
Contents of the 4th issue of the Cybersecurity Issues journal for 2025:
Title | Pages |
Sundeev, P. CLUSTER MODEL OF DISTRIBUTED REGISTRY PROTECTION / P. Sundeev // Cybersecurity issues. – 2025. – № 4(68). – С. 2-8. – DOI: 10.21681/2311-3456-2025-4-2-8.AbstractThe purpose of the study: is to develop an information protection model for analyzing the constructive security of the distributed registry architecture, taking into account the access control policy and the quantum threat. Research methods: object-oriented analysis of complex systems, system analysis, theory of modular cluster networks, graph theory, matrix theory, mathematical logic. Research result: an extended information protection model with full overlap for distributed registry systems has been developed, taking into account the influence of the quantum threat, which allows evaluating constructive protection and conducting formal static or dynamic security analysis of the architecture. Scientific novelty: based on the methods of the theory of modular cluster networks, an extended information protection model with full overlap has been developed to analyze the constructive security of a distributed registry due to the cluster decomposition of architecture and information interactions, taking into account the effectiveness of information security tools. The system criteria for evaluating constructive protection are shown. The results were obtained with the financial support of the project «Technologies for countering previously unknown quantum cyber threats», implemented within the framework of the state program of the «Sirius» Federal Territory «Scientific and technological development of the «Sirius» Federal Territory (Agreement No. 23-03 dated September 27, 2024). Keywords: modular cluster network, quantum threat. References1. Markov A. S. Cybersecurity and Information Security as Nomenclature Bifurcation Scientific Specialties. (2022). Voprosy Kiberbezopasnosti [Cybersecurity issue]. № 1(47). P. 2–9 (Russian Text). 2. Topical issues in the implementation of secure software development processes Markov A. S., Varenitca V. V., Arustamyan S. S. In the collection: Proceedings of the International Conference on Information Processes and Systems Development and Quality Assurance. (2023). IPSQDA-2023. P. 48–53. 3. Ishchukova E. A. On the influence of cryptographic stability of hashing functions on the stability of modern blockchain ecosystems and platforms. (2025). Voprosy Kiberbezopasnosti [Cybersecurity issue]. № 3(67), c. 63–71. DOI: 10.21681/2311-3456-2025-3-63-71 (Russian Text). 4. Balyabin A. A., Petrenko S. A. Model of a blockchain platform with cyber-immunity under quantum attacks. (2025). Voprosy Kiberbezopasnosti [Cybersecurity issue]. № 3(67). P. 72–82. DOI: 10.21681/2311-3456-2025-3-72-82 (Russian Text). 5. Petrenko A. S., Petrenko S. A. Basic Algorithms Quantum Cryptanalysis. Voprosy Kiberbezopasnosti [Cybersecurity issue]. (2023). no. 1(53), pp. 100–115. DOI: 10.21681/2311-3456-2023-1-100-115 (Russian Text). 6. Petrenko A. S. Applied Quantum Cryptanalysis (scientific monograph). River Publishers. (2023). 256 p. ISBN 9788770227933. DOI: 10.1201/9781003392873. 7. Mark Webber, Vincent Elfving, Sebastian Weidt, Winfried K. Hensinger. The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime. AVS Quantum Sci. 4, 013801 (2022). DOI: 10.1116/5.0073075. 8. Battarbee C., Kahrobaei D., Perret L., Shahandashti S. F. SPDH-Sign: Towards Efficient, Post-quantum Group-Based Signatures. In: Johansson, T., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2023. (2023). Lecture Notes in Computer Science. V. 14154. P. 113–138. Springer, Cham. DOI: 10.1007/978-3-031-40003-2_5. 9. Li L., Lu X., Wang K. Hash-based signature revisited. (2022). Cybersecurity. V. 5. Article no. 13. DOI:10.1186/s42400-022-00117-w. 10. Sundeev P. V. Functional stability of a distributed registry in the context of the emergence of a new quantum threat. (2025). Cybersecurity issue. № 3(67). P. 83–89. DOI: 10.21681/2311-3456-2025-3-83-89 (Russian Text). |
2–8 |
Muravyev, S. K. THE A VULNERABILITIES OF GCC AND LLVM TO OPTIMIZATION PIPELINE ATTACKS / S. K.Muravyev // Cybersecurity issues. – 2025. – № 4(68). – С. 9-16. – DOI: 10.21681/2311-3456-2025-4-9-16.AbstractPurpose of the study: the purpose of the work is to develop recommendations for the implementation of secure software development tools and the implementation development processes based on the analysis of information security threats in software development related to the possibility of creating and using extension modules for optimizing compilers by attackers. Methods of research: the main research methods include analysis and synthesis, modeling and experiment. Result(s): the article examines the vulnerabilities of optimizing compilers of GCC and LLVM to malicious interference in the optimization pipeline, which can be carried out by hackers through standard software interfaces provided to enhance the functionality of such compilers and the effectiveness of software developed with their help. The relevance of the work is determined by the current regulatory and technical requirements for developers of secure software to analyze information security threats from software development tools, one of the key elements of which are optimizing compilers. The article discusses the features of the analysis and transformation of the source code by optimizing compilers of GCC and LLVM in the process of optimizing the source code. The possibility of practical implementation of attacks that change the optimization pipeline in such a way that the algorithm of functioning of the target application fundamentally changes in the way required by the attacker is shown. As a result, recommendations are given on how to neutralize such threats. Scientific novelty: the paper shows the need to expand the regulatory requirements for secure C/C++ compilers and measures to develop secure software, in terms of the need to control the use of extension modules for the tools used. Keywords: development tools, software, compiler, information security threat, GCC, LLVM. References1. Arustamjan S. S., Varenica V. V., Markov A. S. Metodicheskie i realizacionnye aspekty vnedrenija processov razrabotki bezopasnogo programmnogo obespechenija // Bezopasnost' informacionnyh tehnologij. 2023. T. 30. № 2. S. 23–37. 2. Nacke K., Kwan A. Learn LLVM 17. A beginner’s guide to learning LLVM compiler tools and core libraries with C++. Packt Publishing, 2024. – ISBN 978-1-83763-134-6. 3. Leonov N. V. COUNTERING SOFTWARE VULNERABILITIES. Part 1. ONTOLOGICAL MODEL // Voprosy kiberbezopasnosti. 2024, № 2(60). S. 87–92. DOI: 10.21681/2311-3456-2024-2-87-92. 4. Leonov N. V. COUNTERING SOFTWARE VULNERABILITIES. Part 2. ANALYTICAL MODEL AND CONCEPTUAL SOLUTIONS // Voprosy kiberbezopasnosti. 2024, № 3 (61). S. 90–95. DOI: 10.21681/2311-3456-2024-3-90-95. 5. Deitel P., Deitel H. C++20 for Programmers. Pearson, 2022. ISBN 978-0136905691. 6. Belov, A. A. Unreliability of Available Pseudorandom Number Generators / A. A. Belov, M. A. Tintul, N. N. Kalitkin // Computational Mathematics and Mathematical Physics. – 2020. – Vol. 60, No. 11. – P. 1747-1753. – DOI 10.1134/S0965542520110044. 7. Muravyev S. K. Information security threats of optimizing compilers’ plugins. IT Security (Russia), [S.l.], v. 31, no. 4, p. 44–55, 2024. ISSN 2074-7136. ISSN 2074-7136. DOI: http://dx.doi.org/10.26583/bit.2024.4.02. 8. Rastello F., Tichadou F. B. SSA-based Compiler Design. – Springer, 2022. – ISBN 978-3-030-80514-2. DOI: https://doi.org/10.1007/978-3-030-80515-9. 9. Khedler U. GCC Translation Sequence and Gimple IR. URL: https://reup.dmcs.pl/wiki/images/d/da/Gcc-gimple.pdf, (дата обращения:02.10.2024). 10. Min-Yih H. LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries. – Packt Publishing, 2021. – ISBN 978-1-83882-495-2. 11. Egorov V. Yu. Development of the QP OS operating system // New information technologies and systems: A collection of scientific articles based on the materials of the XVII International Scientific and Technical Conference, Penza, November 18-19, 2020. – Penza: Penza State University, 2020. – pp. 45– 47. – EDN EJXOIX. |
9–16 |
Bochkov, M. V. METHOD ASSESSMENT OF CRITICAL INFORMATION INFRASTRUCTURE SECURITY ON THE BASIS OF SEMI-NATURAL AND SIMULATION MODELING TOOLS / M. V.Bochkov, D. A. Vasinev // Cybersecurity issues. – 2025. – № 4(68). – С. 17-29. – DOI: 10.21681/2311-3456-2025-4-17-29.AbstractResearch objective: development of a method assessing the security of critical information infrastructure (CII) based on semi-natural and simulation modeling tools. The proposed method allows to develop parametric accurate simulation models of the CII object to investigate the properties of security and stability, to model the impact on the objects of computer attacks (CA). Research methods: mathematical methods of systems theory and systems analysis of probability theory, methods of graph theory, methods of simulation modeling. Research result: the proposed modeling method allows to take into account the configuration and communication features of the construction and functioning of CII objects, the dynamics and parameters of the intruder's impact on the CII objects, the existing security policy, to model the stability property, to conduct research on the degree of influence of the constituent elements on the security of the CII object. The developed modeling method makes it possible to assess the security of KII objects taking into account the configuration and communication parameters of the KII object, to reduce the dependence on expert assessments, to obtain parametrically justified security assessments. Keywords: information security, communication infrastructure, configuration infrastructure, mathematical modeling, simulation modeling, hypernets, security assessment, stability, protocol data blocks. References1. Zegzhda D. P. Kiberbezopasnost' cifrovoj industrii. Teorija i praktika funkcional'noj ustojchivosti k kiberatakam / Pod redakciej professora RAN, doktora tehnicheskih nauk D.P. Zegzhdy. – Moskva: Gorjachaja linija – Telekom. 2023. – 500s. – ISBN 978-5-9912-0827-7. 2. Petrenko S. A. Kiberustojchivost' cifrovoj industrii 4.0: nauchnaja monografija / S. A.Petrenko. – Sankt-Peterburg: Izdatel'skij Dom «Afina», 2020, – 256 s. 3. Petrenko S. A. Upravlenie kiberustojchivost'ju. Postanovka zadachi // Zashhita informacii. Insajd. 2019. № 3(87). S. 16–24. 4. Shtyrkina A. A. Obespechenie ustojchivosti kiberfizicheskih sistem na osnove teorii grafov. Problemy informacionnoj bezopasnosti // Komp'juternye sistemy. 2021. № 2. S. 145–150. 5. Vasinev D. A., Bochkov M. V. Modelirovanie ustojchivosti kriticheskoj informacionnoj infrastruktury na osnove ierarhicheskih gipersetej i setej Petri // Voprosy kiberbezopasnosti, 2024, № 1(59), S. 108–151. DOI: 10.21681/2311-3456-2024-1-108-115. 6. Minaev M. V., Bondar' K. M., Dunin V. S. Modelirovanie kiberustojchivosti informacionnoj infrastruktury MVD Rossii // Kriminologicheskij zhurnal. 2021. № 3. S. 123–128. 7. Osipenko A. A., Chirushkin K. A., Skorobogatov S. Ju., Zhdanova I. M., Korchevnoj P. P. Modelirovanie komp'juternyh atak na programmno-konfiguriruemye seti na osnove preobrazovanija stohasticheskih setej // Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2023. № 2. S. 274–281. 8. Vang L., Egorova L. K., Mokrjakov A. V., Razvitie teorii Gipergrafov // Izvestija RAN. Teorija i sistemy upravlenija. 2018. №1. S. 111–116. DOI: 10.7868/S00023388180110. 9. Velichko V. V. Modeli i metody povyshenija zhivuchesti sovremennyh sistem svjazi / V. V. Velichko, G. V. Popkov, V. K. Popkov – Moskva: Gorjachaja linija – Telekom, 2017.–270 s. ISBN 978-5-94876-090-2. 10. Popkov, G. V. Matematicheskie osnovy modelirovanija setej svjazi / V. V. Velichko, G. V. Popkov, V. K. Popkov – Moskva: Gorjachaja linija – Telekom, 2018.–182 s. ISBN 978-5-9912-0266-4. 11. Makarenko S. I. Dinamicheskaja model' sistemy svjazi v uslovijah funkcional'no-raznourovnevogo informacionnogo konflikta nabljudenija i podavlenija // Sistemy upravlenija, svjazi i bezopasnosti. 2015. № 3. S. 122–186, UDK 623–624. 12. Kolosok I. N., Gurina L. A. Ocenka pokazatelej kiberustojchivosti sistem sbora i obrabotki informacii v JeJeS na osnove polumarkovskih modelej // Voprosy kiberbezopasnosti, 2021, № 6(46), S. 2–11. DOI: 10.21681/2311-3456-2021-6-2-11. 13. Gurina L. A. Povyshenie kiberustojchivosti SCADA i WAMS pri kiberatakah na informacionno-kommunikacionnuju podsistemu JeJeS // Voprosy kiberbezopasnosti. 2022. №2(48). S. 18–26. DOI: 10.21681/2311-3456-2022-2-18-26. 14. Gurina L. A. Ocenka kiberustojchivosti sistemy operativno-dispetcherskogo upravlenija JeJeS // Voprosy kiberbezopasnosti, 2022. № 3(48), S. 18–26. DOI: 10.21681/2311-3456-2022-3-23-31. 15. Chirkova N. E. Analiz sushhestvujushhih podhodov k ocenke kiberustojchivosti geterogennyh sistem // Sbornik materialov Mezhdunarodnoj nauchno-prakticheskoj konferencii: Tehnika i bezopasnost' ob#ektov ugolovno-ispolnitel'noj sistemy Ivanovo. 2022. S. 408–410. 16. Bobrov V. N., Zaharchenko R. I., Buharov E. O., Kalach A. V. Sistemnyj analiz i obosnovanie vybora modelej obespechenija kiberustojchivogo funkcionirovanija ob#ektov kriticheskoj informacionnoj infrastruktury //Vestnik Voronezhskogo instituta FSIN Rossii. 2019. № 4. S. 31–43. 17. Vasinev D. A., Solov'ev M. V., Predlozhenija po postroeniju universal'nogo fazzera protokolov // Trudy uchebnyh zavedenij svjazi. 2023. №6. S. 59–67. DOI: 10.31854/1813-324X-2023-9-6-59-67. |
