
Contents of the 1st issue of the Cybersecurity Issues journal for 2025:
Title | Pages |
Yazov, Yu. K. CYBERSECURITY TERMS AND DEFINITIONS / Yu. K. Yazov // Cybersecurity issues. – 2025. – № 1(65). – С. 2-6. – DOI: 10.21681/2311-3456-2025-1-2-6.AbstractThe goal of article: is disclosure content of terms with the prefix «cyber» and assessment validity of their use in domestic national practice. The method of research: is semantic analysis, comparison and contrast, ontology of concepts and their system analysis. The result of the research: is widespread use of terms with the prefix «cyber» and the absence of their definitions in domestic national documents. A brief analysis of the proposals of specialists to define such terms as «cyberspace», «cybersecurity», etc. has defined. It is noted that these definitions do not show exactly how the terms with the prefixes «cyber» differ from terms used today, such as information security threat, network attack, etc., and why «new» terms can and should be used. It is noted that the prefix «cyber» shows their involvement with computers, including the Internet, information and telecommunication systems, etc. In this case, there is an important sign of such involvement: in devices, systems, processes, phenomena, to which these words with the prefix «cyber» are related, information in digital form is processed (created, transmitted, received, recorded, destroyed, etc.). Based on the above, definitions of such terms as «cyberspace», «cybersecurity», «cyber threat», «cyberattack» are provided. Keywords: digital information, Information space, Cyberspace, Digital technology, Cyber threats, Cyber-Physical Systems (CPS). References1. Markov A. S. Kiberbezopasnost' i informacionnaja bezopasnost' kak bifurkacija nomenklatury nauchnyh special'nostej/ A. S. Markov //Voprosy kiberbezopasnosti. 2022. № 1 (47), s. 2–9. DOI:10.21681/2311-3456-2022-1-2-9 2. Dobrodeev A. Ju. Kiberbezopasnost' v Rossijskoj Federacii. Modnyj termin ili prioritetnoe tehnologicheskoe napravlenie obespechenija nacional'noj i mezhdunarodnoj bezopasnosti XXI veka/ A. Ju. Dobrodeev // Voprosy kiberbezopasnosti. 2021. № 4 (44), s. 61–72. DOI:10.21681/2311-3456-2021-4-61-72 3. Starodubcev Ju. I. Strukturno-funkcional'naja model' kiberprostranstva/ Ju. I. Starodubcev, P. V. Zakalkin, S. A. Ivanov// Voprosy kiberbezopasnosti. 2021. № 4 (44), s. 16–24. DOI:10.21681/2311-3456-2021-4-16-24 4. Dylevskij, I. N. O vzgljadah administracii SShA na kiberprostranstvo kak novuju sferu vedenija voennyh dejstvij/ I. N. Dylevskij, S. I. Bazylev, O. V. Zalivhin i dr. // Voennaja mysl'. 2020. № 10, s. 22–29. 5. Karchija A. A., Makarenko G. I., Sergin M. Ju. Sovremennye trendy kiberugroz i transformacija ponjatija kiberbezopasnosti v uslovijah cifrovizacii sistemy prava // Voprosy kiberbezopasnosti. 2019. № 3 (31), s. 18–23. DOI:10.21681/2311-3456-2019-3-18-23 6. Arhipova E. A. Sovremennoe ponimanie terminov «kiberneticheskaja bezopasnost'» i «informacionnaja bezopasnost'»/ E. A. Arhipova // Yung Scientis, 2019, № 12 (76), pp. 315–320. 7. Bashkirov N. Vzgljady voennogo i politicheskogo rukovodstva SShA na zashhitu infrastruktury ot kiberugroz // Zarubezhnoe voennoe obozrenie. 2018., № 12, s. 13–17. 8. Zhuravel' V. P. Protivodejstvie ugroze kiberterrorizma // Zarubezhnoe voennoe obozrenie. 2018., № 5, s. 12–16. 9. Meshherjakov R.V., Ishakov S.Ju. Issledovanie indikatorov komprometacii dlja sredstv zashhity informacionnyh i kiberfizicheskih sistem // Voprosy kiberbezopasnosti. 2022. № 5 (51), s. 82–99. DOI:10.21681/2311-3456-2022-5-82-99 10. Korshunov G. I. Modelirovanie fizicheskih sred dlja optimizacii cifrovogo upravlenija v kiberfizicheskih sistemah // NiKSS. – 2023. – № 1 (41), s. 23–28. DOI: 10.21685/2307-4205-2023-1-3. 11. Buryj A. S. Informacionnye struktury umnogo goroda na osnove kiberfizicheskih sistem / A. S. Buryj, D. A. Lovcov // Pravovaja informatika. – 2022. – № 4. – S. 15–26. DOI: 10.21681/1994-104-2022-4-15-26 12. Fatin A. D., Pavlenko E. Ju. Analiz modelej predstavlenija kiberfizicheskih sistem v zadachah obespechenija informacionnoj bezopasnosti // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2020. – № 2. s. 109–121. 13. Jazov V. K. O nauchnyh special'nostjah «kiberbezopasnost'» i «metody i sistemy zashhity informacii, informacionnaja bezopasnost» // Voprosy kiberbezopasnosti. 2022. № 2 (48). S. 5–6. |
2–6 |
Petrenko, S. A. A MODEL OF QUANTUM THREATS TO INFORMATION SECURITY FOR NATIONAL BLOCKCHAIN ECOSYSTEMS AND PLATFORMS / S. A. Petrenko, A. A. Balyabin // Cybersecurity issues. – 2025. – № 1(65). – С. 7-17. – DOI: 10.21681/2311-3456-2025-1-7-17.AbstractThe purpose of the research: development of a mathematical model of quantum threats to information security based on Petri nets for national blockchain ecosystems and platforms of the «Data Economy» of the Russian Federation. The method of the research: methods of system analysis, methods of Petri net theory, methods of probability theory and mathematical statistics, methods of the theory of stability of complex systems. The result of the research: a mathematical model of quantum threats to security based on Petri nets is presented and substantiated, which made it possible to set a metric and measure of ensuring cyber resilience for a typical national blockchain system in the face of new cyber attacks by intruders using a quantum computer. Keywords: threats to information security, quantum threats to security, blockchain ecosystems and platforms, cybersecurity, cyber resilience, methods of analysis and synthesis of quantum-resistant blockchain. References1. Balyabin A. A., Petrenko S. A., Kostyukov A. D. Model' ugroz bezopasnosti i kiberustoychivosti oblachnykh platform KII RF // Zashchita informatsii. Insayd. 2024. № 5 (119). Pp. 26–34. 2. Markov A. S. Vazhnaya vekha v bezopasnosti otkrytogo programmnogo obespecheniya // Voprosy kiberbezopasnosti. 2023. № 1 (53). Pp. 2–12. DOI: 10.21681/2311-3456-2023-1-2-12. 3. Balyabin A. A. Model' oblachnoy platformy KII RF s kiberimmunitetom v usloviyakh informatsionno-tekhnicheskikh vozdeystviy // Zashchita informatsii. Insayd. 2024. № 5 (119). Pp. 35–44. 4. Verma A. et al. Blockchain for Industry 5.0: Vision, Opportunities, Key Enablers, and Future Directions // IEEE Access. 2022. Vol. 10. Pp. 69160–69199. DOI: 10.1109/ACCESS.2022.3186892. 5. Zou W. et al., Smart Contract Development: Challenges and Opportunities // IEEE Transactions on Software Engineering. 2021. Vol. 47. No. 10. Pp. 2084–2106. DOI: 10.1109/TSE.2019.2942301. 6. Ali M. S., Vecchio M., Pincheira M., Dolui K., Antonelli F., Rehmani M. H. Applications of blockchains in the internet of things: A comprehensive survey // IEEE Communications Surveys & Tutorials. 2019. Vol. 21. No. 2. Pp. 1676–1717. DOI: 10.1109/COMST.2018.2886932. 7. Vladucu M. -V., Dong Z., Medina J., Rojas-Cessa R. E-Voting Meets Blockchain: A Survey // IEEE Access. 2023. Vol. 11. Pp. 23293–23308. DOI: 10.1109/ACCESS.2023.3253682. 8. Petrenko S., Khismatullina E. Cyber-resilience concept for Industry 4.0 digital platforms in the face of growing cybersecurity threats // Software Technology: Methods and Tools, 51st International Conference, TOOLS 2019, Innopolis, Russia, October 15–17, 2019. 420 p. DOI: 10.1007/978-3-030-29852-4. 9. Petrenko A. S., Petrenko S. A. Otsenka kvantovoy ugrozy dlya sovremennykh blokcheyn-sistem // Informatsionnye sistemy i tekhnologii v modelirovanii i upravlenii : Sbornik trudov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii, Yalta, May 24–25, 2023. Pp. 171–173. 10. Petrenko A. S., Lomako A. G., Petrenko S. A. Analiz sovremennogo sostoyaniya issledovaniy problemy kvantovoy ustoychivosti blokcheyna. Chast' 1 // Zashchita informatsii. Insayd. 2023. № 3 (111). Pp. 38–46. 11. Petrenko A. S., Petrenko S. A., Kostyukov A. D., Ozhiganova M. I. Model' kvantovykh ugroz bezopasnosti dlya sovremennykh blokcheyn-platform // Zashchita informatsii. Insayd. 2022. № 3 (105). Pp. 10–20. 12. Petrenko A. S., Petrenko S. A. Metod otsenivaniya kvantovoy ustoychivosti blokcheyn-platform // Voprosy kiberbezopasnosti. 2022. № 3 (49). Pp. 2–22. DOI 10.21681/2311-3456-2022-3-2-22. 13. Lashkari B., Musilek P. A Comprehensive Review of Blockchain Consensus Mechanisms // IEEE Access. 2021. Vol. 9. Pp. 43620–43652. DOI: 10.1109/ACCESS.2021.3065880. 14. Xie J., Tang H., Huang T., Yu F., Xie R., Liu J., Liu Y. A survey of blockchain technology applied to smart cities: Research issues and challenges // IEEE Communications Surveys & Tutorials. 2019. Vol. 21. No. 3. Pp. 2794–2830. DOI: 10.1109/COMST.2019.2899617. 15. Shahriar M. A. et al. Modelling Attacks in Blockchain Systems using Petri Nets // 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China. 2020. Pp. 1069–1078. DOI: 10.1109/TrustCom50675.2020.00142. 16. Younis M. M., Salim Jamil A., Abdulrazzaq A. H., Ahmed Mawla N., Khudhair R. M., Vasiliu Y. Progress and Challenges in Quantum Computing Algorithms for NP-Hard Problems // 2024 36th Conference of Open Innovations Association (FRUCT), Lappeenranta, Finland. 2024. Pp. 460–468. DOI: 10.23919/FRUCT64283.2024.10749878. 17. Moldovyan A. A., Moldovyan N. A. Novye formy skrytoy zadachi diskretnogo logarifmirovaniya // Trudy SPIIRAN 2019. No.5. Vol. 18. Pp. 504–529. DOI: 10.15622/sp.18.2.504-529. 18. Savo G. Glisic; Beatriz Lorenzo. Quantum Search Algorithms // Artificial Intelligence and Quantum Computing for Advanced Wireless Networks, Wiley. 2022. Pp. 499–542. DOI: 10.1002/9781119790327.ch11. 19. Petrenko A. S., Romanchenko A. M. Perspektivnyy metod kriptoanaliza na osnove algoritma Shora // Zashchita informatsii. Insayd. 2020. № 2 (92). Pp. 17–23. 20. Petrenko A., Petrenko S. Basic Algorithms Quantum Cryptanalysis // Voprosy Kiberbezopasnosti. 2023. No. 1 (53). Pp. 100–115. DOI 10.21681/2311-3456-2023-1-100-115. 21. Borges F., Reis P. R., Pereira D. A Comparison of Security and its Performance for Key Agreements in Post-Quantum Cryptography // IEEE Access. 2020. Vol. 8. Pp. 142413–142422. DOI: 10.1109/ACCESS.2020.3013250. 22. Kearney J. J., Perez-Delgado C. A. Vulnerability of blockchain technologies to quantum attacks // Array. 2021. Vol. 10. P. 100065. DOI: 10.1016/j.array.2021.100065. 23. Kushwaha S. S., Joshi S., Singh D., Kaur M. Lee H. -N. Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract // IEEE Access. 2022. Vol. 10. Pp. 6605–6621. DOI: 10.1109/ACCESS.2021.3140091. 24. Sayeed S., Marco-Gisbert H. Assessing blockchain consensus and security mechanisms against the 51 % attack // Applied Sciences. 2019. Vol. 9. No. 9. P. 1788. DOI: 10.3390/app9091788. 25. Fernandez-Carames T. M., Fraga-Lamas P. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks // IEEE Access. 2020. Vol. 8. Pp. 21091–21116. DOI: 10.1109/ACCESS.2020.2968985. 26. Mollajafari S.; Bechkoum K. Blockchain Technology and Related Security Risks: Towards a Seven-Layer Perspective and Taxonomy // Sustainability 2023. Vol. 15 (18). 13401. DOI: 10.3390/su151813401. 27. Al-Shaer R., Spring J. M., Christou E. Learning the Associations of MITRE ATT&CK Adversarial Techniques // 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France. 2020. Pp. 1–9. DOI: 10.1109/CNS48642.2020.9162207. |
7–17 |
