graphical representation of the relationship between information infrastructure and cyberspace has been developed. Scientific novelty: a system-structural analysis of the conflict situation has been carried out, which made it possible to identify the objective reasons for the implementation of many destructive effects on critical infrastructure facilities.
Keywords: cyberspace, information security, information infrastructure, attack, destructive effects.
References
1. Starodubcev Ju. I., Zakalkin P. V., Ivanov S. A. Strukturno-funkcional'naja model' kiberprostranstva // Voprosy kiberbezopasnosti. 2021.
№ 4(44). S.16–24. DOI:10.21681/2311-3456-2021-4-16-24.
2. Zakalkin P. V. Jevoljucija sistem upravlenija kiberprostranstvom // Voprosy kiberbezopasnosti. 2022. № 1(47). S. 76–86. DOI:10.21681/2311-3456-2022-1-76-86.
3. Belov A. S., Dobryshin M. M., Shugurov D. E. Nauchno-metodicheskij podhod k ocenivaniju kachestva sistem obespechenija informacionnoj bezopasnosti // Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2022. № 11. S. 34–40.
4. Dobryshin M. M. Vybor struktury i mehanizmov adaptivnogo upravlenija sistemy obespechenija informacionnoj bezopasnosti // Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2022. № 2. S. 214–222.
5. Leonov N. V. Protivodejstvie ujazvimostjam programmnogo obespechenija. Chast' 1. Ontologicheskaja model'. // Voprosy
kiberbezopasnosti. 2024. № 2(60). S.87–92. DOI: 10.21681/2311-3456-2024-2-87-92.
6. Levshun D. S., Vesenie D. V., Kotenko I. V. Prognozirovanie kategorij ujazvimostej v konfiguracijah ustrojstv s pomoshh'ju metodov iskusstvennogo intellekta // Voprosy kiberbezopasnosti. 2024. № 3(61). S.33–69 DOI: 10.21681/2311-3456-2024-3-33-39.
7. Ivanov M. V., Kalashnikov I. V., Nurullaev M. M. Issledovanie strukturnyh svojstv seti internet na osnove metagrafovyh modelej // Trudy SPIIRAN. 2020. T.19. № 4. S. 880–900.
8. Meshherjakov R. V., Ishakov S. Ju. Issledovanie metodov formirovanija indikatorov komprometacii ot vnutrennih istochnikov informacionnyh i kiberfizicheskih sistem // Voprosy kiberbezopasnosti. 2023. № 6(58) S.35–49. DOI:10.21681/2311-3456-2023-635-49.
9. Izrailov K. E., Bujnevich M. V. Metod obnaruzhenija atak razlichnogo genezisa na slozhnye ob#ekty na osnove informacii sostojanija. Chast' 1. Predposylki i shema // Voprosy kiberbezopasnosti. 2023. № 3(55) S.90–100. DOI:10.21681/2311-3456-2023-3-90-100.
10. Ivanov S. A. Ustojchivost' setej svjazi obshhego pol'zovanija v uslovijah globalizacii // Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2021. № 9. S. 86–90.
82–91
DETECTING WEB ATTACKS USING MACHINE LEARNING ALGORITHMS / M. A. Lapina, V. V. Movzalevskaya, M. E. Tokmakova, M. G. Babenko, M. Sajid // Cybersecurity issues. – 2024. – № 4(62). – С. 92-103. – DOI: 10.21681/2311-3456-2024-4-92-103.
Abstract
The purpose of the study: study the applicability of machine learning methods and their evaluation in the field of intrusion and attack detection in the web environment. Research methods: various implementations of machine learning algorithms for determining the type and attack in the web environment are considered classification and clustering algorithms. To detect attacks, the most optimal machine learning algorithms implemented using the Scikit-learn library were selected after their consideration and comparative analysis. In this work, the parameters for evaluating the effectiveness of the studied algorithms are training time indicators, as well as characteristics from the Confusion matrix and Classification Report for classification algorithms, and Homogeneity, Completeness, V-measure for clustering algorithms. The results obtained: for the considered data sample, the most time-efficient and quality-efficient algorithm was determined and implemented - the decision tree method. The best characteristics for solving the problem were shown by decision trees; the accuracy in determining the type and subtype of an attack is 99.9662% and 99.9576%, respectively. The average attack detection time is 85.39 ms and 114.72 ms for the type and subtype, respectively. The scientific novelty is that it offers a solution to the problem of detecting and defining various types and subtypes of attacks in the web environment, which allows developing an optimal strategy for protecting Internet resources and minimizing the likelihood of loss, theft or corruption of data. Contribution of the authors: Lapina M. A., Babenko M. G., Sajid M. - selection and formulation of the research problem; Lapina M. A., Movzalevskaya V. V., Tokmakova M. E. - selection of solutions, software implementation and experiments; Lapina M. A., Movzalevskaya V. V., Tokmakova M. E., Babenko M. G. - discussions of the experimental results, analysis of the obtained results.