17–29 |
Gribunin, V. G. ABOUT ATTACKS ON LARGE FUNDAMENTAL MODELS / V. G. Gribunin, S. A. Mayorov, A. A. Murashko // Cybersecurity issues. – 2025. – № 4(68). – С. 30-34. – DOI: 10.21681/2311-3456-2025-4-30-34.AbstractPurpose of the study: to study the possibilities and limitations of an information security attacker in organizing an attack on large fundamental models designed to work with program code. Methods of research: comparison and juxtaposition, system analysis. Results: the article presents the features of large fundamental models as objects of information protection, the principles of implementing the most relevant attacks on large fundamental models designed to work with program code, provides metrics that allow comparing the effectiveness of various approaches to attacks, and identifies the problems that exist in this area for attackers Scientific novelty: large fundamental models in the world are just beginning to be used for working with program code. The article systematically describes information security threats and possible attacks on systems using these models. Problematic issues requiring further research are also presented. Keywords: deep learning, intruders, threats, backdoor, data poisoning, model poisoning, adversarial attacks. References1. Azim M. Best Open Source LLMs for Code Generation in 2025. – Internet-resurs. – Rezhim dostupa: https://www.cubix.co/blog/bestopen-source-llms-for-code-generation-in-2025. – Vremja dostupa: 31.03.2025. 2. Gribunin V. G., Kondakov S. E. K voprosu o zashhite informacii v intellektualizirovannyh obrazcah vooruzhenija // Voprosy kiberbezopasnosti. – 2021. – № 5(45). – Str. 5–11. DOI:10.21681/2311-3456-2021-5-5-11. 3. Schuster R., Song C., Tromer E., Shmatikov V. You Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion // Proceedings of the 30th USENIX Security Symposium. USENIX Association, Canada. – 2021, pp. 1559–1575. 4. Gu T., Dolan-Gavitt B., Garg S. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain // Rezhim dostupa: arXiv abs/1708.06733. DOI:10.48550/arXiv.1708.06733. 5. Chen Y. i dr. Security of Language Models for Code: A Systematic Literature Review // Rezhim dostupa: https://arxiv.org/pdf/2410. 15631. – Vremja dostupa: 31.03.2025. 6. Alzantot M., Sharma Y., Elgohary A. i dr. Generating Natural Language Adversarial Examples // Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium. – Pp.2890–2896. DOI:10.48550/arXiv.1804.07998. 7. Wan Y., Zhang S., Zhang H. i dr. You see what I want you to see: poisoning vulnerabilities in neural code search // Proceedings of the 30th ACM foint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, Singapore. – Pp.1233–1245. DOI:10.1145/3540250.3549153. 8. Ramakrishnan G., Albarghouthi A. Backdoors in Neural Models of Source Code // Proceedings of the 26th International Conference on Pattern Recognition. IEEE, Canada. – Pp.2892–2899. DOI:10.1109/ICPR56361.2022.9956690. |
30–34 |
Korneev, N. V. PATTERN FOR SECURING WEB APPLICATION UNDER THREAT OF UNCONTROLLED GROWTH IN THE NUMBER OF RESERVED RESOURCES / N. V. Korneev, A. E. Trubacheva-Gudovich // Cybersecurity issues. – 2025. – № 4(68). – С. 35-45. – DOI: 10.21681/2311-3456-2025-4-35-45.AbstractThe purpose of this article: development of a pattern for a web application in case of a threat of uncontrolled growth of the number of reserved resources as a result of incomplete user verification. Research method: analysis of the principles of DDoS attacks. Synthesis of DDoS attack scenarios for three types of attacks: transport layer, infrastructure layer, and application layer. The security scenario of a web application is chosen as the basis for the threat of an uncontrolled increase in the number of reserved resources as a result of incomplete user verification. A new protection mechanism has been proposed that provides redirection and verification of the user on a special set of tasks and further balancing of his request to the web application using the IP Hash method. The research was carried out by full-scale modeling of a Docker-based web application in containerization-enabled environments, its deployment and testing. Result: the analysis of the threat of uncontrolled growth in the number of reserved resources is carried out and the relevance of the problem of developing universal template security mechanisms called patterns is shown. In particular, the scenarios of DDoS attacks on web applications are considered. A scenario for ensuring the security of a web application is proposed when there is a threat of an uncontrolled increase in the number of reserved resources as a result of incomplete user verification. A microservice architecture has been built to ensure the security of a web application. A pattern has been developed for a web application in the event of a threat of uncontrolled growth in the number of reserved resources as a result of incomplete user verification based on microservices integrated into containers. As part of the research, a user verification service was developed in JavaScript, with Docker-based virtualization, and with an nginx load balancer. The protection mechanism is implemented as follows. Before entering the web application, the user is redirected to a page where a specific task is required: to solve a mathematical example, to recognize symbols in the right way, to recognize graphic objects in the right way. Upon successful completion of the tasks, the user is redirected to the web application, passing through one of the three load balancers using the IP Hash method. The program code of the user verification service has been developed, including codes of special methods and algorithms for the three tasks mentioned above. A web application security pattern based on Grafana k6 has been tested. The test program code has been developed.js with an implemented testing scenario that includes three stages with different load levels. Up to 20 virtual users participated in the test at the same time, with a gradual increase in workload. As a result of testing, not a single request failure was recorded, all 4816 requests were successful – this indicates the stable operation of the web application security pattern. Practical value: the practical value of the proposed solution includes a pattern for a web application under the threat of uncontrolled growth in the number of reserved resources as a result of incomplete user verification, which can be applied to a wide range of web applications. Keywords: template, DDoS attack, botnet, user verification service, load balancer, IP Hash method, character recognition task, graphic object recognition task, mathematical task, container, testing. References1. Shameer Mohammed, S. Nanthini, N. Bala Krishna, Inumarthi V. Srinivas, Manikandan Rajagopal, M. Ashok Kumar, A new lightweight data security system for data security in the cloud computing, Measurement: Sensors, Volume 29, 2023, 100856. 2. S. Achar, Cloud computing security for multi-cloud service providers: controls and techniques in our modern threat landscape, International Journal of Computer and Systems Engineering, 16(9), 2022, 379–384. 3. Oludare Isaac Abiodun, Moatsum Alawida, Abiodun Esther Omolara, Abdulatif Alabdulatif, Data provenance for cloud forensic investigations, security, challenges, solutions and future perspectives: A survey, Journal of King Saud University – Computer and Information Sciences, Volume 34, Issue 10, Part B, 2022, 10217–10245. 4. Chakraborti, A., Curtmola, R., Katz, J., Nieh, J., Sadeghi, A.R., Sion, R., Zhang, Y., Cloud Computing Security: Foundations and Research Directions. Foundations and Trends in Privacy and Security, 3(2), 2022, 103–213. 5. Ukeje, N., Gutierrez, J., Petrova, K., Information security and privacy challenges of cloud computing for government adoption: a systematic review, International Journal of Information Security, Volume 23, 2024, 1459–1475. 6. Fatemeh Khoda Parast, Chandni Sindhav, Seema Nikam, Hadiseh Izadi Yekta, Kenneth B. Kent, Saqib Hakak, Cloud computing security: A survey of service-based models, Computers & Security,Volume 114, 2022, 102580. 7. Anmol Kumar, Mayank Agarwal, Quick service during DDoS attacks in the container-based cloud environment, Journal of Network and Computer Applications, Volume 229, 2024, 103946. 8. Yunhe Cui, Qing Qian, Chun Guo, Guowei Shen, Youliang Tian, Huanlai Xing, Lianshan Yan, Towards DDoS detection mechanisms in Software-Defined Networking, Journal of Network and Computer Applications, Volume 190, 2021, 103156. 9. Anderson Bergamini de Neira, Burak Kantarci, Michele Nogueira, Distributed denial of service attack prediction: Challenges, open issues and opportunities, Computer Networks, Volume 222, 2023, 109553. 10. Shahbaz Ahmad Khanday, Hoor Fatima, Nitin Rakesh, Implementation of intrusion detection model for DDoS attacks in Lightweight IoT Networks, Expert Systems with Applications, Volume 215, 2023, 119330. 11. Man Li, Huachun Zhou, Shuangxing Deng, Parallel path selection mechanism for DDoS attack detection, Journal of Network and Computer Applications, Volume 230, 2024, 103938. 12. Jordana J. George, Dorothy E. Leidner, From clicktivism to hacktivism: Understanding digital activism, Information and Organization, Volume 29, Issue 3, 2019, 100249. 13. Cameron John Hoffman, C. Jordan Howell, Robert C. Perkins, David Maimon, Olena Antonaccio, Predicting new hackers’ criminal careers: A group-based trajectory approach, Computers & Security, Volume 137, 2024, 103649. 14. B. Balatamoghna, Aditya Jaganath, S. Vaideeshwaran, Anish Subramanian, K. Suganthi, Integrated balancing approach for hosting services with optimal efficiency - Self Hosting with Docker, Materials Today: Proceedings, Volume 62, Part 7, 2022, 4612–4619. 15. Stephen Jacob, Yuansong Qiao, Yuhang Ye, Brian Lee, Anomalous distributed traffic: Detecting cyber security attacks amongst microservices using graph convolutional networks, Computers & Security, Volume 118, 2022, 102728. 16. Diogo Faustino, Nuno Gonçalves, Manuel Portela, António Rito Silva, Stepwise migration of a monolith to a microservice architecture: Performance and migration effort evaluation, Performance Evaluation, Volume 164, 2024, 102411. 17. Hassaan Siddiqui, Ferhat Khendek, Maria Toeroe, Microservices based architectures for IoT systems – State-of-the-art review, Internet of Things, Volume 23, 2023, 100854. 18. Hubin Yang, Ruochen Shao, Yanbo Cheng, Yucong Chen, Rui Zhou, Gang Liu, Guoqi Xie, Qingguo Zhou, REDB: Real-time enhancement of Docker containers via memory bank partitioning in multicore systems, Journal of Systems Architecture, Volume 151, 2024, 103135. 19. Enrico Cambiaso, Luca Caviglione, Marco Zuppelli, DockerChannel: A framework for evaluating information leakages of Docker containers, SoftwareX, Volume 24, 2023, 101576. 20. Korneev N. V., Lazorin D. S. Pattern dlya obespecheniya bezopasnosti veb-prilozheniya pri ugroze XSS atak v oblachnoj infrastrukture // Voprosy kiberbezopasnosti. 2024. № 6(64). S. 76–84. 21. Vladimir Ciric, Marija Milosevic, Danijel Sokolovic, Ivan Milentijevic, Modular deep learning-based network intrusion detection architecture for real-world cyber-attack simulation, Simulation Modelling Practice and Theory, Volume 133, 2024, 102916. |
35–45 |