Kartsan, I. N. STARLINK: CYBERSECURITY CHALLENGES AND COUNTERMEASURES FOR THE SATELLITE INTERNET / I. N. Kartsan, V. S. Averyanov, M. D. Krasnikov // Cybersecurity issues. – 2025. – № 1(65). – С. 18-27. – DOI: 10.21681/2311-3456-2025-1-18-27.AbstractPurpose of the research: investigation of vulnerabilities of low-orbit satellite constellation, as well as methods of counteraction and neutralization of threats related to providing unauthorized access to the Internet to users. Research method: analytical review of relevant scientific information, information security assessment method. Research result: the analytical review is presented to assess the interference immunity of the Starlink satellite constellation using Signal-to-Noise Ratio technical parameters. Common vulnerabilities for the Starlink 1.0, Starlink 1.5, Starlink 2.0 and Starlink 2.0 mini-series of spacecraft are identified. The technological design of the Starlink satellite Internet system developed by SpaceX is shown, including information on defenses against jamming, hacking, and cyberattacks. Interference techniques utilizing signal phase shifting, adaptive RF interference, coherent and virtual interference, electromagnetic pulses, reflectors and deflectors, resonant scattering, and the use of bionic devices and microdrones are discussed. Both disadvantages and advantages are presented for all the methods considered. Interference techniques with the most promising approach are identified. Practical usefulness lies in the fact that, based on the analysis of interference techniques, technical solutions for exploiting vulnerabilities in network hardware and software are proposed. Keywords: signal phase shift, adaptive RF interference, coherent interference, virtual interference, electromagnetic pulses, reflector, deflector, resonant scattering, bionic device, microdrone. References1. Ryabov A. V., Alekseev A. E. Directions of increasing the immunity of radio communication systems // Safety, security, communications. 2022, № 7-1, s. 117–122. 2. Yakovishin A., Kuznetsov I., Drozdov I., Pismensky D. Perspectives of information security development: global challenges and protection strategies // Information Resources of Russia. 2024, № 2 (197), s. 93–103. DOI: 10.52815/0204-3653_2024_2197_93 3. Kartsan I. N., Kobozev D. S. Aspects of satellite communication security // Natural and Technical Sciences. 2024, № 6 (193), s. 310–312. 4. Pashayev F. G., Zeynalov D. I., Najafov G. T. Development of software and hardware means of protection of technological processes from cyber threats // Problems of information security. Computer Systems. 2024, № 2 (59), s. 104–116. DOI: 10.48612/jisp/p79az1nu-71vk 5. Nikiforov I. A. The role of artificial intelligence in cyber security // Collection of scientific papers of Russian universities «Problems of economics, finance and production management». 2024, № 54, s. 230–237. 6. Loginov E. A. The role and significance of artificial intelligence in ensuring information security // Scientific Aspect. 2024, Vol. 21, No. 5, s. 2805–2809. 7. Averyanov V. S., Kartsan I. N. Methods of evaluation of automated systems security on the basis of quantum technologies according to CVSS V2.0/V3.1 // Zashhita informacii. Insajd. 2023, № 1 (109), s. 18–23. 8. Danilyuk A. I., Gladkikh D. S., Melnyk V. N., Polishchuk V. R. Factors affecting the communication systems under combat conditions // Tendencies of Science and Education Development. 2024, № 107-9, s. 167–170. DOI: 10.18411/trnio-03-2024-489 9. Romashchenko M. A., Vasilchenko D. V., Beletskaya S. Yu. Using artificial neural networks to assess the impact of electromagnetic interference // Radiotekhnika. 2023, Vol. 87, No. 8, s. 21–27. DOI: 10.18127/j00338486-202308-04 10. Dementiev A. N., Novikov A. N., Arseniev K. V., Kurkin A. N., Zhukov A. O., Kartsan I. N. Signal processing method in the adaptive antenna array // South Siberian Scientific Bulletin. 2023, № 4 (50), с. 60–63. DOI: 10.25699/SSSB.2023.50.4.009 11. Zhang D., Cheng E., Wan H., Zhou X., Chen Y. Prediction of Electromagnetic Compatibility for Dynamic Datalink of UAV // IEEE Transactions on Electromagnetic Compatibility. 2019, Vol. 61, № 5, pp. 1474–1482. DOI:10.1109/TEMC.2018.2867641 12. Petrenko A. S., Petrenko S. A., Ozhiganova M. I. About cyber resistance and security of image neural networks // Zashhita informacii. Insajd. 2023, № 6 (114), s. 50–54. 13. Ozhiganova M. I. Security architecture of cyber-physical system // Zashhita informacii. Insajd. 2022, № 2 (104), s. 5–9. 14. Ozhiganova M. I., Kalita A. O. Analysis and application of machine learning algorithms for identification of malicious software code // Informatization and communication. 2019, № 5, s. 51–56. 15. Kalita A. O., Ozhiganova M. I., Tishchenko E. N. Fundamentals of organization of adaptive information protection systems // NBI Technologies. 2019, Vol. 13, No. 1, s. 11–15. DOI: 10.15688/NBIT.jvolsu.2019.1.2 16. Romashchenko M. A., Vasilchenko D. V., Pukhov D. A. Current state of the problems of improving noise immunity of the control channel of unmanned aircraft systems based on artificial intelligence // Bulletin of Voronezh State Technical University. 2023, Vol. 19, No. 6, s. 142–146. DOI: 10.36622/VSTU.2023.19.6.022 17. Zhang R., Cui J. Application of Convolutional Neural Network in multi-channel Scenario D2D Communication Transmitting Power Control // 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 2020, pp. 668–672. DOI:10.1109/CVIDL51233.2020.000-3 |
18–27 |
Basan, E. S. A METHODOLOGY FOR SELECTING EFFECTIVE COUNTERMEASURES TO INCREASE THE FAULT TOLERANCE OF CYBERPHYSICAL SYSTEMS
/ E. S. Basan, O. I. Silin, M. G. Firsova // Cybersecurity issues. – 2025. – № 1(65). – С. 28-40. – DOI: 10.21681/2311-3456-2025-1-28-40.AbstractThe aim of the work is to develop a methodology for increasing the fault tolerance of a cyberphysical system through the use of countermeasures, depending on the identified threats when exposed to attacks on it. Research method: the developed methodology is based on a conceptual model that describes the cyberphysical parameters and structural and functional characteristics of the system, and also allows you to identify current threats affecting the cyberphysical system. The methodology formally describes the threats that pose a danger to cyber-physical systems, assesses the risks of these threats and suggests effective countermeasures to reduce the risk of threats. An ontological approach is used to hierarchically represent knowledge about cyberphysical parameters and threats. The ontology allows us to describe the ratio of threats affecting the structural and functional characteristics, as well as to identify countermeasures that help minimize information security risks. Research results: a methodology has been developed that, based on the analysis of the structural and functional characteristics of the system and their criticality, allows identifying current threats and selecting effective countermeasures to minimize them. An analysis of the main parameters of cyber-physical systems was conducted, a conceptual model was compiled that allows describing the structure of the cyber-physical system. As a result of the analysis of the main parameters of cyber-physical systems, those that are most susceptible to cyber-attacks were identified. A list of countermeasures was also created that minimize security risks, which increases the fault tolerance of the cyber-physical system. The result of the work is a list of attacks that are relevant for cyber-physical systems, as well as a number of countermeasures that minimize the identified cyber-attacks, while the countermeasures are divided into three categories. Scientific novelty: the use of an ontological approach to describe the cyber-physical parameters and structural and functional characteristics of a cyber-physical system, which made it possible to identify those most susceptible to attacks and assess security risks. Keywords: internet of things, sensors, cyberattack, threats, vulnerabilities, structural and functional characteristics, means of data transmission, countermeasures, incident. References1. I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu and W. Ni, «Anatomy of Threats to the Internet of Things,» in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1636–1675, Secondquarter 2019, doi: 10.1109/COMST.2018.2874978 2. Qaswar F., Rahmah M., Raza M.A., Noraziah A., Alkazemi B., Fauziah Z, Hassan MKA, Sharaf A. Applications of Ontology in the Internet of Things: A Systematic Analysis. Electronics. 2023; 12(1):111. https://doi.org/10.3390/electronics12010111 3. Jean-Paul Y., Hassan N., Ola S. Security analysis of drones systems: Attacks, limitations, and recommendations internet of things // Sensors. – 2020 Vol. 11, No. 100218 – P. 1–38. 4. Levshun, D., Kotenko, I. Intelligent Graph-Based Correlation of Security Events in Cyber-Physical Systems. In: Kovalev, S., Kotenko, I., Sukhanov, A. (eds) Proceedings of the Seventh International Scientific Conference «Intelligent Information Technologies for Industry» (IITI’23). IITI 2023. Lecture Notes in Networks and Systems, vol 777. Springer, Cham. https://doi.org/10.1007/978-3-031-43792-2_12. 5. Lee I. Internet of Things (IoT) Cybersecurity: Literature Review and IoT Cyber Risk Management. Future Internet. 2020; 12(9):157. https://doi.org/10.3390/fi12090157 6. Ramanathan, L., Nandhini, R. S. (2022). Cyber-Physical System – An Architectural Review. In: Joshi, A., Mahmud, M., Ragel, R.G., Thakur, N.V. (eds) Information and Communication Technology for Competitive Strategies (ICTCS 2020). Lecture Notes in Networks and Systems, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-16-0739-4_13 7. A. Tantawy, S. Abdelwahed, A. Erradi, K. Shaban, Model-based risk assessment for cyber physical systems security, Computers & Security, Volume 96, 2020, 101864, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2020.101864 8. Mel'nik Je.V., Safronenkova I.B., Taranov A.Ju. Ontologicheskij podhod k resheniju zadachi pereraspredelenija vychislitel'noj nagruzki v raspredelennoj sisteme monitoringa s mobil'nymi komponentami na baze raspredeljonnogo reestra // Izvestija JuFU. Tehnicheskie nauki.; 2023.; N 5 (2023).; S. 163–173.; DOI 10.18522/2311-3103-2023-5-163-173 9. Elias G. T., Tala T.K., Hamed T.G. A secure Blockchain-based communication approach for UAV networks // Proceedings of the IEEE International Conference on Electro Information Technology (EIT). – Chicago, 2020. – P. 411–415. 10. Ammar A., Muhammad M., Kashif M. A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs // Sensors. – 2021. – Vol. 196, No. 4. – P. 108–217. 11. Ghiasi M. et al. A comprehensive review of cyber-attacks and defense mechanisms for improving security in smart grid energy systems: Past, present and future // Electric Power Systems Research. 2023. Vol. 215. p. 108975. 12. Wöhnert, Kai Hendrik & Wöhnert, Sven-Jannik & Thiel, Tobias & Weißbach, Rüdiger & Skwarek, Volker. Secure Cyber-Physical Object Identification in Industrial IoT-Systems. Procedia Manufacturing. 51. 1221-1228. 10.1016/j.promfg.2020.10.171 13. D.M., Thompson., Sean, B., Maynard., Atif, Ahmad, Ahmad. «Cyber-threat intelligence for security decision-making: A review and research agenda for practice». Computers & Security, 132 (2023).:103352–103352. doi: 10.1016/j.cose.2023.103352 14. Rakesh S., Atefeh O., Sajjad A. Machine-learning-enabled intrusion detection system for cellular connected UAV networks // Sensors. – 2021. – Vol. 10, No.1549. – P. 1–28. 15. Mihalache, S. F., Pricop, E., Fattahi, J. (2019). Resilience Enhancement of Cyber-Physical Systems: A Review. In: Mahdavi Tabatabaei, N., Najafi Ravadanegh, S., Bizon, N. (eds) Power Systems Resilience. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94442-5_11 16. Thulasiraman P., Haakensen T., Callanan A. «Countering Passive Cyber Attacks Against Sink Nodes in Tactical Sensor Networks Using Reactive Route Obfuscation», Elsevier Journal of Network and Computer Applications, Vol. 132, pp. 10–21, April 2019. DOI: 10.1016/j.jnca.2019.01.028 17. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas. (2022). A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems. Renewable Energy. 189. 1383–1406. 10.1016/j.renene.2022.03.096 18. Zheng, Yu & Li, Zheng & Xu, Xiaolong & Qingzhan, Zhao. (2021). Dynamic defenses in cyber security: Techniques, methods and challenges. Digital Communications and Networks. 8, 422–435. DOI: 10.1016/j.dcan.2021.07.006 19. Li, Guangxia & Shen, Yulong & Zhao, Peilin & Lu, Xiao & Liu, Jia & Liu, Yangyang & Hoi, Steven. (2019). Detecting Cyberattacks in Industrial Control Systems Using Online Learning Algorithms. Neurocomputing. 364, 338–348. DOI: 10.1016/j.neucom.2019.07.031 20. J. Leško, M. Schreiner, D. Megyesi and L. Kovács, «Pixhawk PX-4 Autopilot in Control of a Small Unmanned Airplane», 2019 Modern Safety Technologies in Transportation (MOSATT), Kosice, Slovakia, 2019, pp. 90–93, doi: 10.1109/MOSATT48908.2019.8944101 21. Basan, E., Lapina, M., Lesnikov, A., Basyuk, A., Mogilny, A. Trust Monitoring in a Cyber-Physical System for Security Analysis Based on Distributed Computing. In: Alikhanov, A., Lyakhov, P., Samoylenko, I. (eds) Current Problems in Applied Mathematics and Computer Science and Systems. APAMCS 2022. Lecture Notes in Networks and Systems, vol 702. Springer, Cham. https://doi.org/10.1007/978-3-031-34127-4_42 22. Basan, E.; Basan, A.; Nekrasov, A.; Fidge, C.; Sushkin, N.; Peskova, O. GPS-Spoofing Attack Detection Technology for UAVs Based on Kullback–Leibler Divergence. Drones 2022, 6, 8. https://doi.org/10.3390/drones6010008 23. Basan, E.; Basan, A.; Nekrasov, A. Method for Detecting Abnormal Activity in a Group of Mobile Robots. Sensors 2019, 19, 4007. https://doi.org/10.3390/s19184007 24. Basan, E.; Basan, A.; Mushenko, A.; Nekrasov, A.; Fidge, C.; Lesnikov, A. Analysis of Attack Intensity on Autonomous Mobile Robots. Robotics 2024, 13, 101. https://doi.org/10.3390/robotics13070101 |
