Contents of the 5th issue of the Cybersecurity Issues journal for 2025:
| Title | Pages |
Minzov, A.S. IMPROVING THE TRADE SECRET PROTECTION SYSTEM: PRINCIPLES, CLASSIFICATION, METHODS, AND TECHNOLOGIES / A.S. Minzov, A.Yu. Nevsky, S.A. Minzov // Cybersecurity issues. – 2025. – № 5(69). – С. 2-14. – DOI: 10.21681/2311-3456-2025-5-2-14.AbstractStudy objective: to substantiate a system for protecting trade secrets in various forms based on classification, principles, methods, and technologies. Research methods: a retrospective analysis of trade secret protection requirements in Russia and abroad; a systems analysis to substantiate trade secret classification; conceptual modeling of a trade secret protection system based on the Zero Trust concept; and a synthesis of a trade secret protection system at all stages of its life cycle. Study results: the obtained results do not contradict existing regulatory documents on trade secret protection and can be used to enhance the protective properties of various objects where the need to protect trade secrets arises in Russia and abroad. Scientific novelty: the article proposes new approaches to classifying trade secrets from the perspective of protecting them from disclosure (leakage), principles for protecting trade secrets based on the "zero trust" concept, and a trade secret protection management system as a cyclical, controlled, and protected process from the creation of an innovative idea, through design, implementation, and operation. Practical relevance: the authors' proposed solutions and approaches to protecting trade secrets will improve the level of security for economic entities where protection is necessary, increase innovative activity in market relations, and counter industrial and economic espiona. Keywords: trade secret, information security system, trade secret regime, zero trust. References1. Nashkova S. Defining Trade Secrets in the United States: Past and Present Challenges–A Way Forward? // IIC-International Review of Intellectual Property and Competition Law. – 2023. – T. 54. – №. 5. – S. 634–672. 2. Desaunettes-Barbero L. Trade Secrets Legal Protection // Munich Studies on. – 2023. 3. Kapczynski A. The public history of trade secrets // UC Davis L. Rev. – 2021. – T. 55. – S. 1367. 4. O. Ozcan, D. Pickernell and P. Trott, A Trade Secrets Framework and Strategic Approaches, in IEEE Transactions on Engineering Management, vol. 71, pp. 10200–10216, 2024. DOI: 10.1109/TEM.2023.3285292. 5. Kim Y. et al. The effect of trade secrets law on stock price synchronicity: Evidence from the inevitable disclosure doctrine // The Accounting Review. – 2021. – T. 96. – №. 1. – S. 325–348. 6. Anti-Unfair Competition Law. URL: http://en.npc.gov.cn.cdurl.cn/laws.html (data obrashhenija: 01.09.2025). 7. Act on Investment Trusts and Investment Corporations https://www.japaneselawtranslation.go.jp/en/laws/view/3605 (data obrashhenija: 01.09.2025). 8. Fedorova D. A., Kotel'nikova M. A., Starchenko A. S. Razvitie zakonodatel'stva Rossijskoj Federacii o kommercheskoj tajne. Porjadok vozniknovenija i prekrashhenija prava na kommercheskuju tajnu // Mezhdunarodnyj zhurnal gumanitarnyh i estestvennyh nauk. – 2023. – № 53(80). – S. 127–131. 9. Balychev A. P. Kommercheskaja tajna kak vid konfidencial'noj informacii: pravovoe regulirovanie v Rossijskoj Federacii // Vestnik nauki. – 2024. – T. 2. – №. 4(73). – S. 208–218. 10. Fedorov P. G. Formy projavlenija kommercheskoj tajny v cifrovoj jekonomike // Aktual'nye problemy rossijskogo prava. – 2025. – №. 1 (170). – S. 86–97. 