Balyabin, A. A. METHODOLOGY FOR SYNTHESIZING QUANTUM-RESISTANT BLOCKCHAIN PLATFORMS WITH CYBER-IMMUNITY / A. A. Balyabin, S. A. Petrenko // Cybersecurity issues. – 2025. – № 4(68). – С. 46-54. – DOI: 10.21681/2311-3456-2025-4-46-54.AbstractPurpose of the research: development of a methodology for the parametric synthesis of cyber-resilient blockchain ecosystems and platforms of the ‘Data Economy’ of the Russian Federation with cyber-immunity under the new quantum threat. Methods of the research: methods of system analysis, methods of probability theory and mathematical statistics, methods of the theory of stability of complex systems, methods of similarity and dimensionality theory. Result of the research: an study of existing approaches to ensuring quantum resilience of blockchain platforms with cyber-immunity has been conducted; a hypothesis regarding the possibility of ensuring the required cyber-resilience of blockchain platforms with cyber-immunity under quantum attacks has been formulated; a methodology for the parametric synthesis of quantum-resilient blockchain ecosystems and platforms of the ‘Data Economy’ of the Russian Federation with cyber-immunity has been developed using similarity theory methods; experimental studies of the methodology have been carried out, the results of which confirmed the proposed hypothesis. Scientific novelty: the proposed methodology differs from existing ones in that it introduces new groups of formal operations for each level of blockchain platforms with cyber-immunity functionality, aimed at evaluating the necessary and sufficient values of neutralizing impact parameters using similarity theory methods. Additionally, it includes a criterion that allows establishing the existence of a solution for the given values of required cyber-resilience and time performance indicators of the blockchain platform. Keywords: threats to information security, quantum threats to security, blockchain ecosystems and platforms, cybersecurity, cyber resilience, methods of analysis and synthesis of quantum-resistant blockchain. References1. Mourtzis D., Angelopoulos J., Panopoulos N. Blockchain Integration in the Era of Industrial Metaverse // Applied Sciences. 2023. Vol. 13. No. 3. P. 1353. DOI: 10.3390/app13031353. 2. Nguyen D. C. et al. 6G Internet of Things: A Comprehensive Survey // IEEE Internet of Things Journal. 2022. Vol. 9. No. 1. Pp. 359–383. DOI: 10.1109/JIOT.2021.3103320. 3. Balyabin A. A., Petrenko S. A., Kostyukov A. D. Model' ugroz bezopasnosti i kiberustoychivosti oblachnykh platform KII RF // Zashchita informatsii. Insayd. 2024. № 5 (119). Pp. 26–34. 4. Markov A. S. Vazhnaya vekha v bezopasnosti otkrytogo programmnogo obespecheniya // Voprosy kiberbezopasnosti. 2023. № 1 (53). Pp. 2–12. DOI: 10.21681/2311-3456-2023-1-2-12. 5. Chen C. et al. When Digital Economy Meets Web3.0: Applications and Challenges // IEEE Open Journal of the Computer Society. 2022. Vol. 3. Pp. 233–245. DOI: 10.1109/OJCS.2022.3217565. 6. Zhu Q., Loke S. W., Trujillo-Rasua R., Jiang F., Xiang Y. Applications of Distributed Ledger Technologies to the Internet of Things: A Survey // ACM Comput. Surv. 2019. Vol. 52. No. 6. P. 120:1–120:34. DOI: 10.1145/3359982. 7. Petrenko A. S. Kvantovo-ustoychivyy blokcheyn: nauchnaya monografiya. // Sankt-Peterburg : Piter, 2023. 384 p. 8. Petrenko S. A. Kiberustoychivost' Industrii 4.0: nauchnaya monografiya // «Izdatel'skiy Dom «Afina». 2020. 256 p. 9. Markova S. V. Vyyavleniya uyazvimostey v detsentralizovannykh informatsionnykh sistemakh na osnove smart-kontraktov s pomoshch'yu metodov obrabotki bol'shikh dannykh // Fundamental'nye issledovaniya. 2022. № 9. Pp. 47–53. 10. Petrenko S. A., Balyabin A. A. Model' kvantovykh ugroz bezopasnosti informatsii dlya natsional'nykh blokcheyn-ekosistem i platform // Voprosy kiberbezopasnosti. 2025. № 1(65). Pp. 7–17. DOI 10.21681/2311-3456-2025-1-7-17. 11. Kushwaha S. S., Joshi S., Singh D., Kaur M. Lee H. -N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract // IEEE Access. 2022. Vol. 10. Pp. 6605–6621. DOI: 10.1109/ACCESS.2021.3140091. 12. Fernandez-Carames T. M., Fraga-Lamas P. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks // IEEE Access. 2020. Vol. 8. Pp. 21091–21116. DOI: 10.1109/ACCESS.2020.2968985. 13. Petrenko A. S., Romanchenko A. M. Perspektivnyy metod kriptoanaliza na osnove algoritma Shora // Zashchita informatsii. Insayd. 2020. № 2 (92). Pp. 17–23. 14. Petrenko A., Petrenko S. Basic Algorithms Quantum Cryptanalysis // Voprosy Kiberbezopasnosti. 2023. No. 1 (53). Pp. 100–115. DOI 10.21681/2311-3456-2023-1-100-115. 15. Balyabin A. A. Model' oblachnoy platformy KII RF s kiberimmunitetom v usloviyakh informatsionno-tekhnicheskikh vozdeystviy // Zashchita informatsii. Insayd. 2024. № 5 (119). Pp. 35–44. 16. Balyabin A. A., Petrenko S. A., Kostyukov A. D. Metod vosstanovleniya oblachnykh i pogranichnykh vychisleniy na osnove kiberimmuniteta // Zashchita informatsii. Insayd. 2022. № 6(108). Pp. 26–31. 17. Andrushkevich D. V., Biryukov D. N., Timashov P. V. Porozhdenie stsenariev predotvrashcheniya komp'yuternykh atak na osnove logikoontologicheskogo podkhoda // Trudy Voenno-kosmicheskoy akademii imeni A.F.Mozhayskogo. 2021. № 677. Pp. 118–134. 18. Zegzhda D. P., Aleksandrova E. B., Kalinin M. O. i dr. Kiberbezopasnost' tsifrovoy industrii. Teoriya i praktika funktsional'noy ustoychivosti k kiberatakam // Moskva : Nauchno-tekhnicheskoe izdatel'stvo «Goryachaya liniya-Telekom». 2021. 560 p. 19. Petrenko S. A. Kiberimmunologiya // Sankt-Peterburg : Afina. 2021. 239 p. 20. Balyabin A. A., Petrenko S. A. Metodika kiberimmunnoy zashchity tsifrovykh servisov «GosTekh» s ispol'zovaniem teorii podobiya i razmernostey // The 2023 Symposium on Cybersecurity of the Digital Economy – CDE'23 : Sbornik trudov VII mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, Innopolis, 11-12 aprelya 2023 goda. Innopolis: Universitet Innopolis. 2024. Pp. 85–90. |
46–54 |
Gurina, L. A. ENSURING THE FUNCTIONALITY OF DIGITAL PROTECTION DEVICES IN THE EVENT OF CYBER-ATTACKS ON MICROGRIDS WITH DISTRIBUTED ENERGY RESOURCES / L. A. Gurina, N. V. Tomin // Cybersecurity issues. – 2025. – № 4(68). – С. 55-64. – DOI: 10.21681/2311-3456-2025-4-55-64.AbstractThe research aims to develop method for method for verifying data used in digital systems for protection, automation and control of microgrids with distributed energy resources. The research relies on the probabilistic methods, machine learning methods. Research result: the information support of microgrids protection schemes is considered, possible cyber attacks are analyzed, the successful implementation of which may result in a violation of the functionality of digital protection devices of microgrids. A data verification method has been developed using unsupervised learning methods, including isolation forest and the k-nearest neighbors method, which effectively identifies and corrects measurement errors during attacks on the information infrastructure of microgrids protection systems under false data injection attacks. The scientific novelty lies in the fact that an approach has been proposed that ensures the stability of microgrids protection systems during cyber attacks and, thereby, prevents false alarms and failures of protection devices. Keywords: active power distribution systems, protection schemes, cybersecurity, data verification, random processes, machine learning. References1. Voropai, N. I. (2020). Prospects and Problems of Electric Power System Transformations. Elektrichestvo, 7, 12–21. DOI: 10.24160/0013-5380-2020-7-12-21. 2. Ilyushin, P. V. (2022). Integration of RES-based Power Plants into the Unified Energy System of Russia: Problematic Issues and Approaches to Solving Them. Bulletin of MPEI, 4, 98–107. DOI: 0.24160/1993-6982-2022-4-98-107. 3. Ilyushin, P., Filippov, S., Kulikov, A., Suslov, K., and Karamov, D. (2022). Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities. Energies, 15, 6333. DOI: 10.3390/en15176333. 4. Gurina, L. A. (2022). Pokazateli kiberustojchivosti komponentov informacionno-kommunikacionnoj infrastruktury pri upravlenii kiberfizicheskimi energeticheskimi sistemami // Methodological problems in reliability study of large energy systems, 73, 279–288. 5. Durakovsky, A. P., Markov, A. S. (2024). Current issues of cyber security in the energy sector. Secure Information Technologies, 94–98. 6. Shaukat, N. et al. (2023). Decentralized, Democratized, and Decarbonized Future Electric Power Distribution Grids: A Survey on the Paradigm Shift From the Conventional Power System to Micro Grid Structures. In IEEE Access, 11, 60957–60987. DOI: 10.1109/ACCESS.2023.3284031. 7. Lu, H., Biyawerwala, H. and Thakrawala, H. (2022). Polarized Distribution Protection Coordination Strategy Under the Impact from Various Distributed Energy Resources (DER) Generation Points. 2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), New Orleans, LA, USA, 1–5. DOI: 10.1109/TD43745.2022.9816925. 8. S. K. T, Jadoun V. K., J. N. S and S. S. (2024). A Systematic Study on the Intelligent Cyber Security for Smart Microgrid. 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, India, 237–242. DOI: 10.1109/DISCOVER62353.2024.10750634. 9. Canaan, B., Colicchio, B., Abdeslam, D. O. (2020). Microgrid Cyber-Security: Review and Challenges toward Resilience. Applied Sciences, 10, 16, 5649. DOI: 10.3390/app10165649. 10. Ding, D., Han, Q. -L., Ge, X. and Wang, J. (2021). Secure State Estimation and Control of Cyber-Physical Systems: A Survey. In IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 1, 176-190. DOI: 10.1109/TSMC.2020.3041121. 11. Ilyushin, P. V., Volnyi, V. S. (2022). Review of methods for addressing challenging issues in the operation of protection devices in microgrids with voltage up to 1 kV that integrate distributed energy resources. Relay protection and automation, 4(49), 6–21. 12. Zheng, Dehua, Zhang, Wei, Netsanet, Solomon, Wang, Ping, Bitew Girmaw, Teshager, Wei, Dan, Yue, Jun. (2021). Key technical challenges in protection and control of microgrid. Microgrid Protection and Control, 45–56. DOI: 10.1016/B978-0-12-821189-2.00007-3. 13. Patnaik, B., Mishra, M., Bansal, R. C., Jena, R. K. (2020) AC microgrid protection – A review: Current and future prospective. Applied Energy, 271, 115210. DOI: 10.1016/J.APENERGY.2020.115210. 14. Abd el-Ghany, H. A. (2020). Optimal PMU allocation for high-sensitivity wide-area backup protection scheme of transmission lines. Electric Power Systems Research, 187, 106485. DOI: 10.1016/J.EPSR.2020.106485. 15. Kulikov, A., Loskutov, A., Bezdushniy, D. (2022). Relay Protection and Automation Algorithms of Electrical Networks Based on Simulation and Machine Learning Methods. Energies, 15(18), 6525. DOI: 10.3390/en15186525. 16. Shobole, A. A., Wadi, M. (2021). Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews, 149, 111352. DOI: 10.1016/J.RSER.2021.111352. 17. Verma, R., Gawre, S. K., Patidar, N. P. (2022). An Analytical Review on Measures of Microgrid Protection. 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 1–6. DOI: 10.1109/PEDES56012.2022.10080291. 18. Cui, S., Zeng, P., Wang, Z., Song, C. (2021). Research on Intelligent Protection Technology for Distribution Network with Distributed Generation. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 1549–1554. DOI: 10.1109/IAEAC50856.2021.9390692. 19. Fawzy, N., Habib, H. F., Mohammed, O., Brahma, S. (2020). Protection of Microgrids with Distributed Generation based on Multiagent System // 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 1–5. DOI: 10.1109/EEEIC/ICPSEurope49358.2020.9160827. 20. Chaitanya, B. K., Anamika, Yadav. (2023). Empirical Wavelet Transform-Based Differential Protection Scheme for Micro-Grid. Journal of The Institution of Engineers (India): Series B, 104, 1–10. DOI: 10.1007/s40031-023-00869-0. 21. Uddin, M. N., Arifin, M. S., Rezaei, N. (2022). A Novel Neuro-Fuzzy Based Direct Power Control of a DFIG based Wind Farm Incorporated with Distance Protection Scheme and LVRT Capability. 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit, MI, USA, 01–08. DOI: 10.1109/IAS54023.2022.9939684. 22. Chaitanya, B. K., Anamika, Yadav, Mohammad, Pazoki. (2020). High Impedance Fault Detection Scheme for Active Distribution Network Using Empirical Wavelet Transform and Support Vector Machine. 2020 15th International Conference on Protection and Automation of Power Systems (IPAPS), 149–152. DOI:10.1109/IPAPS52181.2020.9375620. 23. Shaik, M., Shaik, A. G., Yadav, S. K. (2022). Hilbert–Huang transform and decision tree based islanding and fault recognition in renewable energy penetrated distribution system. Sustainable Energy, Grids and Networks, 30, 100606. DOI: 10.1016/j.segan.2022. 24. Raad Salih, Jawad, Hafedh, Abid. (2023). HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method. Energies, 16, 1064. DOI: 10.3390/en16031064. 25. Chandran, L. R., A. Parvathy, V S, I. K, Nair, M. G. (2022). Adaptive Over Current Relay Protection in a PV Penetrated Radial Distribution System With Fuzzy GA Optimisation. 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India, 1–7. DOI: 10.1109/INDICON56171.2022.10040021. 26. Nasir, M., Bansal, R., Elnady, A. (2022). A Review of Various Neural Network Algorithms for Operation of AC Microgrids. 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 1–7. DOI: 10.1109/ASET53988.2022.9734899. 27. Vincent Nsed, Ogar, Sajjad, Hussain, Kelum A.A., Gamage (2023). The use of artificial neural network for low latency of fault detection and localisation in transmission line. Heliyon, 9, e13376. DOI: 10.1016/j.heliyon.2023. 28. Wang, J. et al. (2022). Microgrid Fault Analysis Method Based on Inverter-Type DG with Different Control. 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES), Beijing, China, 1397–1402. DOI: 10.1109/SPIES55999.2022.10082157. 29. Xu, Y. et al. (2024). A Novel Distribution Network Fault Location Method Based on Improved Convolutional Neural Network. 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 837–841. DOI: 10.1109/ITNEC60942.2024.10733085. 30. Conte, F., D’Agostino, F., Gabriele, B., Schiapparelli, G. -P. and Silvestro, F. (2023). Fault Detection and Localization in Active Distribution Networks Using Optimally Placed Phasor Measurements Units. In IEEE Transactions on Power Systems, 38, 1, 714–727. DOI: 10.1109/TPWRS.2022.3165685. 31. Gurina, L. A. (2024). Assessment of cyber security risk of microgrids energy community. Cybersecurity issues, 1(59), 101–107. DOI: 10.21681/2311-3456-2024-1-101-107. 32. Gurina, L. A., Tomin, N. V. (2024). Intelligent methods of ensuring cybersecurity multi-agent control system of microgrid. Cybersecurity issues, 6(64), 53–64. DOI: 10.21681/2311-3456-2024-6-53-64. 33. Kolosok, I. N., Gurina, L. A. (2021). Identification of Cyberattacks on SCADA and WAMS Systems in Electric Power Systems when Processing Measurements by State Estimation Methods. Elektrichestvo, 6, 25–32. DOI: 10.24160/0013-5380-2021-6-25-32. 34. Opitz, J. (2024). A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice. Transactions of the Association for Computational Linguistics, 12, 820–836. DOI: 10.1162/tacl_a_00675. 35. Hodson, T. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15, 5481–5487. DOI: 10.5194/gmd-15-5481-2022. |
55–64 |