28–40 |
Voevodin, V. A. ON THE FORMULATION OF THE TASK OF ASSESSING THE STABILITY OF THE FUNCTIONING OF CRITICAL INFORMATION INFRASTRUCTURE FACILITIES / V. A. Voevodin // Cybersecurity issues. – 2025. – № 1(65). – С. 41-49. – DOI: 10.21681/2311-3456-2025-1-41-49.AbstractThe purpose of the study: is to substantiate the relevance, formulate and formalize the scientific task of quantifying the stability of the functioning of a critical information infrastructure in relation to the conditions of exposure to threats of violation of its information security. Research methods: system analysis, analysis of a scientific problem, formalization of scientific knowledge, methodology of scientific research. The results obtained: the verbal and formal statements of the scientific problem are formulated. Scientific novelty: the author's approach to assessing the dynamics of the stability of the functioning of critical information infrastructure in the face of threats, taking into account the available resource, is proposed. Practical significance: The developed formulation of the scientific problem can serve as the basis for the formulation of the terms of reference for the development of methods, models and tools for quantifying the stability of the functioning of objects of critical information structure operating under the influence of threats. Keywords: threats of information security violations, a system for restoring functionality, critical information infrastructure, recoverability, protection from threats, a renewable resource, a non-renewable resource. References1. Voevodin V. A. Genezis ponjatija strukturnoj ustojchivosti informacionnoj infrastruktury avtomatizirovannoj sistemy upravlenija proizvodstvennymi processami k vozdejstviju celenapravlennyh ugroz informacionnoj bezopasnosti. Vestnik Voronezhskogo instituta FSIN Rossii, 2023, № 2, aprel'-ijun'. – S. 30–41. 2. Zubkov E. A. Ocenka kiberustojchivosti setevoj infrastruktury s ispol'zovaniem raspredelennogo mehanizma analiza i monitoringa / E. A. Zubkov, V. O. Erastov, D. P. Zegzhda // Metody i tehnicheskie sredstva obespechenija bezopasnosti informacii. – 2024. – № 33. – S. 14–16. 3. Zegzhda D. P. Kiberbezopasnost' cifrovoj industrii. Teorija i praktika funkcional'noj ustojchivosti k kiberatakam / pod red. D. P. Zegzhdy. – M.: Gorjachaja linija – Telekom. 2022. – 560 s. 4. Izrailov K. E. Ocenivanie i prognozirovanie sostojanija slozhnyh ob#ektov: primenenie dlja informacionnoj bezopasnosti / K. E. Izrailov, M. V. Bujnevich, I. V. Kotenko, V. A. Desnickij // Voprosy kiberbezopasnosti. – 2022. – № 6(52). – S. 2-21. – DOI 10.21681/23113456-6-2022-2-21. 5. Kotenko I. V. Podsistema preduprezhdenija komp'juternyh atak na ob#ekty kriticheskoj informacionnoj infrastruktury: analiz funkcionirovanija i realizacii / I. V. Kotenko, I. B. Saenko, R. I. Zaharchenko, D. V. Velichko // Voprosy kiberbezopasnosti. – 2023. – № 1(53). – S. 13–27. – DOI 10.21681/2311-3456-2023-1-13-27. 6. Konovalenko S. A. Metodika ocenivanija funkcional'noj ustojchivosti geterogennoj sistemy obnaruzhenija, preduprezhdenija i likvidacii posledstvij komp'juternyh atak // Sistemy upravlenija, svjazi i bezopasnosti. 2023. № 4. S. 157-195. doi: 10.24412/2410-9916-2023-4-157-195. 7. Makarenko S. I. Modeli sistemy svjazi v uslovijah prednamerennyh destabilizirujushhih vozdejstvij i vedenija razvedki. Monografija. – SPb.: Naukoemkie tehnologii, 2020. 337 s. 8. Starodubcev Ju. I. Konceptual'nye napravlenija reshenija problemy obespechenija ustojchivosti Edinoj seti jelektrosvjazi Rossijskoj Federacii / Ju. I. Starodubcev, S. A. Ivanov, P. V. Zakalkin // Voennaja mysl'. – 2021. – № 4. – S. 39–49. 9. Starodubcev Ju. I. Kiberoruzhie kak osnovnoe sredstvo vozdejstvija na kriticheskuju infrastrukturu gosudarstv / Ju. I. Starodubcev, P. V. Zakalkin, S. A. Ivanov // Vestnik Akademii voennyh nauk. – 2022. – № 1(78). – S. 24–32. 10. Jazov Ju. K. Sostavnye seti Petri-Markova so special'nymi uslovijami postroenija dlja modelirovanija ugroz bezopasnosti informacii / Ju. K. Jazov, A. P. Panfilov // Voprosy kiberbezopasnosti. – 2024. – № 2(60). – S. 53–65. – DOI 10.21681/2311-3456-2024-2-53-65. 11. Jazov Ju. K., Solov'ev S. V. Metodologija ocenki jeffektivnosti zashhity informacii v informacionnyh sistemah ot nesankcionirovannogo dostupa. – SPb.: Naukoemkie tehnologii. 2023. – 257 s. 12. Jazov Ju. K. Osnovy teorii sostavnyh setej Petri-Markova i ih primenenija dlja modelirovanija processov realizacii ugroz bezopasnosti informacii v informacionnyh sistemah / Ju. K. Jazov, A. V. Anishhenko, A. S. Suhoverhov. – Sankt-Peterburg : Izdatel'skij dom «Scientia», 2024. – 194 s. – ISBN 978-5-605-21112-9. – DOI 10.32415/scientia_978-5-6052111-2-9. 13. Shubinskij I. B. O funkcional'noj bezopasnosti slozhnoj tehnicheskoj sistemy upravlenija s cifrovymi dvojnikami / I. B. Shubinskij, H. Shebe, E. N. Rozenberg // Nadezhnost'. – 2021. – T. 21, № 1. – S. 38–44. – DOI 10.21683/1729-2646-2021-21-1-38-44. 14. Shubinsky I. B. Methods for ensuring and proving functional safety of automatic train operation systems / I. B. Shubinsky, E. N. Rozenberg, H. Schabe // Reliability: Theory & Applications. – 2024. – Vol. 19, No. 1(77). – P. 360–375. – DOI 10.24412/1932-2321-2024-177-360-375. 15. Shubinsky, I. B. Innovative methods of ensuring the functional safety of train control systems / I. B. Shubinsky E. N. Rozenberg, H. Schabe // Reliability: Theory & Applications. – 2023. – Vol. 18, No. 4(76). – P. 909–920. – DOI 10.24412/1932-2321-2023-476-909-920. 16. Voevodin V. A. Model' ocenki funkcional'noj ustojchivosti informacionnoj infrastruktury dlja uslovij vozdejstvija mnozhestva komp'juternyh atak // Informatika i avtomatizacija. 2023. № 22(3). S. 691–715. DOI 10.15622/ia.22.3.8. 17. Voevodin V. A. Chastnaja polumarkovskaja model' kak instrument snizhenija slozhnosti zadachi ocenivanija ustojchivosti funkcionirovanija jelementov informacionnoj infrastruktury, podverzhennoj vozdejstviju ugroz // Informatika i avtomatizacija. 2024. № 23(3). S. 611–642. doi.org/10.15622/ia.23.3.1. 18. Voevodin V. A., Krahotin N. A. Metody ocenivanija svjaznosti neorientirovannogo dvuhpoljusnogo pomechennogo grafa s uchetom destruktivnogo vozdejstvija vneshnih ugroz na ego vershiny // Vestnik Dagestanskogo gosudarstvennogo tehnicheskogo universiteta. Tehnicheskie nauki. 2024. № 51(1). S. 46–60. doi:10.21822/2073-6185-2024-51-1-46-60. |
41–49 |
Kaverin, S. S. MODEL OF THE OPERATION PROCESS AND ALGORITHM FOR DETERMINING OPTIMAL VALUES OF CONFIGURABLE PARAMETERS OF THE WEB SERVICE OF CORPORATE INFORMATION SYSTEMS / S. S. Kaverin, R. V. Maksimov, A. A. Moskvin // Cybersecurity issues. – 2025. – № 1(65). – С. 50-62. – DOI: 10.21681/2311-3456-2025-1-50-62.AbstractThe purpose of the study: increasing the security of the web service of corporate information systems in the context of network reconnaissance. Methods used: Pareto optimization, ideal point, Nelder-Mead, particle swarm, simulated annealing. The result of the study: a model for the functioning of a web service of corporate information systems in network intelligence conditions has been developed, which is implemented in the form of a semi-Markov random process with discrete states and continuous time. The probabilistic-time characteristics of the processes under study were obtained, which are necessary to determine the optimal mode for configuring the parameters of the web service. The problem of vector optimization has been solved to determine the optimal values of the parameters of the web service of corporate information systems, such as the number of HTTP response fragments, the time between these fragments, as well as the number of false web servers, allowing to maximize the effectiveness of protecting the web service of corporate information systems and minimize the likelihood failure of false web servers under appropriate restrictions. Scientific novelty: consists in developing a model and algorithm for searching the optimal parameters of a web service of corporate information systems in network intelligence conditions using the mathematical apparatus of semi-Markov random processes and scalarization of the vector optimization problem by the ideal point method. Keywords: random process, probabilistic-time characteristics, web resources, ideal point method, web session, intervaltransition probabilities. References1. Markov A. S. Vazhnaja veha v bezopasnosti otkrytogo programmnogo obespechenija // Voprosy kiberbezopasnosti. 2023. № 1 (53). S. 2–12. DOI:10.21681/2311-3456-2023-1-2-12. 2. Sokolovskij S. P. Model’ zashhity informacionnoj sistemy ot setevoj razvedki dinamicheskim upravleniem ee strukturno-funkcional’nymi harakteristikami // Voprosy oboronnoj tehniki. Serija 16 protivodejstvie terrorizmu. 2020. № 7-8. S. 62–73. 3. Walla S., Rossow C. MALPITY: Automatic identification and Exploitation of Tarpit Vulnerabilities in Malware. 2019 IEEE European Symposium on Security and Privacy (EuroS&P). 2019. pp. 590–605. DOI: 10.1109/EuroSP.2019.00049. 4. Maximov R. V., Sokolovsky S. P., Telenga A. P. Methodology for substantiating the characteristics of false network traffic to simulate information system. CEUR Workshop Proceeding. 2021. pp. 115–124. 5. Maximov R. V., Sokolovsky S. P., Telenga A. P. Honeypots network traffic parameters modelling. CEUR Workshop Proceeding. 2021. pp. 229–239. 6. Voronchihin I. S., Ivanov I. I., Maximov R. V., Sokolovskij S. P. Maskirovanie struktury raspredelennyh informacionnyh sistem v kiberprostranstve // Voprosy kiberbezopasnosti. 2019. № 6 (34). S. 92–101. DOI:10.21681/2311-3456-2019-6-92-101. 7. Patent № 2716220 Rossijskoj Federacii. Sposob zashhity vychislitel’nyh setej / R. V. Maximov, S. P. Sokolovskij, I. S. Voronchihin // zajavitel’ i patentoobladatel’ Krasnodarskoe vysshee voennoe uchilishhe imeni generala armii S. M. Shtemenko. № 2019123718, zajavl. 22.07.2019, opubl. 06.03.2020. 8. Patent № 2810193 Rossijskoj Federacii. Sposob zashhity vychislitel’nyh setej / R. V. Maximov, S. P. Sokolovskij, I. S. Voronchihin // zajavitel’ i patentoobladatel’ Krasnodarskoe vysshee voennoe uchilishhe imeni generala armii S. M. Shtemenko. № 2023100318, zajavl. 10.01.2022, opubl. 22.12.2023. 9. Evnevich E. L., Fatkieva R. R. Modelirovanie informacionnyh processov v uslovijah konfliktov // Voprosy kiberbezopasnosti. 2020. № 2 (36). S. 42–49. DOI:10.21681/2311-3456-2020-2-42-49. 10. Kubarev A. V., Lapsar’ A. P., Fedorova Ja. V. Povyshenie bezopasnosti jekspluatacii znachimyh ob#ektov kriticheskoj infrastruktury s ispol’zovaniem parametricheskih modelej jevoljucii // Voprosy kiberbezopasnosti. 2020. № 1 (35). S. 8–17. DOI:10.21681/2311-3456-2020-01-08-17. 11. Drobotun E. B. Metodika snizhenija udobstva ispol’zovanija avtomatizirovannoj sistemy pri vvedenii v ee sostav sistemy zashhity ot komp’juternyh atak // Voprosy kiberbezopasnosti. 2020. № 2 (36). S. 50–57. DOI:10.21681/2311-3456-2020-02-50-57. 12. Budnikov S. A., Butrik E. E., Solov’ev S. V. Modelirovanie APT-atak, jekspluatirujushhih ujazvimost’ Zerologon // Voprosy kiberbezopasnosti. 2021. № 6 (46). S. 47–61. DOI:10.21681/2311-3456-2021-6-47-61. 13. Gorbachev A. A. Model’ i parametricheskaja optimizacija proaktivnoj zashhity servisa jelektronnoj pochty ot setevoj razvedki // Voprosy kiberbezopasnosti. 2022. № 3 (49). S. 69–81. DOI:10.21681/4311-3456-2022-3-69-81. 14. Sherstobitov R. S. Model' maskirovaniya informacionnogo obmena v seti peredachi dannyh vedomstvennogo naznacheniya // Sistemy upravleniya, svyazi i bezopasnosti. 2024. № 1. S. 1–25. DOI: 10.24412/2410-9916-2024-1-001-025. 15. Moskvin A. A., Maximov R. V., Gorbachev A. A. Model', optimizaciya i ocenka effektivnosti primeneniya mnogoadresnyh setevyh soedinenij v usloviyah setevoj razvedki // Voprosy kiberbezopasnosti. 2023. № 3 (55). S. 13–22. DOI:10.21681/2311-3456-2023-3-13-22. |