Keywords: web environment, classification algorithms, clustering algorithms, artificial intelligence, Internet security, threat detection methods, information security
References
1. Singh A., Gupta B. B. Distributed denial-of-service (DDoS) attacks and defense mechanisms in various web-enabled computing platforms: issues, challenges, and future research directions //International Journal on Semantic Web and Information Systems (IJSWIS). – 2022. – Т. 18. – №. 1. – С. 1–43. DOI: 10.4018/IJSWIS.297143
2. Eliyan L. F., Di Pietro R. DoS and DDoS attacks in Software Defined Networks: A survey of existing solutions and research challenges // Future Generation Computer Systems. – 2021. – Т. 122. – С. 149–171. DOI: 10.1016/j.future.2021.03.011
3. Hu Q. et al. A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests // Mechanical systems and signal processing. – 2020. – Т. 139. – С. 106609. DOI: 10.1016/j.ymssp.2019.106609 
4. Nhat-Duc H., Van-Duc T. Comparison of histogram-based gradient boosting classification machine, random Forest, and deep convolutional neural network for pavement raveling severity classification //Automation in Construction. – 2023. – Т. 148. – С. 104767. DOI: 10.1016/j.autcon.2023.104767
5. Hancock J. T., Khoshgoftaar T. M. CatBoost for big data: an interdisciplinary review //Journal of big data. – 2020. – Т. 7. – №. 1. – С. 94. DOI: 10.1186/s40537-020-00369-8
6. Schober P., Vetter T. R. Logistic regression in medical research //Anesthesia & Analgesia. – 2021. – Т. 132. – №. 2. – С. 365-366. DOI: 10.1213/ANE.0000000000005247
7. Wickramasinghe I., Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation //Soft Computing. – 2021. – Т. 25. – №. 3. – С. 2277–2293. DOI: 10.1007/s00500-020-05297-6
8. Priyanka, Kumar D. Decision tree classifier: a detailed survey //International Journal of Information and Decision Sciences. – 2020. – Т. 12. – №. 3. – С. 246–269. DOI: 10.1504/IJIDS.2020.108141
9. Pisner D. A., Schnyer D. M. Support vector machine //Machine learning. – Academic Press, 2020. – С. 101-121. DOI: 10.1016/B9780-12-815739-8.00006-7
10. Sinaga K. P., Yang M. S. Unsupervised K-means clustering algorithm //IEEE access. – 2020. – Т. 8. – С. 80716-80727. DOI: 10.1109/ACCESS.2020.2988796
11. Oyewole G. J., Thopil G. A. Data clustering: application and trends //Artificial Intelligence Review. – 2023. – Т. 56. – №. 7. – С. 6439–6475. DOI: 10.1007/s10462-022-10325-y
12. Ren Y. et al. Deep clustering: A comprehensive survey //IEEE Transactions on Neural Networks and Learning Systems. – 2024. DOI: 10.1109/TNNLS.2024.3403155
13. Antoniadis A., Lambert-Lacroix S., Poggi J. M. Random forests for global sensitivity analysis: A selective review //Reliability Engineering & System Safety. – 2021. – Т. 206. – С. 107312. DOI: 10.1016/j.ress.2020.107312
14. Aria M., Cuccurullo C., Gnasso A. A comparison among interpretative proposals for Random Forests //Machine Learning
with Applications. – 2021. – Т. 6. – С. 100094. DOI: 10.1016/j.mlwa.2021.100094
15. Bo Y. et al. Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential ModelBased Optimization //Tunnelling and underground space technology. – 2022. – Т. 124. – С. 104448. DOI: 10.1016/j.tust.2022.104448
92–103
Gorbachev, A. A. ALGORITHM FOR SIMULATING DYNAMIC TRAFFIC CHARACTERISTICS WEB SERVICE / A. A. Gorbachev, D. E. Lysenko // Cybersecurity issues. – 2024. – № 4(62). – С. 104-115. – DOI: 10.21681/2311-3456-2024-4-104-115.
Abstract
The purpose of the study: the aim of the work is to develop a model and algorithm based on the class of the integrated autoregression model – the moving average (hereinafter referred to as the ARIMA model), as well as to assess their quality to solve the problem of generating false dynamic properties of real nodes of computer networks when generating false network traffic of a web service, allowing on the one hand to provide a given level of similarity dynamic properties of real nodes of computer networks with false ones, and on the other hand, an acceptable level of computational complexity of the mathematical apparatus.