Kuznetsov, A. V. THE METHODOLOGY OF INFORMATION SECURITY INCIDENTS RESPONSE WITHIN DISTRIBUTED AUTOMATED INFORMATION SYSTEMS / A. V. Kuznetsov // Cybersecurity issues. – 2025. – № 4(68). – С. 65-72. – DOI: 10.21681/2311-3456-2025-4-65-72.AbstractPurpose of the study: to develop the unified methodology to reduce the time and effort spent by an information security incident response team to localize (contain) information security incidents occurring in distributed automated information systems. Methods of research: analysis and synthesis of existing publicly available materials and advances, including patented ones, related to information security incident response and data analysis, as well as modeling. Result(s): 1. The conceptual model and unified methodology of information security incident response are proposed, which, unlike the known ones, take into account the specifics of construction and maintenance of distributed automated information systems, focus on active counteraction to the attacker and are based on the principle of data-centricity, which reduces the time and effort spent by an information security incident response team to localize information security incidents, i.e., increase the efficiency of the activity of an information security incident response team. 2. Three methods within the proposed methodology are formulated, including the method of organizing the unified subsystem for storing information security monitoring data and information security incident data, the method of providing a mandate to perform an action to localize an information security incident, and the method of processing information security monitoring data and information security incident data. The latter method, unlike the known ones, is aimed at confirming the information security incident and making a decision on the need (lack of need) for its localization, and also provides for mandatory verification of the localization action, which allows at each stage of implementation of the proposed methodology to make a positive contribution to reducing the time and effort spent by an information security incident response team to localize information security incidents, as well as ascertain that actions to localize information security incidents were implemented. Scientific novelty: The conceptual model of response to information security incidents is based on a continuous process of data processing (data pipeline) from four different types of data sources, taking into account the attribute composition of data relevant to a particular distributed automated information system. The information security incident response methodology focuses on active counteraction to the attacker, is based on the principle of data-centricity, and provides for mandatory verification that actions to localize information security incidents were implemented. Keywords: managed detection and response, incident response team, incident localization (containment), data-centricity, data, data source, method. References1. Braione P., Briola D., De Angelis G., Gallo F., Poggi F., Quattrocchi G. About the special issue on: «Distributed Complex Systems: Governance, Engineering, and Maintenance» // Journal of Software: Evolution and Process. 2022. Т. 34. № 10. DOI: https://doi.org/10.1002/smr.2459. 2. Sozontov, A. V. Raspredelennye informacionnye sistemy: osobennosti primeneniya i postroeniya // Aktual'nye issledovaniya. 2023. № 37-1 (167). рр. 69–74. 3. Pandelov, T. S., Yanaeva, M. V. Geographically distributed information systems // Young Researcher of Don. 2022. № 6(39). pp. 59–62. 4. Kuznetsov, A. V. Osobennosti reagirovaniya na incidenty v prostranstvenno-raspredelennyx avtomatizirovannyx informacionnyx sistemax // Inzhenernyj vestnik Dona. 2025. № 5-25. URL: ivdon.ru/ru/magazine/archive/n3y2025/9919 (accessed 12.05.2025). 5. Zajchikov, N. Plan dejstvij IT-sluzhby v epoxu zameshheniya // Sistemnyj administrator. 2022. № 5 (234). pp. 20–23. 6. Hohlov, A. Yu., Asanov. S. A. Ispol'zovanie texnologicheskoj platformy «1S: Predpriyatie» dlya avtomatizacii uchyota i uvedomleniya GosSOPKA ob incidentax informacionnoj bezopasnosti ob''ektov kriticheskoj informacionnoj infrastruktury // V sbornike: Rossiya molodaya. Sbornik materialov XVI vserossijskoj, nauchno-prakticheskoj konferencii molodyx uchenyx s mezhdunarodnym uchastiem. Kemerovo, 2024. рр. 31691.1–31691.8. 7. Repeckij, S. O., Repeckaya, N. V. Obrabotka zayavok v IT Service Desk // StudNet. 2021. Т. 4. № 5. URL: https://stud.net.ru/obrabotkazayavok-v-it-service-desk/ (accessed 12.05.2025). 8. Kuznetsov, A. V. The Evolution of Information Security Incident Response // Zaŝita informacii. Inside. 2024. № 5 (119). pp. 14–20. 9. Kuznetsov, A. V. Konvejer dannyx dlya avtomaticheskoj lokalizacii komp'yuternyx incidentov // Vtoraya Vserossijskaya nauchnotexnicheskaya konferenciya «Kibernetika i informacionnaya bezopasnost' «KIB-2024». Sbornik nauchnyx trudov. 22-23 oktyabrya 2024 g., Moskva. M.: NRNU MEPhI. 2024. Pp. 120-121. 10. Zenevich, A. M., Punchik, Z. V. Datacentrichnost' kak trend razvitiya korporativnyx informacionnyx sistem // V sbornike: Ekologoekonomicheskie i texnologicheskie aspekty ustojchivogo razvitiya Respubliki Belarus' i Rossijskoj Federacii. sbornik statej III Mezhdunarodnoj nauchno-texnicheskoj konferencii: v 3 t.. Minsk, 2021. pp. 179–182. 11. Gladilina, I. P., Sergeeva, S. A., Sinitsyna, E. V. Digital ethics and data ethics as the basis for the rational activities of economic entities in the context of digital transformation // Economic Systems. 2024. Т. 17. № 4. pp. 28–38. DOI: 10.29030/2309-2076-2024-17-4-28-38. 12. Extended Cybereason’s SOC maturity model / Listratov, I. S., Miloslavskaya, N. G., Sirbay, I. S., Reinoso, B. A. // IT Security. 2025. Т. 32. № 1. pp. 68–84. DOI: 10.26583/bit.2025.1.04. 13. Mesengiser, Y. Y., Malakhov, M. A., Miloslavskaya, N. G. Network Security Centers as the GosSOPKA Forses // IT Security. 2022. Т. 29. № 1. pp. 94–107. DOI: http://dx.doi.org/10.26583/bit.2022.1.09. 14. Anomaly and cyber-attack detection technique based on the integration of fractal analysis and machine learning methods / Kotenko, I.V., Saenko, I. B., Lauta, O. S., Kriebel, A. M. // Informatics and Automation. 2022, Т. 21, № 6. pp. 1328–1358. DOI: https://doi.org/10.15622/ia.21.6.9. 15. Saenko, I. B., Kotenko, I. V., All-Barri M. H. Application of artificial neural networks to reveal abnormal behavior of data center users // Voprosy kiberbezopasnosti. 2022. № 2(48). Pp. 87–97. DOI: 10.21681/2311-3456-2022-2-87-97. 16. Andrushkevich, D. V., Andrushkevich, S. S., Kryukov, R. O. Metod reagirovaniya na celevye ataki, osnovannyj na otobrazhenii sobytij informacionnoj bezopasnosti s primeneniem indikacionnyx signatur // Information Security Problems. Computer Systems. 2023. № 4(57). pp. 48–60. 17. Kuznetsov, A. V. Analiz kriteriev predostavleniya mandata na lokalizaciyu incidenta informacionnoj bezopasnosti // Inzhenernyj vestnik Dona. 2025. № 3-25. URL: http://www.ivdon.ru/ru/magazine/archive/n3y2025/9919 (accessed 12.05.2025). 18. Smirno, S. I. Cyber incident investigation methodology based on intelligent analysis of domain security events // Zaŝita informacii. Inside. 2022. № 4(106). pp. 60–69. 19. Kuznetsov, A. V. The organization of separate security event data storage // Voprosy kiberbezopasnosti. 2024. № 2 (60). Pp. 22–28. DOI: 10.21681/2311-3456-2024-2-22-28. 20. Yu Nong, Haoran Yang. Automated Software Vulnerability Patching using Large Language Models. August 2024. URL: https://arxiv.org/html/2408.13597v1 (accessed 12.05.2025). DOI:10.48550/arXiv.2408.13597. 21. Minjae Seo, Wonwoo Choi, Myoungsung You, Seungwon Shin. AutoPatch: Multi-Agent Framework for Patching Real-World CVE Vulnerabilities. May 2025. URL: https://arxiv.org/abs/2505.04195 (accessed 12.05.2025). DOI: 10.48550/arXiv.2505.04195. |
65–72 |
Popov, V. A. TELEGRAM-CHANNELS CLASSIFICATION APPROACH / V. A. Popov, A. A. Chepovskiy // Cybersecurity issues. – 2025. – № 4(68). – С. 73-83. – DOI: 10.21681/2311-3456-2025-4-73-83.AbstractThe purpose of the study: development of a method for determining the digital profile of Telegram channels in information interaction networks and a procedure for classifying channels based on the allocated digital profile. Method: includes the following stages: graph of interacting objects construction, based on data imported from the Telegram network, digital profiles determination for vertices based on their attribute data and graph properties, clustering of vertices based on the selected profiles, centers of the obtained clusters and the original Telegram channels classification, computational experiments and analysis of the results. Results: the article introduces the digital profile definition for a Telegram channel, presented as one of the vertices of a graph of interacting objects. The digital profile is defined through a normalized 5-dimensional feature vector based on the attribute data of the vertex and the graph properties. The selected characteristics reflect the properties of Telegram channels in the constructed graph and the metadata obtained during import from the network. The authors then describe an algorithm for clustering the obtained profiles using configurable parameters. The centers of the selected clusters are classified according to 4 types proposed by the authors, characterizing the roles of vertices in the graph of interacting objects. Due to this, all vertices of the graph are classified – the original Telegram channels of the analyzed network. The proposed approach provides valuable information about the roles of Telegram channels in information interaction networks. Scientific novelty: a new approach to the analysis of Telegram channels is developed: a method for creating a digital profile of a Telegram channel in the form of a 5-dimensional feature vector, allowing the analysis and classification of channels. The approach also proposes a procedure for classifying such digital profiles based on computational methods, which allows to identify the main types of Telegram channels of the downloaded subnet according to a given classification. Keywords: digital profiles, social network analysis, scale-free networks, model of information impact, community identification, classification problems. References1. Popov V. A., Chepovskij A. A. Modeli importa dannyh iz messendzhera Telegram // Vestnik Novosibirskogo gosudarstvennogo universiteta. Serija: Informacionnye tehnologii. 2022. T. 20. № 2. S. 60–71. 2. Chepovskiy A. A. Analiz grafov vzaimodejstvujushhih ob#ektov.: Nacional'nyj otkrytyj universitet «INTUIT». 2022. – 270 s. 3. Popov V. A., Chepovskij A. A. O modeljah postroenija grafa vzaimodejstvujushhih ob#ektov v seti Telegram-kanalov // Voprosy kiberbezopasnosti. 2024. № 3(61). S. 105–112. DOI:10.21681/2311-3456-2024-3-105-112. 4. Chepovskij A. A. O nejavnyh soobshhestvah na grafe vzaimodejstvujushhih ob#ektov // Uspehi kibernetiki. – 2023. – T.4. – № 1. – C. 56–64. 5. La Morgia M., Mei A., Mongardini A. M., Wu J.: Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and Conspiracy Movements. https://arxiv.org/abs/2111.13530. (2021). (Data obrashhenija: 01.07.2025). 6. Spotify for Developers – https://developer.spotify.com/documentation/web-api/reference/get-audio-features (Data obrashhenija: 05.07.2025). 7. Leopaul Boesinger, Manoel Horta Ribeiro, Veniamin Veselovsky, Robert West: Tube2Vec: Social and Semantic Embeddings of YouTube Channels. https://arxiv.org/abs/2306.17298 (Data obrashhenija: 01.07.2025). 8. Willaert T.: A computational analysis of Telegram’s narrative affordances. PLoS ONE 18(11), p. 1–23, (2023). https://doi.org/10.1371/journal.pone.0293508. 9. Popov, V. A., Chepovskiy, A. A.: Constructing Telegram Channels Digital Profiles. Complex Networks & Their Applications XIII. COMPLEX NETWORKS 2024 2024. Studies in Computational Intelligence, vol. 1189. Springer, Cham. https://doi.org/10.1007/978-3-031-82435-7_7 (2025). 10. Piernik, M., Morzy, T. A study on using data clustering for feature extraction to improve the quality of classification. Knowledge and Information Systems, 63, 1771–1805 (2021). |
73–83 |