50–62 |
Gorbachev, A. A. MASKING THE TOPOLOGICAL PROPERTIES OF COMPUTER NETWORKS IN THE CONDITIONS OF NETWORK RECONNAISSANCE. Part 2 / A. A. Gorbachev // Cybersecurity issues. – 2025. – № 1(65). – С. 63-72. – DOI: 10.21681/2311-3456-2025-1-63-72.AbstractThe purpose of the study: to develop a model system including classical random graph models and generative artificial intelligence models designed to solve the problem of masking the topological properties of computer networks when generating false network traffic and using false network information objects, allowing on the one hand to ensure a given degree of similarity of the topological properties of real computer networks with false ones, and on the other hand to maximize an indicator of the security of critical nodes of real computer networks. Methods used: Erdos-Renyi random graph, Barbashi, Watts-Strogatz, Harari, Bayesian optimization algorithm, convolutional variational autoencoder model, graph variational autoencoder model, weighted additive linear convolution. The result of the study: the presented system of models makes it possible to increase the effectiveness of protecting a computer network by forming a stable false idea in an attacker about the topological properties of a computer network, taking into account the increased security of critical nodes by shifting the position of false critical nodes relative to real ones, while ensuring a given degree of similarity of the false topology of a computer network in relation to the real topology. The model system includes a machine learning pipeline based on random graph models of Erdos-Renyi, Barbashi, WattsStrogatz, Harari, used to form a training dataset, a graph variational autoencoder model, a hidden space sampling model containing quality indicators of the generated false structure, an evolutionary scalar optimization algorithm that searches for the optimal synthesis point a false structure in the hidden space of a variational auto-encoder, as well as a false traffic generator, which implements sending packets with the specified network identifiers. The developed pipeline has limitations in the dimension of the synthesized false topology due to the computational complexity of the generative model learning process and the search for the optimal synthesis point. Scientific novelty: it consists in the application of a Bayesian optimization algorithm to select the optimal point for the synthesis of a false topology from the hidden space of a trained graph variational autoencoder, in using the objective function represented by a linear weighted convolution from the Jacquard coefficient between the set of edges of the false and real topology of the computer network, indicators of the security of the computer network: the average shortest distance between real and false critical nodes, the Jacquard coefficient between the set of false and real critical nodes of a computer network. In the application of random graph models to form a training dataset. Keywords: false information objects, variational autoencoder, machine learning pipeline, artificial intelligence, optimization, metaheuristic algorithms, random graphs. References1. Gorbachev A.A., Maksimov R.V. Problema maskirovaniya i primeneniya texnologij mashinnogo obucheniya v kiberprostranstve // Voprosy` kiberbezopasnosti. 2023. № 5 (57). S. 37–49. DOI:10.21681/4311-3456-2023-5-37-49. 2. Moskvin A.A., Maksimov R.V., Gorbachev A.A. Model', optimizaciya i ocenka e'ffektivnosti primeneniya mnogoadresny'x setevy'x soedinenij v usloviyax setevoj razvedki // Voprosy` kiberbezopasnosti. 2023. № 3 (55). S. 13-22. DOI: 10.21681/2311-3456-2023-3-13-22. 3. Maximov R.V., Sokolovsky S.P., Telenga A.P. Methodology for sustaniating the characteristics of false network traffic to simulate information systems // Selected Papers of the XI International Scientific and Technical Conference on Secure Information Technologies (BIT-2021). 2021. p. 115–124. 4. Maximov R.V., Sokolovsky S.P., Telenga A.P. Honeypots network traffic parameters modelling // Selected Papers of the XI International Scientific and Technical Conference on Secure Information Technologies (BIT-2021). 2021. p. 229–239. 5. Kuz'min V.N., Shuvaev F.L., Rozganov M.V. Sravnitel'ny'j analiz modelej sluchajny'x grafov // Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vy`chislitel`naya texnika i informatika. 2022. №. 58. S. 23–34. 6. Ly'gin V.S., Sirota A.A., Golovinskij P.A. Regulyarizaciya processa obucheniya grafovy`x nejronny`x setej metodom rasprostranenie metok // Vestnik VGU. Seriya: Sistemny`j analiz i informacionny`e texnologii. 2024. №. 3. S. 92–101. DOI: 10.17308/sait/1995-5499/2024/3/92-101. 7. Schweinberger M., Krivitsky P.N., Butts C. T., Stewart J.R. Exponential-Family Models of Random Graphs: Inference in Finite, Super and Infinite Population Scenarios. Statistical Science. 2020. Vol. 35. No. 4. pp. 627–662. DOI: 10.1214/19-STS743. 8. Fanourakis N., Efthymiou V., Kotzinos D., Christophides V. Knowledge graph embedding methods for entity alignment: experimental review. Data Mining and Knowledge Discovery. 2023. Vol. 37. pp. 2070–2137. DOI: 10.1007/s10618-023-00941-9. 9. Said A., Shabbir M., Hassan S., Hassan Z.R., Ahmed A., Koutsoukos X. On augmenting topological graph representations for attributed graphs. Applied Soft Computing. 2023. Vol. 136. 110104. DOI: 10.1016/j.asoc.2023.110104. 10. Van Der Hofstad R. Random graphs and complex networks. Cambridge university press. 2024. Volume 2. 492 p. DOI: 10.1137/ 20M1386062. 11. Xu M. Understanding Graph Embedding Methods and Their Applications. Society for Industrial and Applied Mathematics. 2021. Vol. 63. No 4. pp. 825–853. DOI: 10.1145/3485447.3512199. 12. Li J., Fu X., Sun Q., Ji C., Tan J., Wu J., Peng H. Curvature graph generative adversarial networks. In Proceedings of the ACM web conference 2022. 2022. pp. 1528–1537. 13. Naveed H. et al. A comprehensive overview of large language models // ArXiv. 2023. pp. 1–35. 14. Korobczov V.I., Ovsyannikov I.V., Sachkov D. I. Avtomaticheskaya generaciya nadezhnogo programmnogo koda s pomoshh'yu generativny'x predobuchenny'x transformerov (GPT) // «Informacionny'e texnologii i matematicheskoe modelirovanie v upravlenii slozhny'mi sistemami»: e'lektron. nauch. zhurn. 2024. №1. S. 52–59. 15. Mrabah N., Bouguessa M., Ksantini R. Beyond The Evidence Lower Bound: Dual Variational Graph Auto-Encoders For Node Clustering. In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). 2023. pp. 100–108. 16. Sharma S., Kumar V. A comprehensive review on multi-objective optimization techniques: Past, present and future. Archives of Computational Methods in Engineering. 2022. Vol. 29(7). pp. 5605–5633. DOI: 10.1007/s11831-022-09778-9. 17. Asfar B., Miettinen K., Ruiz F. Assessing the performance of interactive multiobjective optimization methods: A survey. ACM Computing Surveys (CSUR). 2021. Vol. 54(4). pp. 1–27. DOI: 10.1145/3448301 18. Liu S., Lin Q., Wong K.C., Li Q., Tan K.C. Evolutionary large-scale multiobjective optimization: Benchmarks and algorithms. IEEE Transactions on Evolutionary Computation. 2021. Vol. 27(3). pp. 401–415. DOI: 10.1109/TEVC.2021.3099487. |
63–72 |
Miloslavskaya, N. G. INFORMATION AND TELECOMMUNICATION NETWORK ASSET MANAGEMENT AS A MANDATORY STAGE OF THEIR VULNERABILITIES MANAGEMENT / N. G. Miloslavskaya, A. I. Tolstoy // Cybersecurity issues. – 2025. – № 1(65). – С. 73-85. – DOI: 10.21681/2311-3456-2025-1-73-85.AbstractPurpose of work: systematization of approaches to organizations’ information and telecommunication networks (ITCN) asset management (AM) as a mandatory stage of managing their vulnerabilities for the subsequent elimination of the possibility of exploitation (usage) of identified vulnerabilities within the framework of ITCN network security management and development of brief instructions for the implementation of the ITCN AM process. Research methods: analysis of relevant regulatory documents and scientific publications, conceptual modeling, expert assessment, synthesis of an integrated approach to asset management within the framework of network security management. Results obtained: the article introduces the conceptual framework of the ITCN management system and, based on a specially selected regulatory framework, systematizes approaches to the organization’s ITCN AM as a mandatory stage of managing their vulnerabilities with the aim of subsequently eliminating these vulnerabilities. The activities implemented during the ITCN AM process, especially when identifying ITCN assets, are highlighted and the composition of the ITCN AM system (AMS) is discussed, aimed at minimizing the possibility of computer attacks against the organization's ITCN. The main documents of the ITCN AMS are briefly considered, namely the strategic plan of the ITCN AMS, lower-level AM plans and the ITCN AM policy, designed to achieve the goals of the ITCN AM. Based on the research conducted, in compliance with the principle of reasonable sufficiency, a brief step-by-step instruction for implementing the ITCN AM process has been developed. Practical significance consists in developing brief instructions for implementing the ITCN AM process, especially the process of identifying ITCN assets, within the framework of ITCN network security management when solving the problems of eliminating vulnerabilities found for ITCN assets, which, in turn, will lead to minimizing the possibilities of implementing computer attacks against the organizations’ ITCN. Keywords: information and telecommunication network, asset management, asset management process, asset management system, asset vulnerability management, network security management. References1. Chichkov S.N. Bezopasnost' informatsionno-telekommunikatsionnykh setey // Sbornik nauchnykh statey 7-y Mezhdunarodnoy molodezhnoy nauchnoy konferentsii. T. 4, 2019. S. 279–282. 2. Savchenko M.YU. Sposoby soversheniya prestupleniy v sfere komp'yuternoy informatsii i mery ikh profilaktiki // Vestnik Krasnodarskogo universiteta MVD Rossii. № 2(62), 2024. S. 24–27. 