The methods used are: Akaike criterion, maximum likelihood method, extended Dickey – Fuller test, Philips – Perron, gradient descent, Darbin – Watson test, Harke – Bera, Cochrane criterion, direct and iterative time series generation method.
Result: the presented model makes it possible to synthesize a time series of moments of generating false web traffic, which has a relatively low error in approximating the dynamic characteristics of real network traffic in conditions of acceptable computational complexity of the process of structural parametric identification of the model and calculation of a time series for generating false web traffic. The presented algorithm makes it possible to increase the effectiveness of protecting computer network nodes by reducing the ability of an attacker to uncover the fact of generating false network traffic in terms of its dynamic characteristics.
Scientific novelty: it consists in the application of an integrated autoregression model – a moving average, taking into account its adaptive structural identification according to the Akaike criterion, parametric identification by the maximum likelihood method, hyperparametric optimization of the length of the training sample and the duration of the structural-parametric identification of the model to simulate a time series of delays between packets of false traffic of a web service of military information systems.
Keywords: time series, modeling, masking, web service, false network information objects, traffic simulation.
References
1. Sherstobitov R. S. Model maskirovaniya informatsionnogo obmena v seti peredachi dannikh vedomstvennogo naznacheniya [A model for organizing information exchange in a departmental data transmission network has been developed]. Management, communication and security systems. 2024. vol. 1. pp. 1–25. DOI: 10.24412/2410-9916-2024-1-001-025.
2. Fateev A. G. Primenenie sredstv zashchiti informatsii dlya realizatsii mer zashchiti, ustanovlennikh spetsialnimi normativnimi dokumentami Federalnoi sluzhbi po tekhnicheskomu i ekspertnomu kontrolyu [The use of information security tools for the implementation of protection measures established by special regulatory documents of the Federal Service for Technical and Expert Control]. // Inzhiniring i tekhnologii, 2020, vol. 1, pp. 24–29 (in Russia).
3. Moskvin A. A., Maksimov R. V., Gorbachev A. A. Model, optimizatsiya i otsenka effektivnosti primeneniya mnogoadresnikh setevikh soedinenii v usloviyakh setevoi razvedki [Model, optimization and evaluation of the effectiveness of multicast network connections in the context of network intelligence]. Cybersecurity issues. 2023. vol. 3(55). pp. 13-22. DOI 10.21681/2311-3456-2023-3-13-22 (in Russia).
4. Gorbachev A. A., Maksimov R. V. Problema maskirovaniya i primeneniya tekhnologii mashinnogo obucheniya v kiberprostranstve [The problem of masking and applying machine learning technologies in cyberspace]. Cybersecurity issues. 2023. vol. 5(57). pp. 37–49.
DOI 10.21681/2311-3456-2023-5-37-49 (in Russia).
5. Maximov R. V., Sokolovsky S. P., Telenga A. P. Methodology for substantiating the characteristics of false network traffic to simulate information systems // CEUR Workshop Proceedings : BIT 2021 – Selected Papers of 11th International Scientific and Technical Conference on Secure Information Technologies, Moscow. 2021. pp. 115–124.
6. Maximov R. V., Sokolovsky S. P., Telenga A. P. Honeypots network traffic parameters modelling // CEUR Workshop Proceedings : BIT 2021 – Selected Papers of 11th International Scientific and Technical Conference on Secure Information Technologies, Moscow. 2021. pp. 229–239.
7. Sposob (varianti) zashchiti vichislitelnikh setei. Patent № 2307392 C1 Rossiiskaya Federatsiya, MPK G06F 21/00, H04L 9/32. Vigovskii L. S., Zargarov I. A., Kozhevnikov D. A., Maksimov R. V., Pavlovskii A. V.,Starodubtsev Yu. I., Khudainazarov Yu. K., Yurov I. A.; zayavitel i patentoobladatel Voennaya akademiya svyazi (RU). – № 2006114974/09 : zayavl. 02.05.2006: opubl. 27.09.2007 (in Russian).
8. Sposob kontrolya informatsionnikh potokov v tsifrovikh setyakh svyazi. Patent № 2267154 C1 Rossiiskaya Federatsiya, MPK G06F 12/14, G06F 11/00. Andrienko A. A., Kulikov O. E., Kostirev A. L., Maksimov R. V., Pavlovskii A. V., Lebedev A. Yu., Kolbasova G. S.; zayavitel i patentoobladatel Voennaya universitet svyazi (RU). № 2004121529/09. zayavl. 13.07.2004; opubl. 27.12.2005 (in Russian).