Poddubniy, M. I. DEVELOPING METHOD OF MINIMUM SCENARIOS OF ELECTRONIC DOCUMENT LIFESPAN STAGES IN RESTRICTED ACCESS / M. I. Poddubniy // Cybersecurity issues. – 2025. – № 4(68). – С. 84-92. – DOI: 10.21681/2311-3456-2025-4-84-92.AbstractRelevance: the features of processing restricted electronic documents in computer systems actualize the issues of formation of minimum scenarios on each stage of the document lifespan fulfilment. Known algorithms in searching for such scenarios do not take into account the variability of the value of indicators of computing spending resource of a single request in the scenario applied by the security policy and cannot be applied. The purpose of the study: is to develop a methodology for developing minimum scenarios of implementation of the stages of the life cycle of an electronic document with limited access processed by the computer system. Methods used: These scenarios are proposed to be considered as ways in the transition diagram of a finite state machine describing the implemented security policy in the computer system. As the weight of edges processing each atomic request in scenario is taken as weight, which allows to apply approaches in building and processing of transformation matrix transition of high-order finite state machine and search for ways in it, based on the works of F. Hohn, S. Seshu, D. Aufenkamp, A. Gill. The novelty value: is the order of calculation of the computing spending resource, taking into account the dependence of successive requests in the scenario between them. The novelty elements should also include the conditions described and justified in the work of stopping the search for minimal scenarios in the considered finite state machine. Result: the developed methodology allows to determine the execution scenario of the lifespan stage of a document processed by the computer system, characterized by minimum computing resources, taking into account the applied security policy, avoiding the method of crude force. The use of such scenarios as a response to a request user of a restricted document processing computer system would eliminate the possibility of the document lifespan failure and minimize the attempts of its processing. Keywords: finite state machine, computing resource costs, computer system, finding a path in a finite state machine, security policy, document processing scenario, access management in a computer system. References1. Nosenko S. V., Korolev I. D., Poddubnii M. I. O yedinoi sisteme elektronnogo dokumentooborota [About the Unified Electronic Document Management System]. Voennaya misl [Military Thought], 2019, no. 3, pp. 90–97 (in Russian). 2. Kolesnik A. V., Koshelev A. V., Poddubnii M. I., Vasilev V. D. Aktualnost zadachi sozdaniya yedinogo multiservisnogo mezhvedomstvennogo tsifrovogo prostranstva s povishennim urovnem obespecheniya bezopasnosti svyazi i informatsii [The Relevance of the Task of Creating a Single Multiservice Interdepartmental Digital Space With an Increased Ievel of Communication and Information Security]. Sostoyanie i perspektivi razvitiya sovremennoi nauki po napravleniyu «Informatsionnaya bezopasnost». Sbornik statei III Vserossiiskoi nauchno-tekhnicheskoi konferentsii [The State and Prospects of Development of Modern Science in the Field of «Information Security». Collection of Articles of the 3rd All-Russian Scientific and Technical Conference], Anapa, 2021, pp. 96–114 (in Russian). 3. Markov A. S. Sovremennie tendentsii bezopasnikh informatsionnikh tekhnologii [Secure Information Technologies Modern Trends]. Bezopasnie informatsionnie tekhnologii. Sbornik trudov Dvenadtsatoi mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Secure information technologies. Proceedings of the Twelfth International Scientific and Technical Conference], Moskva, 2023, pp. 5–10 (in Russian). 4. Zegzhda P. D., Zegzhda D. P., Anisimov V. G., Anisimov Ye. G., Saurenko T. N. Model formirovaniya programmi razvitiya sistemi obespecheniya informatsionnoi bezopasnosti organizatsii [Model for Forming Development Program of Organization's Information Security System]. Problemi informatsionnoi bezopasnosti. Kompyuternie sistemi [Information Security Problems. Computer Systems], 2021, no. 2, pp. 109–117 (in Russian). 5. Devyanin P. N. O razrabotke proekta natsionalnogo standarta GOST R «Zashchita informatsii. Formalnaya model upravleniya dostupom. Chast 3. Rekomendatsii po razrabotke» [on the Development of the Draft Standard Gost R «Information Protection. Formal Access Control Model. Part 3. Recommendations on Development»]. Trudi Instituta sistemnogo programmirovaniya RAN [Proceedings of the Institute for System Programming of the RAS], 2024, vol. 36, no. 3, pp. 63–82 (in Russian), DOI: 10.15514/ISPRAS-2024-36(3)-5. 6. Poddubnii M. I. Novii podkhod k postroeniyu modelei bezopasnosti sistem elektronnogo dokumentooborota [A New Approach to Building Security Models for Electronic Document Management Systems]. Inzhenernii vestnik Dona [Engineering journal of Don], 2023, no. 2 (98), pp. 235–245 (in Russian). 7. Poddubnii M. I. Razrabotka kontseptualnikh osnov obespecheniya bezopasnosti obrabotki i khraneniya elektronnikh dokumentov v sisteme elektronnogo dokumentooborota Vooruzhennikh Sil Rossiiskoi Federatsii [Development of a Conceptual Framework for Ensuring the Security of Electronic Document Processing and Storage in the Electronic Document Management System of the Armed Forces of the Russian Federation]. Sostoyanie i perspektivi razvitiya sovremennoi nauki po napravleniyu «IT-tekhnologii»: Sbornik trudov II Vserossiiskoi nauchno-tekhnicheskoi konferentsii. [The State and Prospects of Development of Modern Science in the Field of « IT technologies». Collection of Articles of the 2rd All-Russian Scientific and Technical Conference], 2023, pp. 266–278 (in Russian). 8. Devyanin P. N., Telezhnikov V. Yu., Khoroshilov A. V. Formirovanie metodologii razrabotki bezopasnogo sistemnogo programmnogo obespecheniya na primere operatsionnikh sistem [Building a Methodology for Secure System Software Development on the Example of Operating Systems]. Trudi Instituta sistemnogo programmirovaniya RAN [Proceedings of the Institute for System Programming of the RAS], 2021, vol. 33, no. 5, pp. 25–40 (in Russian), DOI: 10.15514/ISPRAS-2021-33(5)-2. 9. Maksimovskii A. Yu. O vibore parametrov avtomatnikh modelei monitoringa informatsionnoi bezopasnosti setevikh obektov [About Parameters of Automated Models for Monitoring Information Security of Network Objects]. Informatsiya i bezopasnost [Information and Security], 2020, vol. 23, no. 1, pp. 31–40 (in Russian). 10. Maksimovskii A. Yu. O vibore parametrov avtomatnikh modelei monitoringa informatsionnoi bezopasnosti setevikh obektov (chast 2) [About Parameters of Automated Models for Monitoring Information Security of Network Objects (Part 2)]. Informatsiya i bezopasnost [Information and Security], 2020, vol. 23, no. 3, pp. 327–336 (in Russian). 11. Kuznetsova A. L., Afonin S. A. Avtomatnaya model proverki korrektnosti atributnoi politiki informatsionnoi bezopasnosti v sistemakh s konechnim chislom obektov [Automata Model for Verifying Attibuted-Based Access Control Policy in Systems With a Finite Number of Objects]. Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika [Bulletin of the Moscow University. Series 1: Mathematics. Mechanics], 2021, no. 5, pp. 57-60 (in Russian). 12. Vasileva N. B. Obzor algoritmov poiska kratchaishikh putei v grafakh [Review of the Fiding Shortest Paths in Graphs Algorithms]. Eksperimentalnie i teoreticheskie issledovaniya v sovremennoi nauke. sbornik statei po materialam XCVII mezhdunarodnoi nauchnoprakticheskoi konferentsii [Experimental and Theoretical Research in Modern Science. Collection of Articles Based on the Materials of the XCVII International Scientific and Practical Conference], Novosibirsk, 2024, pp. 17–21 (in Russian). 13. Khodulina Ye. A., Shatovkin R. R. Analiz algoritmov poiska puti minimalnoi stoimosti v grafe [Analysis of Algorithms for Finding the Minimum Cost Path in a Graph]. Radioelektronika. Problemi i perspektivi razvitiya. Sbornik trudov IX Vserossiiskoi nauchnoprakticheskoi konferentsii s mezhdunarodnim uchastiem. [Proceedings of the IX All-Russian Scientific and Practical Conference With International Participation], Tambov, 2024, pp. 13–15 (in Russian). 14. Azimov R. Sh., Grigorev S. V. Algoritm poiska vsekh putei v grafe s zadannimi kontekstno-svobodnimi ogranicheniyami s ispolzovaniem matrits s mnozhestvami promezhutochnikh vershin [Context-Free Path Querying with All-Path Semantics Using Matrices with Sets of Intermediate Vertices]. Nauchno-tekhnicheskii vestnik informatsionnikh tekhnologii, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2021, vol. 21, no. 4, pp. 499–505 (in Russian), DOI: 10.17586/2226-1494-2021-21-4-499-505. 15. Kuznetsov A. L. Matrichnii metod poiska putei na vzveshennikh orientirovannikh grafakh v zadachakh setevogo planirovaniya pri proektirovanii i ekspluatatsii morskikh portov [Matrix Method for Finding the Paths on Weighted Oriented Graphs in the Tasks of Port Net Operational Planning]. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S. O. Makarova, 2020, vol. 12, no. 2, pp. 230–238 (in Russian), DOI: 10.21821/2309-5180-2020-12-2-230-238. 16. Vatutin E. I., Panishchev V. S., Gvozdeva S. N., Titov V. S. Comparison of Decisions Quality of Heuristic Methods Based on Modifying Operations in the Graph Shortest Path Problem. Problems of Information Technology, 2020, no. 1, pp. 3–15 (in English), DOI: 10.25045/jpit.v11.i1.01. |
84–92 |
Izrailov, K. E. A COMPLEX OF METHODS FOR GENETIC DE-EVOLUTION OF PROGRAM REPRESENTATIONS / K. E. Izrailov // Cybersecurity issues. – 2025. – № 4(68). – С. 93-106. – DOI: 10.21681/2311-3456-2025-4-93-106.AbstractThe goal of the research: increasing the efficiency of neutralizing program vulnerabilities by intellectualizing its reverse engineering using genetic algorithms Research methods: system analysis and optimization methods, graph theory, functional and structural synthesis, general programming methodology and compiler theory. Results: a hierarchical three-level set of methods was synthesized, consisting of a genetic reverse-engineering program method, a genetic de-evolution method of its neighboring representations (machine and source code, algorithms, architecture, etc.), and a group of methods for implementing the genetic algorithms fundamental operations. The scientific novelty of the complex methods lies in their focus on solving the reverse engineering problem by direct transformations of the program into subsequent representations, in contrast to classical ones that perform inverse transformations. Also, the algorithms of the methods group of the complex are based on working with the original source code model, representing it as a genes sequence. Keywords: vulnerability neutralization, reverse engineering, artificial intelligence, genetic algorithms, complex of methods. References1. Abdullin T. I., Baev V. D., Bujnevich M. V. i dr. Cifrovye tehnologii i problemy informacionnoj bezopasnosti / Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj jekonomicheskij universitet, 2021. 163 s. 2. Shimchik N. V., Ignat'ev V. N., Belevancev A. A. IRBIS: Staticheskij analizator pomechennyh dannyh dlja poiska ujazvimostej v programmah na C/C++ // Trudy Instituta sistemnogo programmirovanija RAN. 2022. T. 34. № 6. S. 51–66. DOI: 10.15514/ISPRAS-2022-34(6)-4. 3. David A. Ghidra Software Reverse Engineering for Beginners: Analyze, identify, and avoid malicious code and potential threats in your networks and systems. UK: Packt Publishing Ltd, 2021. 322 p. 4. Zhilin V. V., Safar'jan O. A. Iskusstvennyj intellekt v sistemah hranenija dannyh // Vestnik Donskogo gosudarstvennogo tehnicheskogo universiteta. 2020. T. 20. № 2. S. 196–200. DOI: 10.23947/1992-5980-2020-20-2-196-200. 5. Artuso F. Deep Learning Based Binary Code Analysis: Ph.D. Program in Engineering in Computer Science / Sapienza University of Rome, 2025. 155 p. 6. Armengol-Estape J., Woodruff J., Cummins C., O'Boyle M. F. SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly // The proceedings of IEEE/ACM International Symposium on Code Generation and Optimization (Edinburgh, United Kingdom, 2–6 March 2024). 2024. PP. 67–80. 7. Tan H., Luo Q., Li J., Zhang Y. LLM4Decompile: Decompiling Binary Code with Large Language Models // The proceedings of Conference on Empirical Methods in Natural Language Processing (USA, Miami, Florida, 12–16 November 2024). 2024. PP. 3473–3487. 8. Zhang X., Xu Z., Yang S., Li Z., Shi Z., Sun L. Enhancing Function Name Prediction using Votes-Based Name Tokenization and Multi-task Learning // The proceedings of ACM on Software Engineering. Vol. 1. No. 75. PP. 1679–1702. 9. He J., Ivanov P., Tsankov P., Raychev V., Vechev M. Debin: Predicting Debug Information in Stripped Binaries // The proceedings of ACM SIGSAC Conference on Computer and Communications Security (Canada, Toronto, 15–19 October 2018). 2018. P. 1667–1680. 10. Shin E. C. R., Song D., Moazzezi R. Recognizing functions in binaries with neural networks // The proceedings of 24th USENIX Conference on Security Symposium (USA, Washington, D.C., 2015 August 12–14). 2015. PP. 611–626. 11. Izrailov K. E. Koncepcija geneticheskoj dejevoljucii predstavlenij programmy. Chast' 1 // Voprosy kiberbezopasnosti. 2024. № 1(59). S. 61–66. DOI: 10.21681/2311-3456-2024-1-61-66. 12. Izrailov K. E. Koncepcija geneticheskoj dejevoljucii predstavlenij programmy. Chast' 2 // Voprosy kiberbezopasnosti. 2024. № 2(60). S. 81–86. DOI: 10.21681/2311-3456-2024-2-81-86. 13. Silenko D. I., Lebedev I. G. Algoritm global'noj optimizacii, ispol'zujushhij derev'ja reshenij dlja vyjavlenija lokal'nyh jekstremumov // Problemy informatiki. 2023. № 2(59). S. 21–33. DOI: 10.24412/2073-0667-2023-2-21-33. 14. Pikalov M. V., Pis'merov A. M. Nastrojka parametrov geneticheskogo algoritma pri pomoshhi analiza landshafta funkcii prisposoblennosti i mashinnogo obuchenija // Izvestija JuFU. Tehnicheskie nauki. 2024. № 2(238). S. 221–228. DOI: 10.18522/2311-3103-2024-2-221-228. 15. Petrosov D. A. Analiz i vybor metodov predstavlenija harakteristik sostojanija populjacii geneticheskogo algoritma // Original'nye issledovanija. 2023. T. 13. № 10. S. 235–239. 16. Bezgachev F. V., Galushin P. V., Rudakova E. N. Jeffektivnaja realizacija inicializacii i mutacii v geneticheskom algoritme psevdo-bulevoj optimizacii // E-Scio. 2020. № 4(43). S. 224–231. 17. Pan Z., Yan Y., Yu L., Wang T. Identification of binary file compilation information // Proceedings of the IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (Chongqing, China, 16–18 December 2022). 