3. Grigoryan D.K., Kondratenko Ye.N. Kharakternyye osobennosti sovremennykh informatsionnykh voyn politicheskoy napravlennosti // Gosudarstvennoye i munitsipal'noye upravleniye. Uchenyye zapiski. № 2, 2024. S178-183. DOI: 10.22394/2079-1690-2024-1-2-178-183 4. Besedina V. Aktual'nyye kiberugrozy: III kvartal 2024 goda. 5 noyabrya 2024 g. [Elektronnyy resurs]. – Rezhim dostupa: https://www.ptsecurity.com/ru-ru/research/analytics/aktualnye-kiberugrozy-iii-kvartal-2024-goda/ (data obrashcheniya: 30.12.2024). 5. Yangayeva M.O., Pavlenko N.O. OSINT. Polucheniye kriminalisticheski znachimoy informatsii iz seti Internet // Altayskiy yuridicheskiy vestnik. № 2(3), 2022. S. 131–135. 6. Basharin A. Ataki na tsepochki postavok: kakiye sushchestvuyut riski i kak ot nikh zashchitit'sya. 18 sentyabrya 2023. [Elektronnyy resurs]. – Rezhim dostupa: https://www.anti-malware.ru/analytics/Threats_Analysis/Supply-Chain-Attack (data obrashcheniya: 30.12.2024). 7. Sherstyanykh A.S. Fishing kak instrument sotsial'noy inzhenerii // Materialy XKHV mezhdunarodnoy nauchno-prakticheskoy konferentsii «Aktual'nyye problemy bor'by s prestupnost': voprosy teorii i praktiki». V 2-kh chastyakh. Chast' 2. Krasnoyarsk, 2022. S. 299–301. DOI: 10.51980/978-5-7889-0334-7_2022_5_2_299 8. Bayanov E.I. Novyye modifikatsii programm-shifroval'shchikov // Materialy XVIII Vserossiyskoy studencheskoy nauchno-prakticheskoy konferentsii «Pervyye shagi v nauku tret'yego tysyacheletiya». Ufa, 2022 S. 98–100. 9. Takov A. Z. Problemy obespecheniya kiberbezopasnosti v sovremennykh tsifrovykh sistemakh // Probely v rossiyskom zakonodatel'stve. T. 16, № 5, 2023. S. 232–236. 10. Miloslavskaya N.G. Nauchnyye osnovy postroyeniya tsentrov upravleniya setevoy bezopasnost'yu v informatsionno-telekommunikatsionnykh setyakh. M.: Goryachaya liniya – Telekom, 2021. – 432 s. 11. Serova T.S., Filimontsev D.A. Terminologiya v vyrazhenii struktury i funktsiy definitsiy klyuchevykh ponyatiy v pod"yazyke sfery informatsionnoy bezopasnosti // Vestnik PNIPU. Problemy yazykoznaniya i pedagogiki. № 3, 2021. S. 8-23. DOI: 10.15593/2224-9389/2021.3.1 12. Ushakov D.N. Bol'shoy tolkovyy slovar' russkogo yazyka. M., Standart, 2021. 816 s. 13. Tolstoy A.I. Sistemotekhnika obespecheniya bezopasnosti ob"yektov i informatsionnoy sfere // Voprosy kiberbezopasnosti. № 5(63), 2024. S. 47–57. DOI: 10.21681/2311-3456-2024-5-47-57. 14. Pushkin S. Kak opredelit' tsennost' ispol'zovaniya aktiva // MSFO na praktike. № 6, 2014. [Elektronnyy resurs]. – Rezhim dostupa: https://msfo-practice.ru/341197 (data obrashcheniya: 30.12.2024). 15. Alkhard A. Leveraging Digital Asset Management and Meta-Data Integration for Enhanced Asset Management // Construction Economics and Building, Vol. 24, No. 3 July 2024. Pp. 76-94. 16. Rijadi S.C.R., Suakanto S. Development of an Information System for Asset Management // JURNAL INOVTEK POLBENG – SERI INFORMATIKA, VOL. 9, No. 2, 2024. Pp. 940–952. 17. Budzko V.I., Mel'nikov D.A., Fomichov V.M. Osnovy organizatsii obespecheniya informatsionnoy bezopasnosti i kiberustoychivosti v tsentralizovannykh informatsionno-telekommunikatsionnykh sistemakh vysokoy dostupnosti // Radiotekhnika. 2023. T. 87, № 2. S. 157–162. DOI: 10.18127/j20729472-201901-08 18. Kanzyuba Ye.D. Obespecheniye informatsionnoy bezopasnosti i kiberustoychivosti telekommunikatsionnykh setey, avtomatizirovannykh sistem upravleniya // Materialy VI Mezhdunarodnoy molodezhnoy nauchno-prakticheskoy konferentsii v ramkakh Desyatiletiya nauki i tekhnologiy v Rossiyskoy Federatsii «ENERGOSTART». Kemerovo, 2023. S. 405-1 – 405-4. |
73–85 |
Golovskoy, V. A. A MODEL OF COMPLEX INFORMATION CONFLICT FOR ROBOTIC SYSTEMS / V. A. Golovskoy // Cybersecurity issues. – 2025. – № 1(65). – С. 86-95. – DOI: 10.21681/2311-3456-2025-1-86-95.AbstractThe purpose of the work is to formalize the model of a complex information conflict and to constructively prove the increase in the informativeness of the model of such a conflict, improved by including indifferent information interaction in it. Research methods: general scientific methods – abstraction, generalization, analysis, and methods of the theory of algorithms and information theory. The result of the study: a well-known model of a complex information conflict of information technology systems has been formalized, its qualitative improvement has been carried out for the operating conditions of robotic complexes. It is proposed to measure the informativeness of formalized models directly, rather than indirectly, through modeling the influence of the models used on the quality of the system functioning. Using the abstractions of identification and potential feasibility, which are traditional for theoretical and algorithmic constructions, the approach to using Kolmogorov complexity for quantitative assessment of qualitative improvement of the considered model of complex information conflict is substantiated. Analytical expressions are obtained that allow evaluating the informativeness of the proposed models. Practical value: the presented results provide an opportunity to solve the problems of assessing the sufficiency of information security tools and choosing a conflict-resistant state of the radio system, as well as expand the range of methods used in the study of information conflicts. Keywords: algorithm, information conflict, information interaction, model, electronic conflict, Kolmogorov complexity, robotic complex. References1. Sharma P., Sarma K. K., Mastorakis N. E. Artificial Intelligence Aided Electronic Warfare Systems – Recent Trends and Evolving Applications // IEEE Access, 2020. vol. 8, pp. 224761–224780. DOI: 10.1109/ACCESS.2020.3044453. 2. Starodubcev Yu. I., Lipatnikov V. A., Parfirov V. A. Problema povysheniya razvedyvatel'noj zashchishchennosti elementov voennoj sistemy svyazi // Voennaya mysl', 2023. No 7. pp. 88–99. 3. Golovskoy V. A., Chernuha Yu. V., Semenyuk D. B. Formalizaciya zadachi postroeniya sistemy peredachi dannyh robototekhnicheskogo kompleksa, funkcioniruyushchego v usloviyah antagonisticheskoj kiberelektromagnitnoj deyatel'nosti // Voprosy kiberbezopasnosti [Cybersecurity issues], 2019, No 6 (34), pp. 113–122. DOI: 10.21681/2311-3456-2019-6-113-122. 4. Kurakin A. S. Ocenka effektivnosti funkcionirovaniya gruppy bespilotnyh letatel'nyh apparatov pri vypolnenii zadach aerofotos"emki // Problemy informacionnoj bezopasnosti. Komp'yuternye sistemy [Problems of information security. Computer systems], 2024, No 1(58). pp. 62–69. DOI: 10.48612/jisp/fpf1-59d2-x8t1. 5. Borisov V. I., Vilkov S. V. Tekhnologicheskaya platforma razvitiya sistem upravleniya, svyazi i radioelektronnoj bor'by // Teoriya i tekhnika radiosvyazi, 2023, No 1. pp. 5–11. 6. El'cov O. N., Krutskih P. P., Radzievskij V. G. Konfliktnaya ustojchivost' robotizirovannyh sistem. Moscow: Radiotehnika, 2023. 350 p. 7. Makhov D. S. Analiz nekriptograficheskih metodov zashchity informacii v radiokanalah informacionnyh sistem // Voprosy kiberbezopasnosti [Cybersecurity issues], 2024. No 1(59). pp. 82–88. DOI: 10.21681/2311-3456-2024-1-82-88. 8. Butorin N. A., Golovskoy V. A. Massovaya problema ocenivaniya dostatochnosti mer zashchity informacii // Prikladnaya matematika: sovremennye problemy matematiki, informatiki i modelirovaniya: Materialy VI Vserossijskoj nauchno-prakticheskoj konferencii, Krasnodar, 2024. – pp. 169–173. 9. Golovskoy V. A. Operacionnaya model' kognitivnoj radiosistemy robototekhnicheskogo kompleksa // T-Comm: telekommunikacii i transport [T-Comm], 2024. vol. 18. No 5. pp. 12–20. DOI: 10.36724/2072-8735-2024-18-5-12-20. 10. Kozlitin S. N., Kozirackij Yu. L., Budnikov S. A. Modelirovanie sovmestnogo primeneniya sredstv radioelektronnoj bor'by i ognevogo porazheniya v interesah povysheniya effektivnosti bor'by za prevoskhodstvo v upravlenii // Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security], 2020. No 1. pp. 49–73. DOI: 10.24411/2410-9916-2020-00001. 11. Golovskoy V. A. Rasshirenie modeli slozhnogo radioelektronnogo konflikta // Radiolokaciya, navigaciya, svyaz': sbornik trudov XXX Mezhdunarodnoj nauchno-tekhnicheskoj konferencii. Voronezh, vol. 5. pp. 63–68. 12. Sakhnin A. A. Kompleksnaya ocenka radioelektronnoj zashchishchennosti voennyh sistem svyazi. – Moscow, Radiotehnika. 2022. 309 p. |
86–95 |
Kalashnikov, A. O. APPLICATION OF THE LOGICAL-PROBABILISTIC METHOD IN INFORMATION SECURITY. Part 6 / A. O. Kalashnikov, E. V. Anikina, K. A. Bugaisky, A. A. Molotov // Cybersecurity issues. – 2025. – № 1(65). – С. 96-107. – DOI: 10.21681/2311-3456-2025-1-96-107.AbstractThe purpose of the article: adaptation of the logical-probabilistic method of evaluating complex systems to the tasks of building information security systems in a multi-agent system. Research method: during the research, the main provisions of the methodology of structural analysis, system analysis, decision theory, methods of evaluating events under the condition of incomplete information were used. The result: This article continues the consideration of information security issues based on the analysis of the relationship between the subjects and the object of protection. Within the framework of the developed model, the definition of such concepts as hazard assessment, attack surface, as well as the scenario of a complex system is given. It is shown that these concepts can be quantified on the basis of appropriate assessments of the states of agents' relationships. The expediency of the introduction and the place of specialized agents providing control of monitoring processes for agents is shown. Cascading mechanisms are proposed to provide a unified logical and functional approach to determining hazard assessments. The obtained results provide a reasonable calculation and use of probabilistic characteristics for the subsequent analysis of relations between subjects of information security based on the application of the logical-probabilistic method in the analysis of these relations. Scientific novelty: consideration of information security issues using the apparatus of mathematical and logical relations. Methods have been developed for quantifying the danger of destructive impact without involving information about the presence of actual or used threats both from the point of view of software and from the point of view of the logical structure of the IP. The equivalence between the danger of destructive effects and the current state of relations between agents is shown. A method for determining the stability of the assessment of the dangerous state of relations has been developed. It is shown that the developed methods for assessing the danger of states make it possible to exclude separate consideration of errors of the first and second kind when assessing the real intentions of the violator. Approaches have been developed to obtain integrated hazard assessments at the level of both individual agents and various subsystems of modern information systems and systems as a whole by managing the composition of aggregated assessments of the state of agents' relationships. Keywords: information security model, assessment of complex systems, logical-probabilistic method, theory of relations, system analysis. References1. Ryabinin, I. A. Reshenie odnoj zadachi ocenki nadezhnosti strukturno-slozhnoj sistemy raznymi logiko-veroyatnostnymi metodami / I. A. Ryabinin, A. V. Strukov // Modelirovanie i analiz bezopasnosti i riska v slozhnyh sistemah, Sankt-Peterburg, 19–21 iyunya 2019 goda. – Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya, 2019. – pp. 159–172. 2. Demin, A. V. Glubokoe obuchenie adaptivnyh sistem upravleniya na osnove logiko-veroyatnostnogo podhoda / A. V. Demin // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika. – 2021. – T. 38. – pp. 65–83. DOI: 10.26516/1997-7670.2021.38.65. 