11. D. S. Generative artificial intelligence and trade secrecy // J. Free Speech L. – 2023. – T. 3. – S. 559. 12. Slickaja A. E. Ispol'zovanie generativnogo iskusstvennogo intellekta v SEO dlja jelektronnoj kommercii // Innovacii i investicii. – 2023. – №. 11. – S. 326–329. 13. Stoljarov A. D., Abramov V. I., Abramov A. V. Generativnyj iskusstvennyj intellekt dlja innovacij biznes-modelej: vozmozhnosti i ogranichenija // Beneficium. – 2024. – № 3 (52). – S. 43–51. 14. Polovinkin A. I. Osnovy inzhenernogo tvorchestva / A. I. Polovinkin; Izdatel'stvo: Lan'. Serija. Tehnika. TehniLan'; nauki v celom. 2022. – 360 s. 15. Rubin M. S. Osnovy TRIZ dlja predprijatij. M.: KTK «Galaktika». 2022. – 354 s. 16. Rajendran, S., & Shankar, K. Artificial Intelligence Techniques for Cybersecurity. Security and Privacy, 2021. 4(1), e122. 17. Braband J., Shebe H. Ocenka bezopasnosti iskusstvennogo intellekta // Nadezhnost'. – 2020. – T. 20. – №. 4. – S. 25–34. 18. Artamonov V. A., Artamonova E. V., Safonov A. E. Bezopasnost' iskusstvennogo intellekta // Zashhita informacii. Insajd. – 2022. – №. 6(108). – S. 8. 19. Hrdy, Camilla Alexandra, Trade Secrets and Artificial Intelligence (July 14, 2025). Rutgers Law School Research Paper, Trade Secrets and Artificial Intelligence Forthcoming in Elgar Concise Encyclopedia of Artificial Intelligence and the Law (Edward Elgar, eds. Ryan Abbott, Elizabeth Rothman, forthcoming, 2026), Available at SSRN: https://ssrn.com/abstract=5350892 or http://dx.doi.org/10.2139/ssrn.5350892 (data obrashhenija: 01.09.2025). 20. Rotman Djenis. RAG i generativnyĭ II. Sozdaem sobstvennye RAG-paĭplaĭny s pomoshh'ju LlamaIndex, Deep Lake i Pinecon. Astana: Sprint Buk. 2025. 320 s.: il. ISBN 978-601-12-3149 7. 21. Theory and Application of Zero Trust Security: A Brief Survey by Hongzhaoning Kang 1ORCID, Gang Liu 1, Quan Wang, Lei Meng and Jing Liu – November 2023 https://www.mdpi.com/1099-4300/25/12/1595 (data obrashhenija: 01.09.2025). 22. Seefeldt J. what’s new in nist zero trust architecture // NIST Special Publication. – 2021. – T. 800. – S. 207. 23. Gangina P.Demystifying Zero-Trust Architecture for Cloud Applications // Journal of Computer Science and Technology Studies. – 2025. – T. 7. – №. 9. – S. 542–548. 24. Oforleta, Chibuzor, Reassessing Trade Secret Protections in the Era of AI: A Comparative Perspective on Legal and Ethical Challenges (February 18, 2025). Available at SSRN: https://ssrn.com/abstract=5143701 or http://dx.doi.org/10.2139/ssrn.5143701 (data obrashhenija: 01.09.2025). |
2–14 |
Grishentsev, A. Yu. INTEROPERABILITY AS A BASIS FOR SYSTEMATIZATION OF INFORMATION SECURITY METHODS AND MEANS / A. Yu. Grishentsev, N. V. Korovkin, A. G. Korobeynikov // Cybersecurity issues. – 2025. – № 5(69). – С. 15-27. – DOI: 10.21681/2311-3456-2025-5-15-27.AbstractPurpose of the study: development of the theoretical foundations of information security through sound systematization, methods and means of information security based on the concept of interoperability. Methods of research: analysis of information interaction and threats in information interaction based on a standardized reference model of interoperability and synthesis of a systematic structured model of information security methods and tools in the context of the concept of interoperability. Result's: based on the analysis of scientific areas of interoperability and information security, it is proposed to supplement the field of interests of information security with a semantic level, in accordance with the reference model of interoperability. The analysis of information security threats to the object of