9. Melnikova Yu. V., Lazhauninkas Yu. V. Kompyuternoe modelirovanie ekonomicheskikh protsessov s primeneniem metodov fraktalnogo analiza [Computer modeling of economic processes using fractal analysis methods] // Science Krasnoyarsk. 2022. vol. 11. pp. 7–23.
10. Yegorov I. K. Proverka prognozirovaniya poseshcheniya veb-stranits na osnove tsepi Markova dlya modelirovaniya profilya povedeniya
polzovatelei / I. K. Yegorov, V. Yu. Radigin // Innovatsionnie mekhanizmi upravleniya tsifrovoi i regionalnoi ekonomikoi : Materiali V Mezhdunarodnoi studencheskoi nauchnoi konferentsii, Moskva, 15–16 iyunya 2023 goda. – Moskva: Natsionalnii issledovatelskii yadernii universitet «MIFI», 2023. – S. 429–437. – EDN ATCIFV.
11. Mikulskii A. Obzor modelei prognozirovaniya [Overview of forecasting models]. Dunărea–Nistru: Anuar, 2019, vol. 6, pp. 284–304 (in Russia).
12. Khaindman R. Dzh. i Atanasopulos Dzh. Prognozirovanie: printsipi i praktika. [Forecasting: principles and practice]: Melbourne, Australia. 2021 (in Russia).
13. Mirzakulova, Sh. A. Issledovanie vremennogo ryada na statsionarnost [Investigation of the time series for stationarity]. Obrazovatelnaya sistema: novatsii v sfere sovremennogo nauchnogo znaniya : sbornik nauchnikh trudov, Kazan, 2019, pp. 318–333 (in Russia).
14. Felker M. N., Chesnov V. V. Issledovanie vliyaniya izmeneniya parametrov modeli ARIMA na kachestvo prognoza dlya korotkikh naborov dannikh [Investigation of the effect of changing the parameters of the ARIMA model on the quality of the forecast for short data sets]. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternie tekhnologii, upravlenie, radioelektronika, 2021, vol. 3, pp. 36–46 (in Russia).
15. Skorobogatikh Y. Y. K voprosu o metodakh nakhozhdeniya otsenok parametrov regressionnikh modelei [On the question of methods for finding estimates of the parameters of regression models] / Y. Y. Skorobogatikh, S. N. Mukhina // Izvestiya Baltiiskoi gosudarstvennoi akademii ribopromislovogo flota: psikhologo-pedagogicheskie nauki. – 2023. – vol. 3(65). pp. 205–212. – DOI 10.46845/519.2420715331-2023-3-65-205-212.
104–115
Sheluhin, O. I. DEVELOPMENT OF A HARDWARE AND SOFTWARE SYSTEM FOR MODELLING MULTI-LABELED COMPUTER ATTACKS / O. I. Sheluhin, D. I. Rakovskiy // Cybersecurity issues. – 2024. – № 4(62). – С. 116-130. – DOI: 10.21681/2311-3456-2024-4-116-130.
Abstract
The aim of the study: development and software implementation of an experimental hardware-software complex for collecting telemetry of computer networks under conditions of multi-labeled controlled computer attacks, as well as analysis of the results of simulation modelling of multi-labeled attacks obtained with the help of the implemented complex. Research methods: simulation modelling; machine learning; methods of multi-value analysis; software implementation of the hardware-software complex for the study of the property of multi-value class labels. Objects of research are theoretical and practical questions of multi-labeled class labels in the sphere of information security. Research results. A hardware-software complex for telemetry collection in the course of simulation modeling of computer attacks in computer systems with multi-label property in tabular representation is created. Hardware-software complex simulates real data corresponding to the tasks of information security. The novelty of the developed hardware-software complex is the automated parallel labeling of all computer attacks carried out on the computer network, which allows to take into account multi-label already at the stage of data collection. Using the developed hardware-software complex, multi-label data set is formed, which is diagnostic information about the network, subjected to 3 types of computer attacks made in parallel - «Denial of Service»; «Network Intelligence»; «Fuzzing». It is found that multi-label computer attack is a separate entity with its own distribution of informative significance of attribute space. Since multi-label computer attack is a separate entity, this entity can be detected by machine learning algorithms with high generalization ability capable of clustering. If the machine learning algorithm does not involve multi-label output, then even with a correctly identified cluster «inside», the lack of multi-label output leads to a classification error. Scientific and practical significance. The functionality of the proposed hardware-software complex for modeling multi-label computer attacks is described; the format of data in tabular representation, collected with the help of the developed hardware-software complex. The data generated by the hardware-software complex can be used in the development of intrusion detection tools that take into account multi-label class labels. The proposed hardware-software complex allows to investigate the multi-label property of class labels by fine-tuning the ratio of single-valued and multi-label class labels through the computer attack configurator.