3. Viktorova, V. S. Vychislenie pokazatelej nadezhnosti v nemonotonnyh logiko-veroyatnostnyh modelyah mnogourovnevyh sistem / V. S. Viktorova, A. S. Stepanyanc // Avtomatika i telemekhanika. – 2021. – № 5. – pp. 106–123. DOI: 10.31857/S000523102105007X. 4. Leont'ev, A. S. Matematicheskie modeli ocenki pokazatelej nadezhnosti dlya issledovaniya veroyatnostno-vremennyh harakteristik mnogomashinnyh kompleksov s uchetom otkazov / A. S. Leont'ev, M. S. Timoshkin // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. – 2023. – № 1(127). – pp. 1–13. DOI: 10.23670/IRJ.2023.127.27. 5. Puchkova, F. YU. Logiko-veroyatnostnyj metod i ego prakticheskoe ispol'zovanie / F. YU. Puchkova // Informacionnye tekhnologii v processe podgotovki sovremennogo specialista: Mezhvuzovskij sbornik nauchnyh trudov / Ministerstvo prosveshcheniya Rossijskoj Federacii; Federal'noe gosudarstvennoe byudzhetnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Lipeckij gosudarstvennyj pedagogicheskij universitet imeni P. P. SEMENOVA-TYAN-SHANSKOGO». Tom Vypusk 25. – Lipeck: Lipeckij gosudarstvennyj pedagogicheskij universitet imeni P. P. Semenova-Tyan-SHanskogo, 2021. – pp. 187–193. 6. Rossihina, L. V. O primenenii logiko-veroyatnostnogo metoda I. A. Ryabinina dlya analiza riskov informacionnoj bezopasnosti / L. V. Rossihina, O. O. Gubenko, M. A. CHernositova // Aktual'nye problemy deyatel'nosti podrazdelenij UIS: Sbornik materialov Vserossijskoj nauchno-prakticheskoj konferencii, Voronezh, 20 oktyabrya 2022 goda. – Voronezh: Izdatel'sko-poligraficheskij centr «Nauchnaya kniga», 2022. – pp. 108-109. 7. Karpov, A. V. Model' kanala utechki informacii na ob"ekte informatizacii / A. V. Karpov // Aktual'nye problemy infotelekommunikacij v nauke i obrazovanii (APINO 2018): VII Mezhdunarodnaya nauchno-tekhnicheskaya i nauchno-metodicheskaya konferenciya. Sbornik nauchnyh statej. V 4-h tomah, Sankt-Peterburg, 28 fevralya – 01 marta 2018 goda / Pod redakciej S. V. Bachevskogo. Tom 2. – Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet telekommunikacij im. prof. M. A. Bonch-Bruevicha, 2018. – pp. 378–382. 8. Metodika kiberneticheskoj ustojchivosti v usloviyah vozdejstviya targetirovannyh kiberneticheskih atak / D. A. Ivanov, M. A. Kocynyak, O. S. Lauta, I. R. Murtazin // Aktual'nye problemy infotelekommunikacij v nauke i obrazovanii (APINO 2018): VII Mezhdunarodnaya nauchno-tekhnicheskaya i nauchno-metodicheskaya konferenciya. Sbornik nauchnyh statej. V 4-h tomah, Sankt-Peterburg, 28 fevralya – 01 marta 2018 goda / Pod redakciej S.V. Bachevskogo. Tom 2. – Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet telekommunikacij im. prof. M. A. Bonch-Bruevicha, 2018. – pp. 343–346. 9. Eliseev, N. I. Ocenka urovnya zashchishchennosti avtomatizirovannyh informacionnyh sistem yuridicheski znachimogo elektronnogo dokumentooborota na osnove logiko-veroyatnostnogo metoda / N. I. Eliseev, D. I. Tali, A. A. Oblanenko // Voprosy kiberbezopasnosti. – 2019. – № 6(34). – pp. 7–16. DOI: 10.21681/2311-3456-2019-6-07-16. 10. Kocynyak, M. A. Matematicheskaya model' targetirovannoj komp'yuternoj ataki / M. A. Kocynyak, O. S. Lauta, D. A. Ivanov // Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli. – 2019. – T. 11, № 2. – pp. 73–81. DOI: 10.24411/2409-5419-2018-10261. 11. Belyakova, T. V. Funkcional'naya model' processa vozdejstviya celevoj komp'yuternoj ataki / T. V. Belyakova, N. V. Sidorov, M. A. Gudkov // Radiolokaciya, navigaciya, svyaz': Sbornik trudov XXV Mezhdunarodnoj nauchno-tekhnicheskoj konferencii, posvyashchennoj 160-letiyu so dnya rozhdeniya A. S. Popova. V 6-ti tomah, Voronezh, 16–18 aprelya 2019 goda. Tom 2. – Voronezh: Voronezhskij gosudarstvennyj universitet, 2019. – pp. 108–111. 12. Kalashnikov A. O. Primenenie logiko-veroiatnostnogo metoda v informatsionnoi bezopasnosti (Chast 1) / A. O. Kalashnikov, K. A. Bugaiskii, D. S. Birin, B. O. Deriabin, S. O. Tsependa, K. V. Tabakov // Voprosy kiberbezopasnosti. – 2023. – №4(56). – pp. 23–32. DOI:10.21681/2311-3456-2023-4-23-32. 13. Kalashnikov A. O. Primenenie logiko-veroiatnostnogo metoda v informatsionnoi bezopasnosti (Chast 2) / A. O. Kalashnikov, K. A. Bugaiskii, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Khramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2023. – №5(57). – pp. 113–127. DOI:10.21681/2311-3456-2023-5-113-127. 14. Kalashnikov A. O. Primenenie logiko-veroiatnostnogo metoda v informatsionnoi bezopasnosti (Chast 3) / A. O. Kalashnikov, K. A. Bugaiskii, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Khramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2023. – №6(58). – pp. 20–34. DOI: 10.21681/2311-3456-2023-6-20-34. 15. Kalashnikov A. O. Primenenie logiko-veroiatnostnogo metoda v informatsionnoi bezopasnosti (Chast 4) / A. O. Kalashnikov, K. A. Bugaiskii, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Khramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2024. – №3 (61). – pp. 23–32. DOI: 10.21681/2311-3456-2024-3-23-32. 16. Kalashnikov A. O. Primenenie logiko-veroiatnostnogo metoda v informatsionnoi bezopasnosti (Chast 5) / A. O. Kalashnikov, K.A. Bugaiskii, E. I. Anikina, I. S. Pereskokov, An. O. Petrov, Al. O. Petrov, E. S. Khramchenkova, A. A. Molotov // Voprosy kiberbezopasnosti. – 2024. – №4 (62). – pp. 26–37. DOI: 10.21681/2311-3456-2024-4-26-37 |
96–107 |
Izrailov, K. E. ARCHITECTURE OF THE SYSTEM FOR GENETIC REENGINEERING OF THE PROGRAM WITH SEARCH SUPPORT MULTI-LEVEL VULNERABILITIES / K. E. Izrailov // Cybersecurity issues. – 2025. – № 1(65). – С. 108-116. – DOI: 10.21681/2311-3456-2025-1-108-116.AbstractThe goal of the investigation: increasing the efficiency of searching for vulnerabilities in machine code of programs by reverse engineering it based on genetic reengineering, for which the architecture of the corresponding software system is proposed. Research methods: works survey, system analysis, structural synthesis of architecture, analytical modeling. Result: a system architecture has been created, which is a set of sequentially executed some-template components for the de-evolution of the representations of the program being investigated (its machine, assembler and source code, algorithms, etc.); on each of these representations, a search for corresponding vulnerabilities is carried out. The scientific novelty consists in the qualitatively new development of the reverse engineering direction through its intellectualization, for which a high-level description of the author's genetic reengineering system architecture is proposed, and the formalization of the its elements functioning is also carried out. Keywords: reverse engineering, genetic algorithm, vulnerability, machine code, architecture, formalization. References1. Leonov N.V., Bujnevich M.V. Problemnye voprosy poiska ujazvimostej v programmnom obespechenii promyshlennyh IT-ustrojstv // Avtomatizacija v promyshlennosti. 2023. № 12. S. 59–63. 2. Leonov N.V. Protivodejstvie ujazvimostjam programmnogo obespechenija. Chast' 1. Ontologicheskaja model' // Voprosy kiberbezopasnosti. 2024. № 2 (60). S. 87–92. DOI: 10.21681/2311-3456-2024-2-87-92. 3. Leonov N.V. Protivodejstvie ujazvimostjam programmnogo obespechenija. Chast' 2. Analiticheskaja model' i konceptual'nye reshenija // Voprosy kiberbezopasnosti. 2024. № 3 (61). S. 90–95. DOI: 10.21681/2311-3456-2024-3-90-95. 4. Abitov R.A., Pavlenko E.Ju. Vyjavlenie ujazvimostej v programmnom obespechenii dlja processorov ARM s ispol'zovaniem simvol'nogo vypolnenija // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2021. № 3. S. 9–15. 5. Kotenko, I., Izrailov, K., Buinevich, M., Saenko I., Shorey R. Modeling the Development of Energy Network Software, Taking into Account the Detection and Elimination of Vulnerabilities // Energies. 2023. Vol. 16. Iss. 13. PP. 5111. DOI: 10.3390/en16135111 6. Nikolaenko V.S. Sravnitel'nyj analiz obratnoj razrabotki proprietarnyh programm v zavisimosti ot algoritmicheskogo jazyka programmirovanija // Vestnik studencheskogo nauchnogo obshhestva GOU VPO «Doneckij nacional'nyj universitet». 2022. T. 1. № 14. S. 189–192. 7. Izrailov K.E. Koncepcija geneticheskoj dejevoljucii predstavlenij programmy. Chast' 1 // Voprosy kiberbezopasnosti. 2024. № 1 (59). S. 61–66. DOI: 10.21681/2311-3456-2024-1-61-66 8. Izrailov K.E. Koncepcija geneticheskoj dejevoljucii predstavlenij programmy. Chast' 2 // Voprosy kiberbezopasnosti. 2024. № 2 (60). S. 81–86. DOI: 10.21681/2311-3456-2024-2-81-86 9. Izrailov K.E. Koncepcija geneticheskoj dekompiljacii mashinnogo koda telekommunikacionnyh ustrojstv // Trudy uchebnyh zavedenij svjazi. 2021. T. 7. № 4. S. 10–17. DOI:10.31854/1813-324X-2021-7-4-95-109. 10. Izrailov K.E. Primenenie geneticheskih algoritmov dlja dekompiljacii mashinnogo koda // Zashhita informacii. Insajd. 2020. № 3 (93). S. 24–30. 11. Ajoshin I. T. Revers-inzhiniring programmnogo produkta s ispol'zovaniem IDA Pro // Aktual'nye problemy aviacii i kosmonavtiki. 2018. T. 3. № 4 (14). S. 808–809. 12. Vorob'ev A.M., Bocvin A.S., Nagibin D.V. Analiz funkcional'nyh vozmozhnostej Ghidra – frejmvorka dlja revers-inzhiniringa // Metody i tehnicheskie sredstva obespechenija bezopasnosti informacii. 2019. № 28. S. 86–88. 13. Bugerja A.B., Efimov V.Ju., Kulagin I. I., Padarjan V.A., Solov'ev M.A., Tihonov A.Ju. Programmnyj kompleks dlja vyjavlenija nedeklarirovannyh vozmozhnostej v uslovijah otsutstvija ishodnogo koda // Trudy Instituta sistemnogo programmirovanija RAN. 2019. T. 31. № 6.S. 33–64. DOI: 10.15514/ISPRAS-2019-31(6)-3. 14. Izrailov K.E., Pokusov V.V. Arhitektura programmnoj platformy preobrazovanija mashinnogo koda v vysokourovnevoe predstavlenie dlja jekspertnogo poiska ujazvimostej // Jelektronnyj setevoj politematicheskij zhurnal «Nauchnye trudy KubGTU». 2021. № 6. S. 93–111. 15. Golubeva T.V., Tajlakov V.A., Vasilenko K.D., Jakubova E.A. Issledovanie arhitektury prototipov sredstv dlja avtomaticheskogo poiska ujazvimostej v ustrojstvah IOT i M2M // Vestnik Almatinskogo universiteta jenergetiki i svjazi. 2022. № 2 (57). S. 122–134. DOI: 10.51775/2790-0886_2022_57_2_122. 16. Urooj B., Shah M.A., Maple C., Abbasi M.K., Riasat S. Malware Detection: A Framework for Reverse Engineered Android Applications Through Machine Learning Algorithms // IEEE Access. 2022. Vol. 10. PP. 89031–89050 2022. DOI: 10.1109/ACCESS.2022.3149053. 17. Mauthe N., Kargén U., Shahmehri N. A Large-Scale Empirical Study of Android App Decompilation // In proceedings of IEEE International Conference on Software Analysis, Evolution and Reengineering (Honolulu, HI, USA, 09-12 March 2021). 2021. PP. 400–410. DOI: 10.1109/SANER50967.2021.00044. 18. Armengol-Estapé J., Woodruff J., Cummins C., O'Boyle M.F.P. SLaDe: A Portable Small Language Model Decompiler for Optimized Assembly // In proceedings of IEEE/ACM International Symposium on Code Generation and Optimization (Edinburgh, United Kingdom, 02–06 March 2024). 2024. PP. 67–80. DOI: 10.1109/CGO57630.2024.10444788. 19. Armengol-Estapé J., Woodruff J., Brauckmann A., Magalhães J.W. de S. , O'Boyle M.F.P. ExeBench: an ML-scale dataset of executable C functions // In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming (New York, USA, 13 June 2022). 2022. PP. 50–59. DOI: 10.1145/3520312.3534867. 20. Aliefa M.H., Suyanto S. Variable-Length Chromosome for Optimizing the Structure of Recurrent Neural Network // In proceedings of International Conference on Data Science and Its Applications (Bandung, Indonesia, 05-06 August 2020). 2020. PP. 1–5. DOI: 10.1109/ICoDSA50139.2020.9213012. 21. Jiang W., Sha E.H. -M., Zhuge Q., Yang L., Dong H., Chen X. On the Design of Minimal-Cost Pipeline Systems Satisfying Hard/Soft RealTime Constraints // IEEE Transactions on Emerging Topics in Computing. Vol. 9. No. 1. PP. 24–34. DOI: 10.1109/TETC.2017.2788800. 