protection implemented at the semantic level of information interaction has been performed. In the course of research, the need for information security at the semantic level has been proved to ensure the completeness of information interaction protection and to satisfy the interests of the information protection object. An information model for the development and implementation of information security methods is proposed to help achieve the objectives of the object of protection. A model of information security based on a reference model of interoperability is proposed. A model of information security audit and risk assessment based on a reference model of interoperability is proposed. Scientific novelty: It consists in a new approach to systematization of methods, means and increasing the sphere of interests of information security based on modern scientific ideas about the levels of information interaction in accordance with the concept of interoperability. Keywords: information protection, information interaction, open systems, models, standards. References1. Zasedanie diskussionnogo kluba «Valdaj» (2024, November 07). URL: http://www.kremlin.ru/events/president/news/75521. 2. Zharinov, I. O. (2024). Stek Skvoznyx Cifrovyx Texnologij Kak Faktor Innovacionnoj Modernizacii Oboronno-Promyshlennogo Kompleksa Rossii. Voennyj Akademicheskij Zhurnal, 2(10), 133–139. 3. Aleshkovskij, I. A. (2012). Demograficheskij Krizis Kak Ugroza Nacional’noj Bezopasnosti Rossii. Vek Globalizacii, 2(10), 96–114. https://www.socionauki.ru/journal/articles/147957/. 4. Tret’yak, O. A., & Rumyanceva, M. N. (2003). Setevye Formy Mezhfirmennoj Kooperacii: Podxody k Ob’’yasneniyu Fenomena. Rossijskij Zhurnal Menedzhmenta, 2, 25–50. https://rjm.spbu.ru/article/view/812/707. 5. Granovetter, M. (2003). Sila Slabyx Svyazej (Z. V. Kotel’nikova, Trans.). Ekonomicheskaya Sociologiya, 10(4), 31–50. https://ecsoc.hse.ru/2009-10-4/26591138.html. 6. Burkov V. N., Korgin N. A., Novikov D. A. (2009). Vvedenie v teoriyu upravleniya organizacionnymi sistemami. Librokom. 264 p. 7. Grinyaev S. N. (2004). Pole bitvy – kiberprostranstvo. Teoriya, priemy, sredstva, metody i sistemy vedeniya informacionnoj vojny. Harvest. 426 p. 8. Dylevskij I. N., Zapivaxin V. O., Komov S. A., Korotkov S. V. & Krivchenko A. A. (2016) O dialekte sderzhivaniya i predotvrashheniya voennyx konfliktov v informacionnuyu eru. Voennaya mysl'. 7, 3–11. 9. Makarenko S. I. (2017). Informacionnoe protivoborstvo i radioelektronnaya bor'ba v sete-centricheskix vojnax nachala XXI veka. Naukoemkie texnologii. 546 p. 10. Makarenko S. I., Olejnikov A. Ya., Chernickaya T. E. (2019). Modeli interoperabel'nosti informacionnyx system. Sistemy upravleniya, svyazi i bezopasnosti. 4, 215–245. DOI: 10.24411/2410-99162019-10408. 11. Grishencev A. Yu., Korobejnikov A. G., Dukel'skij K. V. (2017). Metod chislennoj ocenki texnicheskoj interoperabel'nosti. Kibernetika i programmirovanie. 3, 23–38. 12. Grishencev A. Yu., Korobejnikov A. G. (2015). Sredstva interoperabel'nosti v raspredelennyx geoinformacionnyx sistemax. Zhurnal radioelektroniki. 3, 1–18. 13. Makarenko S. I. (2023). Interoperabel'nost' cheloveko-mashinnyx interfejsov. Naukoemkie texnologii. 185 p. 14. Goncharov N. G., Guliev Y. I., Gulyaev Y. V., Kavinskaya A. A., Olejnikov A. Y., & Xatkevich M. I. (2006). Voprosy Sozdaniya Edinogo Informacionnogo Prostranstva v Sisteme Zdravooxraneniya RAN. Informacionnye Texnologii i Vychislitel’nye Sistemy, 4, 83–95. https://jitcs.frccsc.ru/arhiv/2006/release_4/voprosy_sozdaniya_ edinogo_informatsionnogo_prostranstva_v_sisteme_zdravoohraneniya_ran.html. 15. Makarenko S. I. Informacionnaya bezopasnost'. (2009). SF MGGU im. M. A. Sholoxova. 