Keywords: Information security, network attacks, multi-label classification, machine learning, simulation modeling,
dataset, experimental data.
References
1. Kotenko I. V., Dun H. Obnaruzhenie atak v internete veshhej na osnove mnogozadachnogo obuchenija i gibridnyh metodov sjemplirovanija // Voprosy kiberbezopasnosti. 2024. T. 60, № 2. S. 10–21. DOI: 10.21681/2311-3456-2024-2-10-21.
2. Rzaev B. T., Lebedev I. S. Primenenie bjegginga pri poiske anomalij setevogo trafika // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2021. T. 21, № 2. S. 234–240. DOI: 10.17586/2226-1494-2021-21-2-234-240.
3. Solomin A. A., Ivanova Yu. A. Modern approaches to multiclass intent classification based on pre-trained transformers // Naučno-teh.
vestn. inf. tehnol. meh. opt. 2020. T. 20, № 4. S. 532–538. DOI: 10.17586/2226-1494-2020-20-4-532-538.
4. Lebedev I. V., Simonjan A. G. Analiz Trafika Dlja Issledovanija Setevoj Aktivnosti I Obnaruzhenija Atak // Sbornik trudov XIV Mezhdunarodnoj otraslevoj nauchno-tehnicheskoj konferencii. 2020. Moskva: OOO «Izdatel'skij dom Media pablisher», 2020. S. 215–216.
5. Du Z., He K., Lui W., He W. Automated Neural Machine Translation for Icd Coding // Industry and agriculture. T. 66, № 1. S. 41–58.
6. Berger A. I., Guda S. A. Svojstva algoritmov poiska optimal'nyh porogov dlja zadach mnogoznachnoj klassifikacii // Komp'juternye issledovanija i modelirovanie. 2022. T. 14, № 6. S. 1221–1238.
7. Karpovich S. N. Multi-Label Classification of Text Documents using Probabilistic Topic Modeling // SPIIRAS Proceedings. 2016. T. 4, № 47. S. 92–104. DOI: 10.15622/sp.47.5.
8. Rakovskij D. I. Vlijanie problemy mnogoznachnosti metok klassov sistemnyh zhurnalov na zashhishhennost' komp'juternyh setej // Naukoemkie Tehnologii V Kosmicheskih Issledovanijah Zemli. 2023. T. 15, № 1. S. 48–56s. DOI: 10.36724/2409-5419-2023-15-148-56.
9. Talukder Md. A., Hasan K. F., Islam Md. M., Uddin Md. A., Akhter A., Yousuf M. A., Alharbi F., Moni M. A. A dependable hybrid machine learning model for network intrusion detection // Journal of Information Security and Applications. 2023. T. 72. S. 103405. DOI: 10.1016/j.jisa.2022.103405.
10. Riera T. S., Higuera J. -R. B., Higuera J. B., Herraiz J. -J. M., Montalvo J. -A. S. A new multi-label dataset for Web attacks CAPEC classification using machine learning techniques // Computers & Security. 2022. T. 120. S. 102788. DOI: 10.1016/j.cose.2022.102788.
11. Kondakov S. E., Rud' I. S. Model' processa provedenija komp'juternyh atak s ispol'zovaniem special'nyh informacionnyh vozdejstvij // Voprosy Kiberbezopasnosti. 2021. T. 45, № 5. S. 12–20. DOI: 10.21681/2311-3456-2021-5-12-20.
12. Sheluhin O. I., Rakovskij D. I. Vizualizacija Anomal'nyh Sobytij Pri Prognozirovanii Sostojanij Komp'juternyh Sistem Na Osnove «Istoricheskih Dannyh» // Reds: Telekommunikacionnye Ustrojstva I Sistemy. 2022. T. 12, № 2. S. 53–58.
13. Vasilyev V., Kirillova A., Vulfin A., Nikonov A. Cybersecurity Risk Assessment Based on Cognitive Attack Vector Modeling with CVSS Score // 2021 International Conference on Information Technology and Nanotechnology (ITNT). Samara, Russian Federation: IEEE, 2021.