22. Leonov N.V., Bujnevich M.V. Mashinnoe obuchenie vs poisk ujazvimostej v programmnom obespechenii: analiz primenimosti i sintez konceptual'noj sistemy // Trudy uchebnyh zavedenij svjazi. 2023. T. 9. № 6. S. 83–94. DOI: 10.31854/1813-324X-2023-9-6-83-94. 23. Kubrin G.S., Zegzhda D.P. Poisk ujazvimostej programmnogo obespechenija s primeneniem ansablja algoritmov analiza grafov // Metody i tehnicheskie sredstva obespechenija bezopasnosti informacii. 2023. № 32. S. 49–50. 24. Get'man A. I., Gorjunov M.N., Mackevich A.G., Rybolovlev D.A. Sravnenie sistemy obnaruzhenija vtorzhenij na osnove mashinnogo obuchenija s signaturnymi sredstvami zashhity informacii // Trudy Instituta sistemnogo programmirovanija RAN. 2022. T. 34. № 5. S. 111–126. DOI: 10.15514/ISPRAS-2022-34(5)-7. 25. Pidchenko I.A., Vybornova O.N. Primenenie mashinnogo obuchenija sovmestno s jevristicheskim analizom dlja zadach antivirusnogo skanirovanija // Matematicheskie metody v tehnike i tehnologijah – MMTT. 2020. T. 5. S. 96–99. 26. Samarin N.N. Metod poiska oshibok v programmnom kode na baze fazzinga «v pamjati» // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2024. № 2 (59). S. 130–137. DOI: 10.48612/jisp/39tp-t61k-29uv. 27. Ivanov V.A., Konyshev M.Ju., Shapovalov S.L. Imitacionnaja i analiticheskaja modeli dlja issledovanija signatur i obnaruzhenija modificirovannyh komp'juternyh virusov i vredonosnogo programmnogo obespechenija v vychislitel'nyh sistemah i setjah special'nogo naznachenija // Informacionnaja bezopasnost' – aktual'naja problema sovremennosti. Sovershenstvovanie obrazovatel'nyh tehnologij podgotovki specialistov v oblasti informacionnoj bezopasnosti. 2021. № 1 (14). S. 11–15. 28. Gribkov N.A., Ovasapjan T.D., Moskvin D.A. Analiz vosstanovlennogo programmnogo koda s ispol'zovaniem abstraktnyh sintaksicheskih derev'ev // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2023. № 2 (54). S. 47–60. DOI: 10.48612/jisp/ruar-u6hekmd4. 29. Dovgaljuk P.M., Klimushenkova M.A., Fursova N. I., Stepanov V.M., Vasil'ev I.A., Ivanov A.A., Ivanov A.V., Bakulin M.G., Egorov D. I. Natch: opredelenie poverhnosti ataki programm s pomoshh'ju otslezhivanija pomechennyh dannyh i introspekcii virtual'nyh mashin // Trudy Instituta sistemnogo programmirovanija RAN. 2022. T. 34. № 5. S. 89–110. DOI: 10.15514/ISPRAS-2022-34(5)-6. |
108–116 |
Korneev, N. V. PATTERN FOR SECURING APPLICATIONS UNDER THREAT OF MODIFICATION MACHINE LEARNING MODEL / N. V. Korneev, E. S. Kotrini // Cybersecurity issues. – 2025. – № 1(65). – С. 117-127. – DOI: 10.21681/2311-3456-2025-1-117-127.AbstractThe purpose of this article: development of a template protection mechanism to ensure application security in the event of a threat of modification of a machine learning model. Research method: analysis of the principles of attacks with ML model distortion and the capabilities of the intruder at the model training stage. Synthesis of an attack scenario using two attack strategies: data input strategy and ML model data modification strategy. The ML model was based on the Bank Customer Churn Prediction model, and an external intruder was selected for the threat, which is capable of changing the data sample for the machine learning model via the network by implementing a training data poisoning attack scenario. Using cryptographic methods, a new protection mechanism is proposed that ensures the integrity of the training data set due to hashing and storing hash sums signed with an electronic digital signature. The study was carried out by natural modeling of a Docker-based application in environments with containerization support, its deployment and testing in the event of a threat of modification of the machine learning model. Result: the analysis threat of modification machine learning model and shows the relevance of the problem developing universal template security mechanisms, called patterns. In particular, three applicable attack strategies for modifying a machine learning model based on the capabilities of the intruder are considered – adversarial example, evasion attack and modification of machine learning model data – adversarial example, evasion attack. Scenario of poisoning attack on training data is considered. The article analyzes the threat of modification of machine learning model and shows the relevance of the problem of developing universal template security mechanisms, called patterns. In particular, three applicable attack strategies for modifying a machine learning model based on the capabilities of the intruder are considered – adversarial example, evasion attack and modification of machine learning model data – adversarial example, evasion attack. A scenario of an attack on training data poisoning is considered. A microservice architecture is built to ensure application security under the threat of modification of a machine learning model for a wide range of applications in the cloud infrastructure. A security pattern is developed to protect the application from an attack on poisoning training data based on microservices integrated into containers and a stack of technologies: Java 17; Spring 5; Docker, docker-compose; PostgreSQL; RabbitMQ; Git; Log4j2; Logstash; Elasticsearch; Kibana; Swagger. As part of the study, 5 microservices were developed: eureka – service, users – api, api – gateway, wrapper – api, config – server. In order to protect data coming into the machine learning model, the wrapper – api microservice was developed. The protection mechanism is that all calls to the machine learning microservice go through it and are checked for damage and/or substitution, data coming from the outside is also validated on the microservice side. Before adding data to the training data DB, the record is reinforced with an electronic signature, the source data is hashed, connected with a secret key. The program code of the microservices has been developed, including codes of special methods and algorithms for their implementation, providing a mechanism for protecting the application from a training data poisoning attack. A monitoring system for a training data poisoning attack was deployed based on the open source software Elasticsearch, Logstash, Kibana through event log objects (appender): error (warn) and information (info), which can be used in SIEM systems. Practical value: the practical value of the proposed solution includes a template protection mechanism in the form of a pattern that can be applied to a wide range of applications, including transferring the developed solution to any industry: fuel and energy, economics and more, due to the cross-platform nature of the solution itself. Keywords: cloud computing, dataset, template, poisoning attack, adversarial example, evasion attack, causative attack, container, machine learning, event log, monitoring system. References1. Shameer Mohammed, S. Nanthini, N. Bala Krishna, Inumarthi V. Srinivas, Manikandan Rajagopal, M. Ashok Kumar, A new lightweight data security system for data security in the cloud computing, Measurement: Sensors, Volume 29, 2023, 100856. DOI: 10.1016/j.measen.2023.100856. 2. S. Achar, Cloud computing security for multi-cloud service providers: controls and techniques in our modern threat landscape, International Journal of Computer and Systems Engineering, 16(9), 2022, 379–384. DOI: 10.5281/zenodo.7084251. 3. Oludare Isaac Abiodun, Moatsum Alawida, Abiodun Esther Omolara, Abdulatif Alabdulatif, Data provenance for cloud forensic investigations, security, challenges, solutions and future perspectives: A survey, Journal of King Saud University – Computer and Information Sciences, Volume 34, Issue 10, Part B, 2022, 10217–10245. DOI: 10.1016/j.jksuci.2022.10.018. 4. Chakraborti, A., Curtmola, R., Katz, J., Nieh, J., Sadeghi, A. R., Sion, R., Zhang, Y., Cloud Computing Security: Foundations and Research Directions. Foundations and Trends in Privacy and Security, 3(2), 2022, 103–213. DOI: 10.1561/3300000028. 5. Ukeje, N., Gutierrez, J., Petrova, K., Information security and privacy challenges of cloud computing for government adoption: a systematic review, International Journal of Information Security, Volume 23, 2024, 1459–1475. DOI: 10.21203/rs.3.rs-3351319/v1. 6. Fatemeh Khoda Parast, Chandni Sindhav, Seema Nikam, Hadiseh Izadi Yekta, Kenneth B. Kent, Saqib Hakak, Cloud computing security: A survey of service-based models, Computers & Security,Volume 114, 2022, 102580. DOI: 10.1016/j.cose.2021.102580. 7. Ting Zhou, Hanshu Yan, Bo Han, Lei Liu, Jingfeng Zhang, Learning a robust foundation model against clean-label data poisoning attacks at downstream tasks, Neural Networks, Volume 169, 2024, 756-763. DOI: 10.1016/j.neunet.2023.10.034. 8. Ade Kurniawan, Yuichi Ohsita, Masayuki Murata, Detection of sensors used for adversarial examples against machine learning models, Results in Engineering, Volume 24, 2024, 103021. DOI: 10.1016/j.rineng.2024.103021. 9. Hamid Bostani, Veelasha Moonsamy, EvadeDroid: A practical evasion attack on machine learning for black-box Android malware detection, Computers & Security, Volume 139, 2024, 103676. DOI: 10.1016/j.cose.2023.103676. 10. Mahdee Jodayree, Wenbo He, Dr. Ryszard Janicki, Preventing Image Data Poisoning Attacks in Federated Machine Learning by an Encrypted Verification Key, Procedia Computer Science, Volume 225, 2023, 2723–2732. DOI: 10.1016/j.procs.2023.10.264. 11. Michael Gallagher, Nikolaos Pitropakis, Christos Chrysoulas, Pavlos Papadopoulos, Alexios Mylonas, Sokratis Katsikas, Investigating machine learning attacks on financial time series models, Computers & Security, Volume 123, 2022, 102933. DOI: 10.1016/j.cose.2022.102933. 12. Pahul Preet Singh, Fahim Islam Anik, Rahul Senapati, Arnav Sinha, Nazmus Sakib, Eklas Hossain, Investigating customer churn in banking: a machine learning approach and visualization app for data science and management, Data Science and Management, Volume 7, Issue 1, 2024, 7–16. DOI: 10.1016/j.dsm.2023.09.002 13. Badr Eddine Sabir, Mohamed Youssfi, Omar Bouattane, Hakim Allali, Authentication and load balancing scheme based on JSON Token For Multi-Agent Systems, Procedia Computer Science, Volume 148, 2019, 562–570. DOI: 10.1016/j.procs.2019.01.029. 14. Esquembre F., Chacón J., Saenz J., Vega J., Dormido-Canto S., A programmable web platform for distributed access, analysis, and visualization of data, Fusion Engineering and Design, Volume 197, 2023, 114049. DOI: 10.1016/j.fusengdes.2023.114049. 15. Dongyeop Lee, Daesik Lim, Jongseok Park, Soojeong Woo, Youngho Moon, Aesol Jung, Management Architecture With Multi-modal Ensemble AI Models for Worker Safety, Safety and Health at Work, Volume 15, Issue 3, 2024, 373–378. DOI: 10.1016/j.shaw.2024.04.008. 16. Miguel Correia, Wellington Oliveira, José Cecílio, Monintainer: An orchestration-independent extensible container-based monitoring solution for large clusters, Journal of Systems Architecture, Volume 145, 2023, 103035. DOI: 10.1016/j.sysarc.2023.103035. 17. Adabi Raihan Muhammad, Parman Sukarno, Aulia Arif Wardana, Integrated Security Information and Event Management (SIEM) with Intrusion Detection System (IDS) for Live Analysis based on Machine Learning, Procedia Computer Science, Volume 217, 2023, 1406–1415. DOI: 10.1016/j.procs.2022.12.339. |
117–127 |