372 p. 16. Batovrin V. K., Gulyaev Y. V., & Olejnikov A. Y. (2006). Obespechenie Interoperabel’nosti – Osnovnaya Tendenciya v Razvitii Otkrytyx Sistem. Informacionnye Texnologii I Vychislitel’nye Sistemy, 2009. № 5. Pp. 7. http://www.jitcs.ru/index.php?option=com_content&view=article&id=310. 17. Trump, D. (2025, January 22). President Donald Trump’s Inaugural Address. Ru.Usembassy.Gov. https://ru.usembassy.gov/presidentdonald-trumps-inaugural-address/. 18. Vernadskij V. I. (2010). Nauchnaya Mysl’ Kak Planetnoe Yavlenie. Izbrannye Trudy (Aksenov G. P.). ROSSPEN. 742 p. 19. Grinspen, A. (2007). Epoxa Potryasenij. Al’pina Biznes Buks. 90 p. 20. Starikov N. (2010). Krizis. Kak eto delaetsya. Piter. 304 p. 21. Yakovlev A. S. (1987). Cel’ Zhizni. Zapiski Aviakonstruktora (5th ed.). Politizdat. 511 p. 22. Ford, G. (1922). My Life and Work. Stone Hedge. 304 p. 23. Shatelen, M. A., Nejman, L. R., & Zajcev, I. A. (2005). Vydayushhijsya Russkij Uchenyj-Elektrik Akademik Vladimir Fedorovich Mitkevich. Elektrichestvo, 1, 89–91. 24. Korovkin, N. V. (2022). Akademik Vladimir Fedorovich Mitkevich (k 150-letiyu so dnya rozhdeniya). Elektrichestvo, 2, 65–69. DOI 10.24160/0013-5380-2022-8-65-69. 25. Zakoldaev, D. A., Grishentsev, A. Yu. (2021). Methodology for modeling and ensuring information security in resource management. Herald of computer and information technologies, 4(202), 45–52. DOI: 10.14489/vkit.2021.04.pp.045-052. |
15–27 |
Melnikov, A. V.METHOD OF ASSESSING THE DANGER OF DESTRUCTIVE SOFTWARE IMPACTS ON AUTOMATED SPECIAL-PURPOSE SYSTEMS OF INTERNAL AFFAIRS BODIES / A. V. Melnikov, N. S. Kobyakov // Cybersecurity issues. – 2025. – № 5(69). – С. 28-40. – DOI: 10.21681/2311-3456-2025-5-28-40.AbstractThe objective of the study: modeling the hazard indicator of destructive software impacts, taking into account the relevance of the behavioral patterns of malware for automated special-purpose systems of the internal affairs agencies. Research methods: the hierarchy analysis method is used to form models for assessing the hazard of destructive software impacts and to determine the numerical values of the attributes of the automated special-purpose systems of the internal affairs agencies. Research result: the basic and specific attributes of the automated special-purpose systems of the internal affairs agencies are determined, characterizing the relevance of the behavioral patterns of malware depending on the functional features of the automated special-purpose systems of the internal affairs agencies. Basic and specific models for assessing the hazard of destructive software impacts on the automated special-purpose systems of the internal affairs agencies have been developed, taking into account the relevance of the behavioral patterns of malware. An algorithm for planning and implementing the life cycle processes of the automated special-purpose systems of the internal affairs agencies in the context of destructive software impacts has been developed. The developed methodology has been verified using the example of forming models for assessing the hazard of destructive software impacts of malware of the «Malicious Utilities» class on a test automated special-purpose system. The developed models have been verified on a test data set generated by interviewing experts. Practical significance: the developed methodology can be used by security administrators of automated special-purpose systems when assessing the danger of destructive software impacts and determining the goals and list of measures to be implemented to ensure information protection when unknown malicious programs appear. Keywords: malware, automated systems features, information security, analytic hierarchy process. References1. F. Alkhudhayr, S. Alfarraj, B. Aljameeli and S. Elkhdiri, «Information Security:A Review of Information Security Issues and Techniques», 2019. 