2022. PP. 1141–1150. DOI: 10.1109/IMCEC55388.2022.10019958. 18. Izrailov K. E. Modelirovanie programmy s ujazvimostjami s pozicii jevoljucii ee predstavlenij. Chast' 1. Shema zhiznennogo cikla // Trudy uchebnyh zavedenij svjazi. 2023. T. 9. № 1. S. 75–93. DOI: 10.31854/1813-324X-2023-9-1-75-93. 19. Izrailov K. E. Modelirovanie programmy s ujazvimostjami s pozicii jevoljucii ee predstavlenij. Chast' 2. Analiticheskaja model' i jeksperiment // Trudy uchebnyh zavedenij svjazi. 2023. T. 9. № 2. S. 95–111. DOI: 10.31854/1813-324X-2023-9-2-95-111. 20. Cygankov V. A., Shabalina O. A., Kataev A. V. Issledovanie vozdejstvija razmera populjacii na bystrodejstvie geneticheskogo algoritma // Izvestija JuFU. Tehnicheskie nauki. 2024. № 3(239). S. 168–176. DOI: 10.18522/2311-3103-2024-3-168-176. 21. Bujnevich M. V., Izrailov K. E. Avtorskaja metrika ocenki blizosti programm: prilozhenie dlja poiska ujazvimostej s pomoshh'ju geneticheskoj dejevoljucii // Programmnye produkty i sistemy. 2025. T. 38. № 1. S. 89–99. DOI: 10.15827/0236-235X.149.089-099. 22. Gribkov N. A., Ovasapjan T. D., Moskvin D. A. Analiz vosstanovlennogo programmnogo koda s ispol'zovaniem abstraktnyh sintaksicheskih derev'ev // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023. № 2(54). S. 47–60. DOI: 10.48612/jisp/ruar-u6hekmd4. 23. Allamanis M., Brockschmidt M., Khademi M. Learning to Represent Programs with Graphs // In proceedings of the 6th International Conference on Learning Representations (Vancouver, Canada, 20 April–3 May 2018). 2018. PP. 1–17. DOI: 10.48550/arXiv.1711.00740. 24. Ormonova Je. M. Opredelenie kachestva programmnogo produkta na osnove teorii grafov // Nauka. Obrazovanie. Tehnika. 2021. № 1(70). S. 37–44. 25. Totuhov K. E., Romanov A. Ju., Luk'janov V. I. Issledovanie jeffektivnosti raboty geneticheskih algoritmov s razlichnymi metodami skreshhivanija i otbora // Jelektronnyj setevoj politematicheskij zhurnal «Nauchnye trudy KubGTU». 2022. № 6. S. 98–109. 26. Domanov K. I. Sravnitel'nyj analiz jeffektivnosti raboty geneticheskogo algoritma pri modifikacii operatora mutacii v zadache kommivojazhera // Politehnicheskij molodezhnyj zhurnal. 2022. № 1(66). DOI: 10.18698/2541-8009-2022-1-760. |
93-106 |
Anisimov, E. S. COUNTERMEASURES APPLICABLE FOR CYBERATTACK STEGANOGRAPHIC TECHNIQUES / E. S. Anisimov, G. O. Krylov // Cybersecurity issues. – 2025. – № 4(68). – С. 107-116. – DOI: 10.21681/2311-3456-2025-4-107-116.AbstractThe purpose of the article is defining of main countermeasures for steganographic techniques usage in cyberattacks, comprising the development of a steganalysis tool as an example of one of the ways. Research methods: steganography in cyberattacks usage scenario analysis; steganalysis methods and available security tests review; image steganalysis software tool development; experimental evaluation of the developed tool. The result obtained: main directions of countermeasures for cyberattack steganographic techniques were formulated in the article. Image complex steganalysis software tool using a neural network to LSB insertion detection in an object has been developed. The results of the developed tool were evaluated. The study reveals directions for further researches and main applications of the study’s results, in particular, for improving DLP and SIEM solutions. The scientific novelty of the article is countermeasures for steganographic mechanisms as cyberattack techniques research. In the article proposed a steganalysis scenario based on several analysis methods combined usage. Keywords: steganography, steganalysis, MITRE ATT&CK, SIEM, DLP, cyberattack, neural networks, machine learning, Cyber Kill Chain. References1. Klishin D., Fedosenko M. The use of steganography in the implementation of computer attacks on the information infrastructure of enterprises. Economy and quality of communication systems. 2024; 2 (32). pp. 158–166. 2. Revenkov P. V., Anisimov E. S. Information Leak: Classification of Channels and Impact on Typical Banking Risks. In the Center of Economy. 2025; 1 (6). pp. 1–6. 3. Apau R., Hayfron-Acquah J. B., Asante M., Twum F. A multilayered secure image steganography technique for resisting regular-singular steganalysis attacks using elliptic curve cryptography and genetic algorithm // International conference on ICT for sustainable development. Singapore: Springer Nature Singapore, 2023. pp. 427–439. https://doi.org/10.1371/journal.pone.0308807. 4. Badar L. T., Carminati B., Ferrari E. A comprehensive survey on stegomalware detection in digital media, research challenges and future directions // Signal Processing. 2025. p. 109888. https://doi.org/10.1016/j.sigpro.2025.109888. 5. Chaganti R., Ravi V., Alazab M., Pham T. D. Stegomalware: A Systematic Survey of MalwareHiding and Detection in Images, Machine LearningModels and Research Challenges // arXiv preprint arXiv:2110.02504. 2021. https://doi.org/10.48550/arXiv.2110.02504. 6. Huo L., Chen R., Wei J., Huang L. A high-capacity and high-security image steganography network based on chaotic mapping and generative adversarial networks // Applied Sciences. 2024. 14(3). p. 1225. https://doi.org/10.3390/app14031225. 7. Kombrink M. H., Geradts Z. J. M. H., Worring M. Image steganography approaches and their detection strategies: A survey // ACM Computing Surveys. 2024. № 57(2). pp. 1–40. https://doi.org/10.1145/3694965. 8. Lin W. B., Lai T. H., Chou C. L. Chi-square-based steganalysis method against modified pixel-value differencing steganography // Arabian Journal for Science and Engineering. 2021. V. 46. №. 9. pp. 8525–8533. https://doi.org/10.1007/s13369-021-05554-2. 9. Shankar D. D., Azhakath A. S. Random embedded calibrated statistical blind steganalysis using cross validated support vector machine and support vector machine with particle swarm optimization // Scientific Reports. 2023. 13 (1). pp. 2359. https://doi.org/10.1038/s41598-023-29453-8. 10. Shehab D. A., Alhaddad M. J. Comprehensive survey of multimedia steganalysis: Techniques, evaluations, and trends in future research // Symmetry. 2022; 14 (1). p. 117. https://doi.org/10.3390/sym14010117. 11. Stefan Kiltz, Jana Dittmann, Fabian Loewe, Christian Heidecke, Max John, Jonas Mädel and Fabian Preißler. 2024. Forensic Image Trace Map for Image-Stego-Malware Analysis: Validation of the Effectiveness with Structured Image Sets. In Proceedings of 2024 ACM 12th ACM Workshop on Information Hiding and Multimedia Security (ACM IH&MMSEC'24), June 24–26, 2024, Baiona, Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3658664.3659659. 12. Strachanski F., Petrov D., Schmidbauer T., Wendzel S. A Comprehensive Pattern-based Overview of Stegomalware // Proceedings of the 19th International Conference on Availability, Reliability and Security. 2024. pp. 1–10. https://doi.org/10.1145/3664476.3670886. 13. Volkhonskiy D., Nazarov I., Burnaev E. Steganographic generative adversarial networks // Twelfth international conference on machine vision (ICMV 2019). SPIE, 2020. V. 11433. pp. 991–1005. https://doi.org/10.48550/arXiv.1703.05502. |
107-116 |
Golovskoy, V. A. ANALYSIS OF THE PROBLEM OF FORMING A SET OF INFORMATION SECURITY TOOLS IN THE RADIO CHANNELS OF ROBOTIC COMPLEXES / V. A. Golovskoy // Cybersecurity issues. – 2025. – № 4(68). – С. 117-126. – DOI: 10.21681/2311-3456-2025-4-117-126.AbstractThe purpose of the work is to analyze the problems of automated assessment of the sufficiency of non-cryptographic information security tools in radio channels of radio data transmission systems of robotic complexes. Research methods: general scientific methods – analysis, deductive inference, methods of system analysis and theory of algorithms, application of related abstractions of potential realizability and actual infinity. The result of the study: an approach to formalizing problems in the field of information security in the form of constructive objects is proposed, the application of which made it possible to form the corresponding massive problems of information protection in radio channels of radio data transmission systems of robotic complexes and evaluate them for algorithmic solvability. It is proposed to use the description of information security tools through a set of non-trivial semantic properties of the algorithms that control them. This approach provides an opportunity to abstract from the specifics of the implementation of information security tools and use such descriptions as part of constructive objects when using algorithms for assessing sufficiency and choosing the optimal set of information protection tools in radio channels. A hypothesis about the interrelation of these mass problems is proposed, for which a theorem is formulated and proved. Scientific significance: the presented results form the basis for the study of computational aspects of the task of constructing an effective algorithm for the formation of a set of information security tools in the radio channels of robotic complexes. The proposed description of information security tools by a set of non-trivial semantic properties of the algorithms controlling them provides the possibility of adequate consideration of their essential content and features significant for solving the problem without the need to consider their software or hardware-software implementation. Keywords: algorithm, algorithmic problem, confidentiality, cryptographic protection of information, mass problems, Turing machine, simulation, threat, equivalence problems. References1. Abrosimov V. K. Principy ispytanij obrazcov vooruzhenija, voennoj i special'noj tehniki s realizaciej tehnologii mashinnogo obuchenija (polemicheskie zametki) // Vooruzhenie i jekonomika. 2024. № 2(68). S. 23–32. 2. Golovskoj V. A. Analiz problematiki prognozirovanija povedenija kognitivnyh radiosistem // Radiotehnika. 2024. T. 88, № 12. S. 134−145. 3. Capuano N., Fenza G., Loia V., Stanzione C. Explainable Artificial Intelligence in CyberSecurity: A Survey // IEEE Access. 2022. vol. 10, pp. 93575–93600. DOI: 10.1109/ACCESS.2022.3204171. 4. Golovskoj V. A., Vinokurov A. V. Model' podsistemy vyrabotki kriptograficheskih kljuchej sistemy zashhity informacii kiberfizicheskoj sistemy // Izvestija JuFU. Tehnicheskie nauki. 2025. № 2 (244). S. 202–211. DOI: 10.18522/2311-3103-2025-2-202-211. 5. Pavlenko E. Y., Vasileva K. V., Lavrova D. S., Zegzhda D. P. Counteraction the cybersecurity threats of the in-vehicle local network // Journal of Computer Virology and Hacking Techniques. 2023. Vol. 19, No. 3. P. 399–408. DOI: 10.1007/s11416-022-00451-0. 6. Anagnostis I., Kotzanikolaou P., Douligeris C. Understanding and Securing the Risks of Uncrewed Aerial Vehicle Services // IEEE Access. 2025. vol. 13. pp. 47955–47995. DOI: 10.1109/ACCESS.2025.3549861. 7. Mahov D. S. Analiz nekriptograficheskih metodov zashhity informacii v radiokanalah informacionnyh sistem // Voprosy kiberbezopasnosti. 2024. № 1(59). S. 82–88. DOI: 10.21681/2311-3456-2024-1-82-88. 8. Golovskoj V. A. Algoritmicheskie aspekty problemy ocenivanija dostatochnosti sredstv zashhity informacii // Perspektivy bezopasnosti – 2024: sbornik materialov II NTK, posvjashhennoj informacionnoj bezopasnosti, Sankt-Peterburg, 19–20 ijunja 2024 goda. – Sankt-Peterburg: OOO «Special'nyj Tehnologicheskij Centr», 2024. S. 17–22. 9. Lje V. H., Komarov I. I., Privalov A. A., Pyrkin A. A. Model' obespechenija nepreryvnosti bezopasnogo funkcionirovanija sistemy proslezhivaemosti kachestva produkcii v uslovijah neustojchivoj kommunikacii // Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki. 2024. T. 24. № 6. S. 949–961. DOI: 10.17586/2226-1494-2024-24-6-949-961. 10. Varenica V. V., Markov A. S., Savchenko V. V., Cirlov V. L. Prakticheskie aspekty vyjavlenija ujazvimostej pri provedenii sertifikacionnyh ispytanij programmnyh sredstv zashhity informacii // Voprosy kiberbezopasnosti. 2021. № 5(45). S. 36–44. DOI: 10.21681/2311-3456-2021-5-36-44. 11. Pandey G. K., Gurjar D. S., Nguyen H. H, Yadav S. Security Threats and Mitigation Techniques in UAV Communications: A Comprehensive Survey // IEEE Access, 2022, vol. 10, pp. 112858–112897. DOI: 10.1109/ACCESS.2022.3215975. 12. Kukushkin S. S., Ruban D. A., Kozlov E. V. Matematicheskaja model' i algoritm formirovanija pomehozashhishhjonnogo signala sinhronizacii na osnove ispol'zovanija sostavnyh kodovyh konstrukcij psevdosluchajnyh posledovatel'nostej // Dvojnye tehnologii. 2022. № 1(98). S. 40–45. 13. Globin Ju. O., Fin'ko O. A. Sposob obespechenija imitoustojchivoj peredachi informacii po kanalam svjazi // Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. 2020. T. 12. № 2. S. 30–43. DOI: 10.36724/2409-5419-2020-12-2-30-43. 14. Basan E. S., Proshkin N. A., Silin O. I. Povyshenie zashhishhennosti besprovodnyh kanalov svjazi dlja bespilotnyh letatel'nyh apparatov za schet sozdanija lozhnyh informacionnyh polej // Sibirskij ajerokosmicheskij zhurnal. 2022. T. 23. № 4. S. 657–670. DOI: 10.31772/2712-8970-2022-23-4-657-670. 15. Tikhonov V., Taher A., Tikhonov S., Shulakova K., Hluschenko V., Chaika A. Turing Machine Development for High-Secure Data Link Encoding in the Internet of Things Channel // Proceedings of the 12th International Conference on Applied Innovations in IT (ICAIIT), 2024, Vol. 12, Iss. 1, pp. 1–10. DOI: 10.25673/1156354. 16. Gvozdeva I. G., Gromov A. S., Gvozdeva O. M. Development and implementation of the digital steganography method based on the embedding of pseudoinformation // Proceedings of the Institute for System Programming of the RAS. 2023. Vol. 35, No. 3. P. 63–70. 