S. 1–6. DOI: 10.1109/ITNT52450.2021.9649191.
14. Rakovskij D. I. Obnaruzhenie komp'juternyh atak i preduprezhdenie narushenij funkcionirovanija komp'juternyh setej na osnove mnogoznachnyh zakonomernostej // Sbornik trudov III Vserossijskoj nauchnoj shkoly-seminara «Sovremennye tendencii razvitija metodov i tehnologij zashhity informacii». 2023. S. 307–311.
15. Riera T. S., Higuera J. -R. B., Higuera J. B., Herraiz J. -J. M., Montalvo J. -A. S. A new multi-label dataset for Web attacks CAPEC classification
using machine learning techniques // Computers & Security. 2022. T. 120. S. 102788. DOI: 10.1016/j.cose.2022.102788.
16. Kazhemskij M. A., Sheluhin O. I. Mnogoklassovaja Klassifikacija Setevyh Atak Na Informacionnye Resursy Metodami Mashinnogo Obuchenija // Trudy Uchebnyh Zavedenij Svjazi. 2019. T. 5, № 1. S. 107–115. DOI: 10.31854/1813-324X-2019-5-1-107-115.
17. Sheluhin O. I., Rakovskij D. I. Mnogoznachnaja klassifikacija komp'juternyh atak s ispol'zovaniem iskusstvennyh nejronnyh setej s mnozhestvennym vyhodom // Trudy uchebnyh zavedenij svjazi. 2023 T. 9, № 4. S. 95–111. DOI:10.31854/1813-324X-2023-9-4-97-113
18. Kukartsev V., Nelyub V., Kozlova A., Borodulin A., Rukosueva A. Intelligent Data Analysis as a Method of Determining the Influence of Various Factors on the Level of Customer Satisfaction of the Company // Data Analytics in System Engineering / pod red. Silhavy R., Silhavy P. Cham: Springer Nature Switzerland, 2024. T. 935. S. 109–128. DOI: 10.1007/978-3-031-54820-8_11.
19. Karnaukh S. G., Markov O. E., Kukhar V. V., Shapoval A. A. Classification of steels according to their sensitivity to fracture using a synergetic model // Int J Adv Manuf Technol. 2022. T. 119, № 7–8. S. 5277–5287. DOI: 10.1007/s00170-022-08653-y.
20. Zhang X., Zhuang Y., Zhang T., Li C., Chen H. Masked Image Modeling Auxiliary Pseudo-Label Propagation with a Clustering Central Rectification Strategy for Cross-Scene Classification // Remote Sensing. 2024. T. 16, № 11. S. 1983. DOI: 10.3390/rs16111983.
21. Zhao T., Zhang Y., Miao D., Zhang H. Multi-granular labels with three-way decisions for multi-label classification // Int. J. Mach. Learn. & Cyber. 2023. T. 14, № 11. S. 3737–3752. DOI: 10.1007/s13042-023-01861-2.
22. Priyadharshini M., Banu A.F., Sharma B., Chowdhury S., Rabie K., Shongwe T. Hybrid Multi-Label Classification Model for Medical Applications Based on Adaptive Synthetic Data and Ensemble Learning // Sensors. 2023. T. 23, № 15. S. 6836. DOI: 10.3390/s23156836.
116–130
Ryzhenko, A. A. ALGORITHM FOR ASSESSING THE LEVEL OF DIGITAL AUTONOMY OF DIGITAL SPACE INFRASTRUCTURE COMPONENTS / A. A. Ryzhenko, V. M. Seleznev // Cybersecurity issues. – 2024. – № 4(62). – С. 131-139. – DOI: 10.21681/2311-3456-2024-4-131-139.
Abstract
The aim of the work is to develop and formalize an algorithm for assessing the level of digital autonomy of digital space infrastructure components, allowing us to consider digital data as a bicubic system for storing attribute information. Research method: multiset methods, conceptual modeling, algorithmization of processes, resources and objects. Research result: a model and algorithm for assessing the autonomy of digital resources has been developed, allowing us to consider digital environment data not only as a source of information for owners, but also as a microsystem that allows storing service and attribute information, as well as unwanted injections. As a formal description, the numerical representation of multiset algebra is used, as one of the most effective tools for representing the processes of a binary data system. The resulting formulation solves the current problem of data formalization - modeling the processes of changing the attribute model of a digital object, as well as assessing possible changes. The scientific novelty lies in the development of a new element of conceptual modeling of model destructors - a bicubic system for assessing the level of autonomy of digital objects.
Keywords: destructor, modeling, intelligent agent, facet, hierarchy, transition rules, autonomy, digital space, system.