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 2019, pp. 1–6, doi: 10.1109/CAIS.2019.8769504. 2. Methodical approach to reducing the dimensionality of the task of requirements substantiation for protection of information systems against unauthorized access in organizational-technical systems / T. V. Meshcheryakova, A. V. Batskikh, O. A. Gulyaev, A. A. Abdullin // Journal of Physics: Conference Series: Applied Mathematics, Computational Science and Mechanics: Current Problems, Voronezh, 11–13 ноября 2019 года. – Bristol: Institute of Physics Publishing, 2020. – P. 012013. – DOI 10.1088/1742-6596/1479/1/012013. 3. Ocenka sootvetstviya modeli ugroz i trebovanij doveriya sistem Interneta veshchej massovogo primeneniya / A. A. Bakhtin, D. S. Bragin, A. A. Konev, A. V. Sharamok // Nanoindustry. – 2020. – Т. 13, № S4(99). – pp. 137-138. – DOI 10.22184/1993-8578.2020.13.4s.137.138. 4. Yazov, Yu. K. Sostavnye seti Petri-Markova so special'nymi usloviyami postroeniya dlya modelirovaniya ugroz bezopasnosti informacii / Yu. K. Yazov, A. P. Panfilov // Cybersecurity issues. – 2024. – № 2(60). – pp. 53-65. – DOI 10.21681/2311-3456-2024-2-53-65. 5. Sostavnye seti Petri – Markova na osnove polumarkovskih processov i ih primenenie pri modelirovanii dinamiki realizacii ugroz bezopasnosti informacii v informacionnyh sistemah / Yu. K. Yazov, A. O. Avsentiev, A. P. Panfilov, V. N. Przhegorlinsky // Vestnik Voronezhskogo instituta MVD Rossii. – 2024. – № 2. – pp. 63-78. – EDN UWINDW. 6. Perspektivnye napravleniya primeneniya tekhnologij iskusstvennogo intellekta pri zashchite informacii / R. V. Meshcheryakov, S. Yu. Melnikov, V. A. Peresypkin, A. A. Khorev // Cybersecurity issues. – 2024. – № 4(62). – pp. 2–12. – DOI 10.21681/2311-3456-2024-4-02-12. 7. Models and methods of information reliability and data protection / G. I. Korshunov, V. A. Lipatnikov, V. A. Tichonov [et al.] // IOP Conference Series: Materials Science and Engineering: International Workshop «Advanced Technologies in Material Science, Mechanical and Automation Engineering – MIP: Engineering – 2019», Krasnoyarsk – London: Institute of Physics and IOP P8ublishing Limited, 2019. – P. 52001. – DOI 10.1088/1757-899X/537/5/052001. 8. Metagrammaticheskij podhod analiza ierarhij dlya sinteza sistem bezopasnosti atomnyh elektrostancij / O. I. Atakishchev, V. G. Gribunin, I. L. Borisenkov, M. N. Lysachev // Cybersecurity issues. – 2023. – № 1(53). – pp. 82–92. – DOI 10.21681/2311-3456-2023-1-82-92. 9. Munier N. Uses and Limitations of the AHP Method/ N. Munier, E. Hontoria // Management for Professionals. Springer Cham – 2021. – 130 pp. DOI 10.1007/978-3-030-60392-2. 10. Mel'nikov A. V. Kobjakov N. S. Chislennyj metod modifikacii modelej, razrabotannyh na osnove metoda analiza ierarhij, s ispol'zovaniem iskusstvennoj nejronnoj seti.VSU Bulletin. Series: System analysis and information technologies – 2024. – № 4. – S. 5–22. – DOI 10.17308/sait/1995-5499/2024/4/5-21. 11. Melnikov A. V. Podhod k ocenke opasnosti destruktivnyh vozdejstvij vredonosnyh programm na avtomatizirovannye sistemy special'nogo naznacheniya / A. V. Melnikov, N. S. Kobyakov // Bezopasnost' informacionnyh tekhnologij. – 2023. – Т. 30, № 3. – pp. 51–60. – DOI 10.26583/bit.2023.3.03. – EDN RJWWZH. 