Tikhomirov, N. A. DATA FLOW MONITORING PROBLEM IN SOFTWARE BUILDING PROCESS / N. A. Tikhomirov, P. G. Klyucharev // Cybersecurity issues. – 2025. – № 1(65). – С. 128-135. – DOI: 10.21681/2311-3456-2025-1-128-135.AbstractThe purpose of the study is a formal proof for impossibility of precise identification of data flows, that occur in process of software building. Research methods: analysis of typical building process mathematical model in relation to fundamental problems of mathematics. Study results: in the proposed study a formal proof is suggested, that it is fundamentally impossible to identify data flow in software building process precisely. Practical applications of mentioned precise identification are also covered by this work as well as heuristic resolution steps for the problem are suggested. Implementation means for some of suggested steps overview is also provided. Proposed algorithm is aware of necessary conditions for data flows to exist, which leads to a potentially low level of false negatives. The scientific novelty consists in applicability analysis of a fundamental approach to named problem resolution as well as made suggestion for heuristic algorithm with potentially low level of false negatives. Practical reasons for the problem to be researched are also covered by the study, that strengthens its importance. Keywords: Rice’s theorem, supply chain security, file-level redundancy, undeclared capabilities, open-source software, build process monitoring, build systems, heuristic approaches to enforcement of information security. References1. Figlovskij K. S., Nikiforov I. V., Jusupova O. A. Ispol'zovanie Gradle build cache dlja optimizacii vremeni sborki // Sovremennye Tehnologii v Teorii i Praktike Programmirovanija. Cbornik materialov nauchno-prakticheskoj konferencii. – SPb: Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovanija «Sankt-Peterburgskij politehnicheskij universitet Petra Velikogo», 2021. S. 127–129. 2. Arustamjan S. S., Antipov I. S. Intellektual'nye metody fazzing-testirovanija v ramkah cikla bezopasnoj razrabotki programm // Bezopasnye Informacionnye Tehnologii. Sbornik trudov Dvenadcatoj mezhdunarodnoj nauchno-tehnicheskoj konferencii. – M.: Moskovskij gosudarstvennyj tehnicheskij universitet imeni N. Je. Baumana (nacional'nyj issledovatel'skij universitet), 2023. S. 11–15. 3. Poeplau S., Francillon A. Symbolic Execution with SymCC: Don't Interpret, Compile! // Proc. of 29-th USENIX Security Symposium, 2020, pp. 181–198. 4. Leonov N. V. Protivodejstvie ujazvimostjam programmnogo obespechenija. Chast' 2. Analiticheskaja model' i konceptual'nye reshenija // Voprosy kiberbezopasnosti. 2024, № 3 (61). S. 90–95. DOI: 10.21681/2311-3456-2024-3-90-95. 5. On the prevalence of software supply chain attacks: Empirical study and investigative framework / Andreoli A., Lounis A., Debbabi M., Hanna A. // Proceedings of the Tenth Annual DFRWS Europe Conference, 2023. № 44. DOI: 10.1016/j.fsidi.2023.301508. 6. Prakticheskie aspekty vyjavlenija ujazvimostej pri provedenii sertifikacionnyh ispytanij programmnyh sredstv zashhity informacii / V. V. Varenica, A. S. Markov, V. V. Savchenko, V. L. Cirlov // Voprosy kiberbezopasnosti. – 2021. – № 5(45). – S. 36-44. – DOI 10.21681/2311-3456-2021-5-36-44. – EDN TBQOCG. 7. Kotlin s tochki zrenija razrabotchika staticheskogo analizatora / Afanas'ev V. O., Poljakov S. A., Borodin A. E., Belevancev A. A. // Trudy Instituta sistemnogo programmirovanija RAN, 2021. № 33 (6). S. 67–82. 8. Devjanin, P. N. Formirovanie metodologii razrabotki bezopasnogo sistemnogo programmnogo obespechenija na primere operacionnyh sistem / P. N. Devjanin, V. Ju. Telezhnikov, A. V. Horoshilov // Trudy Instituta sistemnogo programmirovanija RAN. – 2021. – T. 33, № 5. – S. 25–40. – DOI 10.15514/ISPRAS-2021-33(5)-2. – EDN WBXBTQ. 9. Natch: Opredelenie poverhnosti ataki programm s pomoshh'ju otslezhivanija pomechennyh dannyh i introspekcii virtual'nyh mashin / P. M. Dovgaljuk, M. A. Klimushenkova, N. I. Fursova [i dr.] // Trudy Instituta sistemnogo programmirovanija RAN. – 2022. – T. 34, № 5. – S. 89–110. – DOI 10.15514/ISPRAS-2022-34(5)-6. – EDN JNKSTV. 10. Kovalenko R. D., Makarov A. N. Dinamicheskij analiz IoT-sistem na osnove polnosistemnoj jemuljacii v QEMU // Trudy Instituta sistemnogo programmirovanija RAN. 2021. № 33–5. S. 155–166. 11. Aristov R. S., Gladkih A. A., Davydov V. N., Komahin M. O. Razrabotka programmnoj platformy Kopycat jemuljacii slozhnyh vychislitel'nyh sistem // Nanoindustrija, 2019. № S (89). S. 350–352. 12. Gladkih A. A., Kemurdzhian A. L., Komahin M. O. Otladka i analiz ustrojstv i prilozhenij s operacionnoj sistemoj na baze Linux v jemuljatore Kopycat // Nanoindustrija, 2020. № S5-2 (102). S. 406–408. 13. Vishnjakov A. V. Poisk oshibok v binarnom kode metodami dinamicheskoj simvol'noj interpretacii: dis. … kandidata fiziko-matematicheskih nauk 2.3.5 / Vishnjakov A.V. – M., 2022. – 131 s. 14. Shimchik, N. V. Irbis: staticheskij analizator pomechennyh dannyh dlja poiska ujazvimostej v programmah na C/C++ / N. V. Shimchik, V. N. Ignat'ev, A. A. Belevancev // Trudy Instituta sistemnogo programmirovanija RAN. – 2022. – T. 34, № 6. – S. 51–66. – DOI 10.15514/ISPRAS-2022-34(6)-4. |
128–135 |
Starodubtsev, Yu. I. CYBERSECURITY OF VIDEO SURVEILLANCE SYSTEMS IN THE CONTEXT OF INFORMATION TECHNOLOGY IMPACTS / Yu. I. Starodubtsev, P. V. Zakalkin, S. V. Karasev // Cybersecurity issues. – 2025. – № 1(65). – С. 136-146. – DOI: 10.21681/2311-3456-2025-1-136-146.AbstractThe purpose of the study: to consider the procedure for the implementation of information technology impacts on video surveillance systems; to assess the existing information security requirements for video surveillance systems in the Russian Federation; to form generalized proposals to ensure the information security of existing video surveillance systems in conditions of deliberate information technology impacts. The results obtained: a generalized scheme of the procedure for the implementation of information technology impacts on video surveillance systems has been formed; generalized proposals for ensuring the information security of existing video surveillance systems have been formulated; proposals for the development of regulatory documentation by regulators (in the field of information security) have been formulated. Scientific novelty: the analysis of the conflict situation in the field of video surveillance systems has been carried out, which made it possible to identify the initial measures necessary for the subsequent development of information security of video surveillance systems. Research methods: system analysis, classification, comparative analysis. Keywords: cyberspace, information technology impacts, cybersecurity, video surveillance, threats, intruder, information security. References1. Starodubcev Yu. I., Zakalkin P.V. Strukturno-funkcional'nyj analiz konfliktnoj situacii mezhdu gosudarstvennoj sistemoj obespecheniya informacionnoj bezopasnosti i inostrannoj sistemoj destruktivnyh vozdejstvij // Voprosy kiberbezopasnosti. 2024. №4(62). S. 82–91. DOI: 10.21681/2311-3456-2024-4-82-91. 2. Ivanov S.A. Transformaciya roli edinoj seti elektrosvyazi Rossijskoj Federacii v sisteme voennogo upravleniya v rezul'tate realizacii processov cifrovoj transformacii i globalizacii // Voprosy radioelektroniki. Seriya: Tekhnika televideniya. 2021. №3. S. 17–23. 3. Ivanov S.A. Ustojchivost' setej svyazi obshchego pol'zovaniya v usloviyah globalizacii // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2021. № 9. S. 86–90. DOI: 10.24412/2071-6168-2021-9-86-90. 4. Kocynyak M.A., Lauta O.S., Nechepurenko A.P. Metodika ocenki ustojchivosti informacionno-telekommunikacionnoj seti v usloviyah informacionnogo protivoborstva // Voprosy oboronnoj tekhniki. Seriya 16: Tekhnicheskie sredstva protivodejstviya terrorizmu. 2019. № 1-2 (127-128). S. 58–62. 5. Brechko A.A., Sazykin A.M. Problema upravleniya parametrami kiberprostranstva v interesah sub"ektov kriticheskoj informacionnoj infrastruktury Rossijskoj Federacii // Voprosy oboronnoj tekhniki. Seriya 16: Tekhnicheskie sredstva protivodejstviya terrorizmu. 2022. № 5-6 (167-168). S. 36–43. 6. Zakalkin P.V. Aspekty ispol'zovaniya kiberprostranstva v interesah korporativnyh sistem upravleniya // Trudy Nauchno-issledovatel'skogo instituta radio. 2021. № 4. S. 23–32. DOI: 10.34832/NIIR.2021.7.4.003. 7. Starodubtsev Y.I., Balenko E.G., Zakalkin P.V., Fedorov V.H. Change dynamics for forms and opportunities of centers of power under globalization // V sbornike: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020. 2020. S. 9271172. DOI: 10.1109/FarEastCon50210.2020.9271172. 8. Starodubcev Yu. I., Zakalkin P.V., Ivanov S.A. Mnogovektornyj konflikt v kiberprostranstve kak predposylka formirovaniya novogo vida vooruzhennyh sil // Voennaya mysl'. 2021. №12. S. 126–135. 9. Hwang Y.-W., Lee I.-Y., Kim H., Lee H., Kim D. Current status and security trend of OSINT // Wireless Communications and Mobile Computing. 2022. T. 2022. S. 1290129. DOI: 10.1155/2022/1290129. 10. Mahnin V.L. O zakonah i formah vojny // Vestnik akademii voennyh nauk. 2024. №2(87). C. 45–53. 11. Gavrilov A.D., Grudinin I.V., Majburov D.G., Novikov V.A. Dva goda special'noj voennoj operacii: nekotorye itogi, veroyatnye perspektivy // Vestnik akademii voennyh nauk. 2024. №2(87). С. 54–64. 12. Belov A.S., Dobryshin M.M., SHugurov D.E. Nauchno-metodicheskij podhod k ocenivaniyu kachestva sistem obespecheniya informacionnoj bezopasnosti // Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2022. № 11. S. 34–40. DOI: 10.25791/ pribor.11.2022.1373. 13. Dobryshin M.M. Vybor struktury i mekhanizmov adaptivnogo upravleniya sistemy obespecheniya informacionnoj bezopasnosti // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2022. № 2. S. 214–223. DOI: 10.24412/2071-6168-2022-2-214-223. 14. Tolstoj A. I. Sistemotekhnika obespecheniya bezopasnosti ob"ektov v informacionnoj sfere // Voprosy kiberbezopasnosti. 2024. № 5 (63). S. 47–57 DOI: 10.21681/2311-3456-2024-5-47-57. |
136–146 |
Дорофеев, А. В. О ПЕРВОЙ РОССИЙСКОЙ ПРОФЕССИОНАЛЬНОЙ СЕРТИФИКАЦИИ В ОБЛАСТИ КИБЕРБЕЗОПАСНОСТИ «СЕРТИФИЦИРОВАННЫЙ СПЕЦИАЛИСТ ПО КИБЕРБЕЗОПАСНОСТИ» / А. В. Дорофеев // Cybersecurity issues. – 2025. – № 1(65). – С. 147-149. – DOI: 10.21681/2311-3456-2025-1-147-149.References1. Дорофеев А.В. Статус CISSP: как получить и не потерять? // Вопросы кибербезопасности. 2013. № 1(1). С. 65–68. 2. Лившиц И.И. Проблемы подготовки специалистов в области информационной безопасности // Вестник ДГТУ. Технические науки. 2024. Т. 51. № 1. С. 123–131. DOI: 10.21822/2073-6185-2024-51-1-123-131. 3. Чванова М.С., Киселева И.А., Анурьева М.С. Зарубежный опыт подготовки специалистов для наукоемких технологий // Вестник Тамбовского университета. Серия: Гуманитарные науки. 2021. Т. 26. № 190. С. 7–24. DOI: 10.20310/1810-0201-2021-26-190-7-24. 4. Seidakhmetova F., Pasekova M., Sarygulova R., Sholpanbayeva K. Training of Specialists in the Field of Information Security // Statistics, Accounting and Audit. 2023. № 2 (89). С. 40–46. DOI:10.31992/0869-3617-2022-31-2-82-93. 5. Барабанов А.В., Дорофеев А.В., Марков А.С., Цирлов В.Л. Семь безопасных информационных технологий / Под. ред. А.С. Маркова. М.: ДМК Пресс, 2017. 221 с. 6. Дорофеев А.В., Марков А.С. Менеджмент информационной безопасности: основные концепции // Вопросы кибербезопасности. 2014. № 1 (2). С. 67–73. 7. Дорофеев А.В., Марков А.С. Планирование обеспечения непрерывности бизнеса и восстановления // Вопросы кибербезопасности. 2015. № 3 (11). С. 68–73. 8. Марков А.С., Цирлов В.Л. Безопасность доступа: подготовка к CISSP // Вопросы кибербезопасности. 2015. № 2 (10). С. 60–68. 9. Марков А.С., Цирлов В.Л. Основы криптографии: подготовка к CISSP // Вопросы кибербезопасности. 2015. № 1 (9). С. 65–73. 10. Петренко Ю.А., Петренко С.А. Лучшая практика управления непрерывностью бизнеса // Защита информации. Инсайд. 2010. № 5 (35). С. 12–21. 11. Марков А.С. Проблемные вопросы международной сертификации специалистов по информационной безопасности // В сб. трудов XVIII Международного форума «Партнерство государства, бизнеса и гражданского общества при обеспечении международной информационной безопасности». М.: НАМИБ, 2024. С. 82–85. |
147–149 |
Leave a Reply