References
1. Ryzhenko A. A. Organizacija sistemy podgotovki sotrudnikov organizacij v sfere protivoborstva mehanizmam social'noj inzhenerii // Problemy upravlenija bezopasnost'ju slozhnyh sistem. Materialy XXX mezhdunarodnoj konferencii. Pod obshhej redakciej
A. O. Kalashnikova, V. V. Kul'by. Moskva, 2022. S. 337–342
2. Pravoobladatel' dannyh ili obladatel' informacii – kogo imeet v vidu zakon? – rezhim dostupa: https://zakon.ru/blog/2020/11/14/pravoobladatel_dannyh_ili_obladatel_informacii__kogo_ imeet_v_vidu_zakon (data poseshhenija 06.06.2024 g.)
3. Ryzhenko A. A., Ryzhenko N. Ju. Intellektual'nye destruktory i mobil'nye bankovskie klienty // Aktual'nye problemy i perspektivy razvitija
jekonomiki: Trudy XXI Mezhdunarodnoj nauchno-prakticheskoj konferencii. Simferopol'-Gurzuf, 20-22 oktjabrja 2022 god. / Pod red. d.je.n., d.ped.n., professora N. V. Apatovoj. – Simferopol': Izdatel'skij dom KFU im. V.I. Vernadskogo, 2022. – s. 241-242.
4. Ryzhenko A. A., Ryzhenko N. Ju. Utechki dannyh i rejtingi bankov // Teorija i praktika jekonomiki i predprinimatel'stva. Trudy
XX Mezhdunarodnoj nauchno-prakticheskoj konferencii. Pod redakciej N. V. Apatovoj. Simferopol', 2023. S. 215-216
5. Ryzhenko A. A. Umnaja bot-set' ili model' intellektual'nogo destruktora // Voprosy kiberbezopasnosti. 2023. № 5(57). S. 60–68. DOI: 10.21681/2311-3456-2023-5-60-68
6. Ryzhenko A. A., Seleznjov V. M. Model' sistematizacii klassifikatorov destruktivnyh i konstruktivnyh sobytij cifrovogo prostranstva // Voprosy kiberbezopasnosti. 2024. № 3(61). S. 113–119. DOI: 10.21681/2311-3456-2024-3-113-119
7. Kaushik, B., Sharma, R., Dhama, K. et al. Performance evaluation of learning models for intrusion detection system using feature selection. J Comput Virol Hack Tech 19, 529–548 (2023). https://doi.org/10.1007/s11416-022-00460-z
8. Hashemi, H., Samie, M. E. & Hamzeh, A. IFMD: image fusion for malware detection. J Comput Virol Hack Tech 19, 271–286 (2023). https://doi.org/10.1007/s11416-022-00445-y
9. Alaeiyan, M., Parsa, S. A hierarchical layer of atomic behavior for malicious behaviors prediction. J Comput Virol Hack Tech 18, 367–382 (2022). https://doi.org/10.1007/s11416-022-00422-5
10. Dalla Preda, M., Ianni, M. Exploiting number theory for dynamic software watermarking. J Comput Virol Hack Tech 20, 41–51 (2024). https://doi.org/10.1007/s11416-023-00489-8
11. Babash, A. V. XOR ciphers model and the attack to it. J Comput Virol Hack Tech 18, 275–283 (2022). https://doi.org/10.1007/s11416-022-00419-0
12. Karamitas, C., Kehagias, A. Improving binary diffing speed and accuracy using community detection and locality-sensitive hashing: an empirical study. J Comput Virol Hack Tech 19, 319–337 (2023). https://doi.org/10.1007/s11416-022-00452-z
13. Nikolopoulos, S. D., Polenakis, I. Behavior-based detection and classification of malicious software utilizing structural characteristics of group sequence graphs. J Comput Virol Hack Tech 18, 383–406 (2022). https://doi.org/10.1007/s11416-022-00423-4
14. Casolare, R., Fagnano, S., Iadarola, G. et al. Picker Blinder: a framework for automatic injection of malicious inter-app communication. J Comput Virol Hack Tech 20, 331–346 (2024). https://doi.org/10.1007/s11416-023-00510-0
15. Sekrety USA v Micro QR Code M4 (chast' 1). – rezhim dostupa: https://habr.com/ru/articles/781858/ (data poseshhenija 06.06.2024 g.)
16. Sekrety USA v Micro QR Code M2 (chast' 2). – rezhim dostupa: https://habr.com/ru/articles/782488/ (data poseshhenija 06.06.2024 g.)
17. Sekrety USA v Micro QR Code M3 (chast' 3). – rezhim dostupa: https://habr.com/ru/articles/782772/ (data poseshhenija 06.06.2024 g.)