12. Melnikov, A. V. Modeli i algoritmy realizacii organizacionnyh mer zashchity informacii v ASSN ot destruktivnyh vozdejstvij ranee neizvestnyh vredonosnyh programm / A. V. Melnikov, N. S. Kobyakov, R. A. Zhilin // Vestnik Voronezhskogo instituta MVD Rossii. – 2023. – № 3. – pp. 80–87. – EDN ZILKNA. 13. Zhilin R. A. CHislennyj metod predvaritel'noj ekspertizy al'ternativ narushitelej ohrany ob"ektov obshchekriminal'noj napravlennosti / R. A. Zhilin, A. V. Melnikov, I. V. Shcherbakova // Vestnik Voronezhskogo instituta MVD Rossii. – 2019. – № 3. – pp. 46–54. – EDN NEYIJN 14. Kobyakov, N. S. Algoritm klassifikacii avtomatizirovannyh sistem special'nogo naznacheniya / N. S. Kobyakov, V. N. Pariev // Al'manah Permskogo voennogo instituta vojsk nacional'noj gvardii. – 2024. – № 2(14). – pp. 15–21. – EDN PKWCCP. 15. Avramenko V. S., Malikov A. V. Metodika diagnostirovanija komp'juternyh incidentov bezopasnosti v avtomatizirovannyh sistemah special'nogo naznachenija. Naukoemkie tehnologii v kosmicheskih issledovanijah Zemli. – 2020. – T. 12, № 1. – S. 44–52. – DOI 10.36724/2409-5419-2020-12-1-44-52. 16. Dolgachev, M. V., Kostjunin V. A. Kompleksnyj analiz povedenija sistemy Windows dlja obnaruzhenija kiberugroz. Voprosy kiberbezopasnosti. – 2025. – № 2(66). – S. 71–77. – DOI 10.21681/2311-3456-2025-2-71-77. 17. Melnikov, A. V. Model' ocenki opasnosti vredonosnyh utilit / A. V. Melnikov, V. I. Sumin, N. S. Kobyakov // Promyshlennye ASU i kontrollery. – 2023. – № 7. – pp. 33–40. – DOI 10.25791/asu.7.2023.1448. 18. Melnikov, A. V. Method of forming expert coalitions in the context of solving the expertise problem of alternatives with weakly formalized criteria / A. V. Melnikov, I. V. Shcherbakova, R. A. Zhilin // Journal of Physics: Conference Series: Applied Mathematics, Computational Science and Mechanics: Current Problems, Voronezh, 11–13 ноября 2019 года. – Bristol: Institute of Physics Publishing, 2020. – P. 012071. – DOI 10.1088/1742-6596/1479/1/012071. 19. Yazov, Yu. K. Soloviev S.V. Metodologiya ocenki effektivnosti zashchity informacii v informacionnyh sistemah ot nesankcionirovannogo dostupa. Sankt-Peterburg: Izdatel'stvo «Naukoemkie tekhnologii» 2023. – 258 P. – ISBN 978-5-907618-36-7. – EDN WVCHKW. 20. Yazov Yu. K., Avsentiev O. S., Avsentiev A. O., Rubtsova I. O. Metod ocenivaniya effektivnosti zashchity elektronnogo dokumentooborota s primeneniem apparata setej Petri – Markova / Proceedings of SPIIRAS. – 2019. – Т. 18, № 6. – pp. 1269–1300. – DOI 10.15622/sp.2019.18.6.1269-1300. |
28-40 |
Voevodin, V. A. ON FORECASTING COSTS FOR THE RE-ENGINEERING OF THE SECURITY SYSTEM OF CRITICAL INFORMATION INFRASTRUCTURE OBJECTS EXPOSED TO THREATS / V. A. Voevodin // Cybersecurity issues. – 2025. – № 5(69). – С. 41-49. – DOI: 10.21681/2311-3456-2025-5-41-49.AbstractThe objective of the study: to justify the relevance, formulate and formalize the scientific task of forecasting costs for re-engineering the security system of critical information infrastructure (CII) objects exposed to threats. Methods of research: heuristic, extrapolation, expert, comparison and comparison, differential calculus, informational diagnosis. The results obtained: a verbal and formal formulation of the scientific task of forecasting costs for re-engineering the security system of KIA objects exposed to threats was formulated and an algorithm for its solution was proposed. Scientific novelty: a tool for forecasting is proposed, based on the structure of a prognostic model, which represents a linear combination of