17. Belokopytov M. L., Bjankin A. A., Alehin S. A. Sposob zashhity telemetricheskoj informacii pri peredache v radiolinijah kompleksov vooruzhenija i voennoj tehniki // Voprosy oboronnoj tehniki. Serija 16: Tehnicheskie sredstva protivodejstvija terrorizmu. 2023. № 7-8(181-182). S. 81–87. DOI: 10.53816/23061456_2023_7-8_81. 18. Mal'cev G. N., Matveev S. A. Issledovanie zashhishhennosti sistemy komandnogo radioupravlenija podvizhnym ob#ektom s ispol'zovaniem markovskoj modeli preodolenija narushitelem mnogourovnevoj sistemy zashhity informacii // Trudy Voenno-kosmicheskoj akademii imeni A. F. Mozhajskogo. 2021. № 677. S. 153–163. 19. Vatruhin E. M. Kompleksnaja zashhita informacii v kanalah «zemlja-bort» // Vestnik Koncerna VKO «Almaz-Antej». 2020. № 4. S. 6–14. DOI: 10.38013/2542-0542-2020-4-6-14. 20. Manaenko S. S., Dvornikov S. V., Pshenichnikov A. V. Teoreticheskie aspekty formirovanija signal'nyh konstrukcij slozhnoj struktury // Informatika i avtomatizacija. 2022. T. 21, № 1. S. 68–94. DOI: 10.15622/ia.2022.21.3. 21. Golovskoj V. A. Model' slozhnogo informacionnogo konflikta dlja robototehnicheskih kompleksov // Voprosy kiberbezopasnosti. 2025. № 1 (65). S. 86–95. DOI: 10.21681/2311-3456-2025-1-86-95. 22. Birjukov P. A., Timohin A. A., Makarenko S. I. Brigady suhoputnyh vojsk, vooruzhennye bespilotnymi letatel'nymi apparatami: obosnovanie sozdanija, predlozhenija po ih strukture, sposobam boevogo primenenija i tehnicheskomu obespecheniju s uchetom opyta special'noj voennoj operacii na Ukraine // Sistemy upravlenija, svjazi i bezopasnosti. 2024. № 2. S. 43–70. DOI: 10.24412/2410-9916-2024-2-043-070. 23. Babenko L. K., Pisarev I. A. Jazyk PDA dlja dinamicheskogo analiza kriptograficheskih protokolov // Voprosy kiberbezopasnosti. 2020. № 5(39). S. 19–29. DOI: 10.21681/2311-3456-2020-05-19-29. 24. Zakharov V. A. Efficient Equivalence Checking Technique for Some Classes of Finite-State Machines // Automatic Control and Computer Sciences. 2021. Vol. 55, pp. 670–701. DOI: 10.3103/S014641162107018X. 25. Rybalov A. N. Genericheski nerazreshimye i trudnorazreshimye problemy // Prikladnaja diskretnaja matematika. 2024. № 63. S. 109–116. DOI: 10.17223/20710410/63/7. 26. Chechin I. V., Marinin A. A., Novikov P. A., Dichenko S. A., Samojlenko D. V. Kombinacionnoe kodirovanie dannyh s uchetom analiza cennosti soderzhashhejsja informacii // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023. № 4(57). S. 31–41. DOI: 10.48612/jisp/mvrb-h5xa-xx1r. 27. Kopkin E. V., Deev V. V. Algoritm postroenija optimal'noj diagnosticheskoj procedury po pokazatelju cennosti informacii na osnove principa maksimuma Pontrjagina // Informacija i kosmos. 2024. № 1. S. 65–72. |
117-126 |
Kholodov, Y. A. QUANTUM ANNEALING APPROACHES TO BREAKING RSA ENCRYPTION / Y. A. Kholodov, H. Salloum, N. A. Agap // Cybersecurity issues. – 2025. – № 4(68). – С. 127-133. – DOI: 10.21681/2311-3456-2025-4-127-133.AbstractObjective: to study the transformational potential of quantum annealing in solving the problem of simple factorization. Research method(s): the approach includes a comprehensive review of recent experimental breakthroughs and theoretical innovations. In particular, we analyze techniques such as surface code memory, HUBO and QUBO formulations, range-dependent Hamiltonian algorithms, modular locally structured embedding methods, and a modified multiplication table method random number. Research Output(s): the study evaluates the application of quantum annealing to factorization of primes, showing that advanced problem mapping techniques, such as the HUBO and QUBO formulations, significantly improve the efficiency of representing complex factorization problems on quantum hardware. Notably, the inclusion of surface code memory increases the stability of qubit states during annealing, reducing errors and improving computational accuracy It also demonstrates that Hamiltonian's range-dependent algorithms and modular, locally structured embedding methods help optimize qubit interaction, enabling a more accurate factorization process. A modified multiplication table method is presented, providing an optimized computational strategy, especially effective for large composite numbers. Preliminary experiments with random numbers confirm the theoretical conclusions, indicating that these integrated methods allow for better performance than traditional approaches. Taken together, the results highlight the potential of quantum annealing as a solid foundation for solving complex cryptographic problems and lay the foundation for future research into scalable quantum algorithms and hardware implementations. Scientific novelty: the work combines several advanced quantum annealing techniques for factorization of prime numbers, combining experimental innovations with theoretical developments to propose a new framework that improves the efficiency of cryptographic computing. Keywords: Quantum Annealing, RSA, QUBO, Prime Factorization. References1. Google Quantum AI and Collaborators. (2024). Quantum error correction below the surface code threshold. Nature. https://doi.org/10.1038/s41586-024-08449-y. 2. Coenen, C., Grinbaum, A., Grunwald, A., Milburn, C., & Vermaas, P. (2022). Quantum technologies and society: Towards a different spin. NanoEthics, 16, 1–6. https://doi.org/10.1007/s11569-021-00409-4. 3. King, A. D., Nocera, A., Rams, M. M., Dziarmaga, J., Wiersema, R., Bernoudy, W., Raymond, J., Kaushal, N., Heinsdorf, N., Harris, R., Boothby, K., Altomare, F., Berkley, A. J., Boschnak, M., Chern, K., Christiani, H., Cibere, S., Connor, J., Dehn, M. H., … Amin, M. H. (2024, March 1). Computational supremacy in quantum simulation [Preprint]. arXiv. https://doi.org/10.48550/arXiv:2403.00910v1. 4. Ding, J., Spallitta, G., & Sebastiani, R. (2024). Experimenting with D-Wave quantum annealers on prime factorization problems. Frontiers in Computer Science, 6. https://doi.org/10.3389/fcomp.2024.1335369. 5. Jun, K., & Lee, H. (2023). HUBO and QUBO models for prime factorization. Scientific Reports, 13, 10080. https://doi.org/10.1038/s41598-023-36813-x. 6. Jiang, S., Britt, K. A., McCaskey, A. J., Humble, T. S., & Kais, S. (2018). Quantum annealing for prime factorization. Scientific Reports, 8, 17667. https://doi.org/10.1038/s41598-018-36058-z. 7. Ding, J., Spallitta, G., & Sebastiani, R. (2024). Effective prime factorization via quantum annealing by modular locally-structured embedding. Scientific Reports, 14, 3518. https://doi.org/10.1038/s41598-024-53708-7. 8. Salloum, H., Sabbagh, K., Savchuk, V., Lukin, R., Orabi, O., & Isangulov, M. (2025). Performance of quantum annealing machine learning classification models on ADMET datasets. IEEE Access, 13, 16263–16287. https://doi.org/10.1109/ACCESS.2025.3531391. 9. Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., & Parney, B. (2017). Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4, 29. https://doi.org/10.3389/fict.2017.00029. 10. Lee, H., & Jun, K. (2022, February 15). Range dependent Hamiltonian Algorithm for numerical QUBO formulation [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2202.07692v1. |
127-133 |
Boldyrikhin, N. V. DETECTION OF PHISHING EMAILS USING RECURRENT NEURAL NETWORKS / N. V. Boldyrikhin, E. A. Yadrets // Cybersecurity issues. – 2025. – № 4(68). – С. 134-141. – DOI: 10.21681/2311-3456-2025-4-134-141.AbstractPurpose of the study: to consider the features of the use of recurrent neural networks in solving the problem of detecting phishing emails. Methods of research: comparison, mathematical and software modeling, system analysis. Result(s): The concept and types of phishing attacks are considered. The analysis of modern publications on the use of recurrent neural networks in phishing detection tasks has been carried out, which has shown that the use of recurrent networks makes it possible to detect phishing emails with high probability. Publicly available datasets have been analyzed: most datasets are focused on detecting phishing URLs. The few datasets focused on the text of an email are overwhelmingly in English, and high-quality Russian-language datasets are not publicly available, so our own dataset of Russian-language emails was compiled. Mathematical and software modeling of various recurrent neural networks for detecting phishing emails has also been carried out: RNN, LSTM, BiLSTM and a comparative analysis of their characteristics has been carried out. The dependences of loss characteristics and accuracy on the number of epochs are revealed. A comparative analysis of recurrent networks has shown that the BiLSTM network, which detected 91.43 % of phishing emails, was the most effective in solving phishing detection problems in the framework of research. The RNN network showed the worst characteristics, which detected only 50.71 % of phishing emails from the test sample. It should be noted that these results were obtained for networks trained on small-volume datasets (300 emails). Scientific novelty: the research results allow us to reasonably conclude that of the considered recurrent neural networks, BiLSTM is the one that best copes with the tasks of detecting phishing emails with small amounts of training dataset. Keywords: cyberbullying, phishing protection, recurrent neural networks RNN, LSTM, BiLSTM References1. Kostrikina A. O., Lazunin K.A. Informacionnaya bezopasnost' v kriticheskoj informacionnoj bezopasnosti // Problemy nauchnoj mysli. 2024. Vol. 4. № 1. pp. 82–85. 2. Chapis M. A. Informacionnaya bezopasnost' gosudarstva kak pravovoj poryadok obespecheniya nacional'noj bezopasnosti v informacionnoj sfere // Naukosfera. 2024. № 6(1). pp. 551–557. DOI: 10.5281/zenodo.11638587. 3. Dobrodeev A. Yu. Pokazateli informacionnoj bezopasnosti kak xarakteristika (mera) sootvetstviya setej i organizacij svyazi trebovaniyam informacionnoj bezopasnosti // Trudy CNIIS. Sankt-Peterburgskij filial. 2020. Vol. 2. № 10. pp. 50–78. 4. Lukmanova K. A., Kartak V. M. Razrabotka sistemy zashhity ot fishingovyx atak s ispol'zovaniem programmno-apparatnoj realizacii metodov mashinnogo obucheniya // Modelirovanie, optimizaciya i informacionnye texnologii. 2024. 12(4). DOI: 10.26102/2310-6018/2024.47.4.033. 5. Kornyuxina S. P., Laponina O. R. Issledovanie vozmozhnostej algoritmov glubokogo obucheniya dlya zashhity ot fishingovyx atak // International Journal of Open Information Technologies. 2023. Vol. 11. № 6. pp. 163–174. 6. Yerima S. Y., Alzaylaee M. K. High accuracy phishing detection based on convolutional neural networks // 2020 3rd International ConferenceonComputerApplications&InformationSecurity (ICCAIS). IEEE,2020. pp.1–6. DOI:10.1109/ICCAIS48893.2020.9096869. 7. Wang W. et al. PDRCNN: Precise phishing detection with recurrent convolutional neural networks // Security and Communication Networks. 2019. Vol. 2019. pp. 1–15. DOI:10.1155/2019/2595794. 8. Catal C. et al. Applications of deep learning for phishing detection: a systematic literature review // Knowledge and Information Systems. 2022. Vol. 64. № 6. pp. 1457–1500. DOI:10.1007/s10115-022-01672-x. 9. Dhanavanthini P., Chakkravarthy S. S. Phish-armour: phishing detection using deep recurrent neural networks. Soft Comput (2023). DOI: 10.1007/s00500-023-07962-y. 10. Filimonov A. V., Osipov A. V., Pleshakova E. S., Gataullin S. T. Nejrosetevye metody raspoznavaniya emocij rechi dlya protivodejstviya moshennichestvu v telekommunikacionnyx sistemax // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2022. № 6(52). pp. 83–92. DOI:10.21681/2311-3456-2022-6-83-92. 11. Texnologii iskusstvennogo intellekta i kiberbezopasnost': monografiya / A. B. Menisov. – M: Aj Pi Ar Media, 2022. 133 p. 12. Primenenie iskusstvennogo intellekta dlya resheniya zadachi obespecheniya bezopasnosti informacii, peredavaemoj v setyax / V. I. Yuxnov, A. I. Sosnovskij, N. V. Boldyrixin, I. A. Sosnovskij // Trudy Severo-Kavkazskogo filiala Moskovskogo texnicheskogo universiteta svyazi i informatiki. 2023. № 2. pp. 26–28. 13. Bimoldina Zh. A. Kak iskusstvennyj intellekt menyaet pravila igry v kiberbezopasnosti // Forum. Seriya: Rol' nauki i obrazovaniya v sovremennom informacionnom obshhestve. 2024. № S2(32). pp. 235–240. 14. Bukin A. V., Samonov A. V., Tixonov E. I. Obnaruzhenie incidentov informacionnoj bezopasnosti na osnove texnologii nejronnyx setej // Voprosy kiberbezopasnosti [Cybersecurity issues]. 2022. № 5(51). pp. 61–73. DOI: 10.21681/2311-3456-2022-5-61-73. 15. Karpenko M. P. Tokenizaciya kak metod kolichestvennogo izmereniya informacii i znanij v uchebnyx tekstax professional'nogo obrazovaniya // Innovacii v obrazovanii. 2025. № 3. pp. 40–50. 16. Obrabotka estestvennogo yazyka v dejstvii / L. Xobson, X. Xannes, X. Koul. SPb: Piter, 2020. 575 p. |
134-141 |