131–139
Vodopyanov, A. S. USING DIGITAL TWINS TO ENSURING INFORMATION SECURITY OF CYBERPHYSICAL SYSTEMS / A. S. Vodopyanov // Cybersecurity issues. – 2024. – № 4(62). – С. 140-144. – DOI: 10.21681/2311-3456-2024-4-140-144.
Abstract
Purpose of the study - the work is devoted to the study of methods for using digital twins to ensure information security of cyber-physical systems. Methodology of work. When conducting research, system analysis was used to analyze the scope of digital twins, their classifications and interaction models. When developing a digital twin prototype, mathematical models based on automata theory.
Result: as a result of the study, the concepts of a cyber-physical system and a digital twin were considered, existing methods for ensuring information security of cyber-physical systems were given, methods were obtained that increase information security when synchronizing a digital twin and a cyber-physical system, the stages of ensuring information security using a digital twin were considered, the reasons for the advantages of a digital a double for industry, as well as existing protocols by which cyber-physical systems interact with cyberspace. Scope of application of the results. The results obtained do not contradict existing regulatory documents on the protection of computer information systems and can be used to improve the efficiency of information security systems in computer information systems at the stages of their design and monitoring of operation. Scientific novelty. A conceptual model of digital twins and a classification of the problems they solve are proposed. A digital twin model has been developed for the design of information security management systems.
Keywords: synchronization, conceptual model, finite state machines, critical information infrastructure. 
References
1. G. Lampropoulos, Kerstin V. Siakas – Enhancing and securing cyber-physical systems and Industry 4.0 through digital twins // A critical review July 2022Journal of Software: Evolution and Process 35(2011), DOI:10.1002/smr.2494.
2. M. Eckhart, A. Ekelhart – Digital Twins for Cyber-Physical Systems Security: State of the Art and Outlook // Security and Quality in Cyber-Physical Systems Engineering (pp.383–412), 2019. DOI:10.1007/978-3-030-25312-7_14.
3. Richard J. Somers, James A. Douthwaite, David J. Wagg, Neil D. Walkinshaw – Digital-twin-based testing for cyber–physical systems: A systematic literature review // Information and Software Technology Volume 156, 2022. DOI: 10.1016/j.insof.2022.107145.
4. Кушко Е. А., Грачёв Д. А., Паротькин Н. Ю., Золотарёв В. В. О вопросах безопасности киберфизических систем // Доклады Томского государственного университета систем управления и радиоэлектроники. 2022. № 4, том 2, С. 101–109 DOI: 10.21293/18180442-2022-25-4-101-109.
5. Минзов А. С., Невский А. Ю., Баронов О. Р., Немчанинова С.В. Цифровые двойники в системах управления // Вопросы кибербезопасности 2024 № 2(60). С.29–35. DOI: 10.21681/2311-3456-2024-2-29-35.
6. Дозорцев В. М. – Цифровые двойники в промышленности: генезис, состав, терминология, технологии, платформы, перспективы. Часть 1. Возникновение и становление цифровых двойников. Как существующие определения отражают содержание и функции цифровых двойников? // Автоматизация в промышленности DOI: 10.25728/avtprom.2020.09.01.
7. Расим Алгулиев, Ядигар Имамердиев, Людмила Сухостат – Обеспечение Информационной Безопасности Киберфизических
Систем // Proqram mühəndisliyinin aktual elmipraktikiproblemləri. I respublika konfransı Bakı, 17 may 2017-ci il DOI: 10.25045/NCSoftEng.2017.07
8. Шкодырев В. П. Киберфизические системы как технологическая платформа синергетической интеграции перспективных
прорывных технологий // Системный анализ в проектировании и управлении. 2020. DOI:10.18720/SPBPU/2/id20-109.
9. Смышляева А. А., Резникова К. М., Савченко Д. В. Современные технологии в Индустрии 4.0 – киберфизические системы //
Интернет-журнал «Отходы и ресурсы», 2020. №3, DOI: 10.15862/02INOR320.
10. Мехтиев Ш. А. Анализ некоторых проблем надежности киберфизических систем // Информационные технологии в науке, образовании и производстве. 2022. №18(1). С. 42–47. DOI: 10.25045/NCInfoSec.2017.06.
140–144
Streltsov A. A. INFORMATION & COMMUNICATION TECHNOLOGIES FOR A GLOBAL WORLD / A. A. Streltsov // Cybersecurity issues. – 2024. – № 4(62). – С. 145-147. – DOI: 10.21681/2311-3456-2024-4-145-147. 145–147

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.