the same-name parameters of the object of prediction and objects-analogues. Based on data about the value of parameters of objects-analogues, when namesake parameters have linear correlation, a forecast is made. For example, it is possible to predict the cost of reengineering, the sustainability of operation, the reserve stock, etc. Practical significance: the scientific problem can serve as a basis for formulating a technical task to reengineer the safety systems of the KIA with the requirements for their sustainability. Keywords: cost forecasting, operation sustainability, object-analog, re-engineering, critical information infrastructure object, threat. References1. Jazov Ju. K. Ob opredelenii ponjatija «kiberbezopasnost'» i svjazannyh s nim terminov // Voprosy kiberbezopasnsoti. 2025. № 1(65). S. 2–6. DOI:10.21681/2311-3456-2025-1-2-6. 2. Voevodin V. A. Genezis ponjatija strukturnoj ustojchivosti informacionnoj infrastruktury avtomatizirovannoj sistemy upravlenija proizvodstvennymi processami k vozdejstviju celenapravlennyh ugroz informacionnoj bezopasnosti. Vestnik Voronezhskogo instituta FSIN Rossii. 2023. № 2, aprel'–ijun'. S. 30–41. 3. Starodubcev Ju. I. Strukturno-funkcional'naja model' kiberprostranstva/ Ju. I. Starodubcev, P. V. Zakalkin, S. A. Ivanov // Voprosy kiberbezopasnosti. 2021. № 4(44), s. 16–24. DOI:10.21681/2311-3456-2021-4-16-24. 4. Fatin A. D., Pavlenko E. Ju. Analiz modelej predstavlenija kiberfizicheskih sistem v zadachah obespechenija informacionnoj bezopasnosti // Problemy informacionnoj bezopasnosti. Komp'juternye sistemy. 2020. № 2. S. 109–121. 5. Zegzhda D. P. Kiberbezopasnost' cifrovoj industrii. Teorija i praktika funkcional'noj ustojchivosti k kiberatakam / pod red. D. P. Zegzhdy. – M.: Gorjachaja linija – Telekom. 2022. – 560 s. 6. Konovalenko S. A. Metodika ocenivanija funkcional'noj ustojchivosti geterogennoj sistemy obnaruzhenija, preduprezhdenija i likvidacii posledstvij komp'juternyh atak // Sistemy upravlenija, svjazi i bezopasnosti. 2023. № 4. S. 157–195. DOI: 10.24412/2410-9916-2023-4-157-195. 7. Erohin S. D., Petuhov A. N., Piljugin P. L. Upravlenie bezopasnost'ju kriticheskih informacionnyh infrastruktur. M.: Gorjachaja linija – Telekom. 2023. – 240 s. 8. Kocynjak M. A., Osadchij A. I., Kocynjak M. M., Lauta O. S., Dement'ev V. E., Vasjukov D. Ju. Obespechenie ustojchivosti informacionnotelekommunikacionnyh setej v uslovijah informacionnogo protivoborstva. SPb.: LO CNIIS, 2014. – 126 s. 9. Odoevskij S. M., Lebedev P. V. Metodika ocenki ustojchivosti funkcionirovanija sistemy tehnologicheskogo upravlenija infokommunikacionnoj set'ju special'nogo naznachenija s zadannoj topologicheskoj i funkcional'noj strukturoj // Sistemy upravlenija, svjazi i bezopasnosti. 2021. № 1. – S. 152–189. 10. Evstropov V. M. Osnovnye polozhenija, ispol'zuemye pri ocenke ustojchivosti funkcionirovanija ob#ektov jekonomiki v chrezvychajnyh situacijah metodom prognozirovanija / V. M. Evstropov // Zametki uchenogo. – 2021. № 10. – S. 321–325. 11. Dolgov A. V. Analiz sovremennyh podhodov k modelirovaniju proizvodstvennyh funkcij v uslovijah neopredelennosti / A. V. Dolgov // Vestnik Volzhskogo universiteta im. V. N. Tatishheva. – 2024, T. 2, № 1(53). – S. 37–45. – DOI: 10.51965/2076-7919_2024_2_1_37. |
41-49 |