AN APPROACH TO EXPLAINABLE ANOMALY DETECTION IN DATA STREAMS FROM TECHNOLOGICAL SYSTEMS / E. S. Novikova, M. A. Bukhtiarov, I. V. Kotenko, I. B. Saenko, E. V. Fedorchenko // Cybersecurity issues. – 2025. – № 4(68). – С. 142-151. – DOI: 10.21681/2311-3456-2025-4-142-151.AbstractThe purpose of the study: development of an approach to identify anomalies in process data based on explainable machine learning in order to further select countermeasures taking into account possible sources of anomalies. Research methods: statistical analysis, machine learning methods, methods of generating explanations for machine learning model predictions. Results obtained: an approach to explainable anomaly detection in the flow of data from technological processes is proposed, its main stages are presented, which is based on the transformation of the input data vector into a matrix, and the detection of anomalies using a convolutional neural network; the method of transformation of the data vector into a matrix is developed and the influence of the data transformation algorithm on the efficiency of solving the problem of anomaly detection is evaluated; the method of testing the accuracy of the generated explanations is developed and the experimental evaluation is carried out. Scientific novelty: the proposed approach to the identification of anomalies in process data differs from the existing ones by using the technique of transforming the input data vector into a matrix, which allows us to apply a convolutional neural network as an analytical model of anomaly detection and methods of generating explanations developed specifically for neural networks of this architecture. Contributions: Evgenia Novikova – development of a method for converting the input data flow; Marat Bukhtiyarov – experimental study of the proposed approach; Igor Kotenko – development of a general approach to explainable detection of anomalies of the concept of dynamic assessment of the security of information systems in conditions of uncertainty of the initial data; Igor Kotenko, Igor Saenko and Elena Fedorchenko – analysis of the state of arts in identifying anomalies in technological processes and forming explanations for forecasts of machine learning models. Keywords: cyber attack and anomaly detection, industrial cyberphysical systems anomaly generation, evaluation of explanation accuracy References1. Levshun D. A., Levshun D. S., Kotenko I. V. Detecting and explaining anomalies in industrial Internet of things systems using an autoencoder // Ontology of designing. 2025. Vol.15, No.1(55). P.96-113. DOI:10.18287/2223-9537-2025-15-1-96-113. 2. Kotenko I. V., Fedorchenko E. V., Novikova E. S., Saenko I. B., Danilov A. S. Methodology of data collection for security analysis of industrial cyber-physical systems // Cybersecurity Issues. 2023. No. 5 (57). P. 69-79. https://doi.org/10.21681/2311-3456-2023-5-69-79. 3. Novikova E. S., Fedorchenko E. V., Bukhtiyarov M. A., Saenko I. B. Anomaly detection in wastewater treatment process for cyber resilience risks evaluation // Journal of Mining Institute. 2024. Vol. 267. P. 488–500. 4. Dong H., Kotenko I. Cybersecurity in the AI era: analyzing the impact of machine learning on intrusion detection // Knowledge and Information Systems, 2025, 67(5), P. 3915–3966, 102748. DOI: 10.1007/s10115-025-02366-w. 5. Kotenko I. V., Levshun D. A. Machine Learning Methods of Intelligent System Event Analysis for Multistep Cyberattack Detection // Scientific and Technical Information Processing, 2024, Vol. 51, No. 5, P.372–381. Allerton Press Inc., 2024. Springer Nature. ISSN 0147-6882. DOI: 10.3103/S0147688224700254 6. Dong H., Kotenko I., Levshun D. Next-Generation IIoT Security: Comprehensive Comparative Analysis of CNN-based Approaches // Knowledge Based Systems, Vol.316, 12 May 2025, 113337. https://doi.org/10.1016/j.knosys.2025.113337. 7. Doynikova E., Novikova E., Murenin I., Kolomeec M., Gaifulina D., Tushkanova O., Levshun D., Meleshko A., Kotenko I. Security Measuring System for IoT Devices // Lecture Notes in Computer Science. 2022. Vol. 13106. P. 256–275. 8. Ning X., Jiang J. Design, Analysis and Implementation of a Security Assessment/Enhancement Platform for Cyber-Physical Systems // IEEE Transactions on Industrial Informatics. 2022. Vol. 18. No. 2. P. 1154–1164. 9. Wang C., Wang B., Liu H., Qu H. Anomaly detection for industrial control system based on autoencoder neural network // Wirel. Commun. Mob. Comput. 2020. P. 8897926–1889792610. 10. Rodríguez M., Tobón D., Múnera D. A framework for anomaly classification in Industrial Internet of Things systems // Internet of Things. 2025. Vol. 29. Article 101446. https://doi.org/10.1016/j.iot.2024.101446. 11. Su Y., Zhao Y., Niu C., Liu R., Sun W., Pei D. Robust anomaly detection for multivariate time series through stochastic recurrent neural network // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19). ACM, New York, NY, USA, 2019, pp. 2828–2837. https://doi.org/10.1145/3292500.3330672. 12. Nizam H., Zafar S., Lv Z., Wang F., Hu X. Real-Time Deep Anomaly Detection Framework for Multivariate Time-Series Data in Industrial IoT // IEEE Sensors Journal. 2022. Vol. 22. No. 23. P. 22836–22849, doi: 10.1109/JSEN.2022.3211874. 13. Liu Y. et al. Deep Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-Efficient On-Device Federated Learning Approach // IEEE Internet of Things Journal. 2021. Vol. 8. No. 8. P. 6348–6358. doi: 10.1109/JIOT.2020.3011726. 14. Zhao P., Ding Z., Li Y., Zhang X., Zhao Y., Wang H, Yang Y. SGAD-GAN: Simultaneous Generation and Anomaly Detection for time-series sensor data with Generative Adversarial Networks // Mechanical Systems and Signal Processing. 2024. Vol. 210. Article 111141. https://doi.org/10.1016/j.ymssp.2024.111141. 15. Lundberg S. M., Lee S. -I. A unified approach to interpreting model predictions // Advances in neural information processing systems (NIPS’17), 2017, pp. 4768–4777. 16. Ribeiro M. T., Singh S., Guestrin C. Why Should I Trust You?: Explaining the Predictions of Any Classifier // Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, NY, USA, 2016, pp. 1135–1144. 17. Neshenko N., Bou-Harb E., Furht B. A behavioral-based forensic investigation approach for analyzing attacks on water plants using GANs // Forensic Science International: Digital Investigation. 2021. Vol. 37. Article 301198. 18. Antwarg L., Miller R. M., Shapira B., Rokach L. Explaining anomalies detected by autoencoders using SHAP. arXiv preprint arXiv:1903.02407. 2019. 19. Oliveira D., Vismari L. F., Nascimento A. M., de Almeida J. R., Cugnasca P. S., Camargo J. B., Almeida L., Gripp R., Neves M. A new interpretable unsupervised anomaly detection method based on residual explanation // IEEE Access. 2021. Vol. 10, pp. 1401–1409. 20. Ameli M., Becker P. A., Lankers K., van Ackeren M., Bähring H., Maaß W. Explainable unsupervised multi-sensor industrial anomaly detection and categorization // 21st IEEE International Conference on Machine Learning and Applications (ICMLA), 2022, pp. 1468–1475. 21. Sharma A., Vans E., Shigemizu D., Boroevich K. A., Tsunoda T. DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 2019. Vol. 9. Article 11399. https://doi.org/10.1038/s41598-019-47765-6. 22. Bazgir O., Zhang R., Dhruba S. R., Rahman R., Ghosh S., Pal R. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. Nat. Commun. 2020. Vol. 11. Article 4391. https://doi.org/10.1038/s41467-020-18197-y. 23. Zhu Y., Brettin T., Xia F., Partin A., Shukla M., Yoo H., Evrard Y. A., Doroshow J. H., Stevens R. L. Converting tabular data into images for deep learning with convolutional neural networks. Sci. Rep. 2021. Vol. 11. Article 11325. https://doi.org/10.1038/s41598-021-90923-y. 24. Zhou Q., Chen J., Liu H., He S., Meng W. Detecting Multivariate Time Series Anomalies with Zero Known Label. 2022. arXiv.org/abs/2208.02108. 25. Xie Y., Zhang H., Babar M. A. Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies. 2025. arXiv.org/abs/2501.16364. 26. Kamarthi H., Kong L., Rodriguez A., Zhang C., Prakash B. A. Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting. 2024. arXiv.org/abs/2407.02641. 27. Goh J., Adepu S., Junejo K., Mathur A. A Dataset to Support Research in the Design of Secure Water Treatment Systems // Critical Information Infrastructures Security. CRITIS 2016. Lecture Notes in Computer Science. Vol. 10242. Springer, Cham. https://doi.org/10.1007/978-3-319-71368-7_8. |
142-151 |
Zharova, A. K. ANALYSIS OF OPEN DATA POSTED ON THE NETWORK IN ORDER TO OBTAIN INFORMATION ABOUT THE CRIME SITUATION / A. K. Zharova, V. M. Elin, I. V. Atlasov // Cybersecurity issues. – 2025. – № 4(68). – С. 152-159. – DOI: 10.21681/2311-3456-2025-4-152-159.AbstractThe purpose of the article is to propose a method for forming a digital profile of a person, which can be used to analyze and predict the criminogenic situation. Research method: logical and mathematical methods, such as typological model, deterministic model and simulation modeling, are used. In addition, the method of analysis of mathematical models, including the stochastic model, is used, which allows to obtain a more accurate and detailed picture. Result: data analysis systems can be used to extract, analyze, transform and present information that is essential for operational-search and investigative activities. The authors, referring to the existing judicial practice, reveal the importance of communication data for obtaining a digital profile of a person, which formally do not belong to personal data as a category of restricted information. is a mathematical modeling of the criminogenic situation based on the analysis of independent digital data left by the user of the social network. Thus, as a result of the study, patterns have been identified that make it possible to predict the behavior of groups of people who transmit harmful information on the network, or the placement of information of this category. Practical value: on the basis of the theoretical experiment, a conclusion is made about the possibility of using mathematical methods in the criminological analysis of crime. Keywords: information technology, communication data, analysis of digital shadows and digital footprints, personal data, mathematical modeling. References1. Redkous, V. M. O sovershenstvovanii pravovoj osnovy deyatel'nosti organov vnutrennih del po ob"yavleniyu oficial'nyh predosterezhenij / V. M. Redkous // Zakon i pravo. – 2020. – № 9. – S. 157–159. – DOI 10.24411/2073-3313-2020-10453. – EDN EIBWAV. 2. Stepanov, O. A. O pravovyh osobennostyah i riskah realizacii cifrovogo profilirovaniya / O. A. Stepanov, D. A. Basangov // Rossijskaya yusticiya. – 2024. – № 1. – S. 59–69. – DOI 10.52433/01316761_2024_01_59. – EDN JJSSAU.3. Begishev I. R., Zharova A. K., Gromova E. A., Zaloilo M. V., Filipova I. A., Shutova A. A. «Cifrovoj povorot» v pravovyh issledovaniyah // Journal of Digital Technologies and Law. 2024. № 2(1). EDN: IWWUBP. 4. Zharova, A. K. Sistema organizacionno-pravovogo vyyavleniya lic, razmestivshih informaciyu v internete o namerenii sovershit' prestuplenie // Probely v rossijskom zakonodatel'stve. – 2024. – T. 17, № 1. – S. 122–130. – DOI 10.33693/2072-3164-2024-17-1-122-130. – EDN OHAZYD. 5. Shutova, A. A. Obespechenie cifrovoj bezopasnosti sistemy zdravoohraneniya ugolovno-pravovymi sredstvami / A. A. Shutova // Russian Journal of Economics and Law. – 2024. – T. 18, № 4 – S. 936–953. – DOI 10.21202/2782-2923.2024.4.936-953. – EDN SHZTFY. 6. Dejneko, A. G. Publichnoe pravo v kiberprostranstve: publichno-pravovoe regulirovanie informacionnyh otnoshenij / A. G. Dejneko. – Moskva : Obshchestvo s ogranichennoj otvetstvennost'yu \«Prospekt»\, 2025. – 248 s. – ISBN 978-5-392-42996-7. – EDN SBSONL. 7. Zharova, A. K. Paradigma cifrovogo profilirovaniya deyatel'nosti cheloveka: riski, ugrozy, prestupleniya / A. K. Zharova, V. M. Elin, A. V. Minbaleev. – Moskva : Obshchestvo s ogranichennoj otvetstvennost'yu \"Rusajns\", 2022. – 240 s. – ISBN 978-5-466-00766-4. – EDN DNKVPR. 8. Zharova, A. K. Obzor normativnyh trebovanij, obespechivayushchih nacional'nuyu bezopasnost' SShA v sfere kvantovyh tekhnologij / A. K. Zharova // Informacionnoe obshchestvo. – 2023. – № 3. – S. 69–77. – DOI 10.52605/16059921_2023_03_69. – EDN CCHNJY. 9. Zaloilo, M. V. Ciklichno-volnovaya model' interpretacii istorii prava na osnove teorii tekhnologicheskih ukladov / M. V. Zaloilo // Istorikopravovoj ezhegodnik – 2023. – Moskva : Infotropic Media, 2024. – S. 48–72. – EDN IETWNM. 10. Tverdova, T. V. § 3. Riski pravovogo regulirovaniya otnoshenij, voznikayushchih po povodu iskusstvennogo intellekta / T. V. Tverdova // Teoretiko-pravovaya paradigma sushchestvovaniya kiberneticheskoj (informacionnoj) civilizacii : monografiya. – Moskva : Mezhregional'naya obshchestvennaya organizaciya \«Mezhregional'naya associaciya teoretikov gosudarstva i prava»\, 2022. – S. 244-273. – EDN ZXOJCC. 11. Maksimov S. V. Stohasticheskaya model' repressivnopreventivnogo vozdejstviya na prestupnost': ot intuicii k raschetam / S. V. Maksimov, Yu.G. Vasin, K. A. Utarov.—DOI 10.17150/2500-4255.2021.15(6).665-680 // Vserossijskij kriminologicheskij zhurnal. – 2021. – T. 15, № 6. – S. 665–680. 12. Modelirovanie processov prinyatiya resheniya v pravoohranitel'noj deyatel'nosti / O. Yu. Danilova, A. V. Men'shih, V. V. Men'shih [i dr.]. – Voronezh : Voronezhskij institut Ministerstva vnutrennih del Rossijskoj Federacii, 2021. – 103 s. – ISBN 978-5-88591-856-5. – EDN FENSWM. 13. Minaev V. A. Modelirovanie dinamiki prestupnosti s uchetom faktora latentnosti// Kriminologicheskij zhurnal. Estestvennye nauki. Konp'yuternye nauki i informatika. 2022. № 2. S. 67–78. 14. Malahova, V. V. Analiz statisticheskih dannyh s ispol'zovaniem matematicheskogo apparata iskusstvennogo intellekta / V. V. Malahova, O. V. Malahov // Vestnik Luganskogo gosudarstvennogo universiteta imeni Vladimira Dalya. – 2023. – № 11. – S. 177–179. – EDN EADYTE. |
152-159 |
Leave a Reply