Volkova E. S. COLLABORATIVE RIDGE REGRESSION IN A DISTRIBUTED SYSTEM WITH BYZANTINE FAILURES / E. S. Volkova, V. B. Gisin // Cybersecurity issues. – 2025. – № 5(69). – С. 50-57. – DOI: 10.21681/2311-3456-2025-5-50-57.AbstractPurpose of the study: designing an algorithm for federated building a ridge regression in a distributed system with Byzantine node failures. Methods of research: combining tools of high-dimensional data processing and protocols in distributed networks. Result(s): the mechanism of an average agreement in an asynchronous network and an application of the average agreement for constructing a ridge regression model are described. Estimates of network parameters are given for which the algorithm of an average agreement is applicable: the distribution of data may be heterogeneous; Byzantine nodes may deviate from the execution of the network protocol in an arbitrary way; no honest node knows which of the other nodes are honest. Byzantine nodes know each other and may collude. Linear regression errors are assumed to be sub-Gaussian and independent. Scientific novelty: a method has been developed to achieve an average agreement on ridge regression parameters in an asynchronous system. Keywords: federated machine learning, Tikhonov regularization, consensus. References1. Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., & Zhang, W. (2023). A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2), 513–535. https://doi.org/10.1007/s13042-022-01647-y. 2. Jin, D., Kannengießer, N., Rank, S., & Sunyaev, A. (2024). Collaborative Distributed Machine Learning. ACM Computing Surveys, 57(4), 1–36. https://doi.org/10.1145/3704807. 3. Qi, P., Chiaro, D., Guzzo, A., Ianni, M., Fortino, G., & Piccialli, F. (2024). Model aggregation techniques in federated learning: A comprehensive survey. Future Generation Computer Systems, 150, 272–293. https://doi.org/10.1016/j.future.2023.09.008. 4. Lu, Z., Pan, H., Dai, Y., Si, X., & Zhang, Y. (2024). Federated learning with non-iid data: A survey. IEEE Internet of Things Journal. 19188–19209. 10.1109/JIOT.2024.3376548. 5. Yuan, L., Wang, Z., Sun, L., Yu, P. S., & Brinton, C. G. (2024). Decentralized federated learning: A survey and perspective. IEEE Internet of Things Journal, 11(21), 34617–34638. DOI: 10.1109/JIOT.2024.3407584. 6. Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., & Dou, D. (2022). From distributed machine learning to federated learning: A survey. Knowledge and Information Systems, 64(4), 885–917. https://doi.org/10.1007/s10115-022-01664-x. 7. Zapechnikov, S. V. (2020). Modeli i algoritmy konfidencial'nogo mashinnogo obucheniya // Bezopasnost' informacionnyx texnologij, 1(27), 51–67. DOI: 10.26583/bit.2020.1.05. 8. Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., & Weihl, W. E. (1986). Reaching approximate agreement in the presence of faults. Journal of the ACM (JACM), 33(3), 499–516. https://doi.org/10.1145/5925.5931. 9. Mendes, H., & Herlihy, M. (2013, June). Multidimensional approximate agreement in byzantine asynchronous systems. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing (pp. 391–400). https://doi.org/10.1145/2488608.2488657. 10. Vasil'ev, V. I., Vul'fin, A. M., Kartak, V. M., Bashmakov, N. M., & Kirillova, A. D. (2024). Raspredelennaya sistema obnaruzheniya setevyx atak na osnove federativnogo transfernogo obucheniya. Voprosy kiberbezopasnosti, (6), 64. S. 117–129. DOI: 10.21681/2311-3456-2024-6-117-129. 11. Novikova, E. S., Fedorchenko, E. V., Kotenko, I. V., & Xolod, I. I. (2023). Analiticheskij obzor podxodov k obnaruzheniyu vtorzhenij, osnovannyx na federativnom obuchenii: preimushhestva ispol'zovaniya i otkrytye zadachi. Informatika i avtomatizaciya, 22(5), 1034–1082. DOI: https://doi.org/10.15622/ia.22.5.4. 12. Bracha, G. (1987). Asynchronous Byzantine agreement protocols. Information and Computation, 75(2), 130-143. https://doi.org/10.1016/0890-5401(87)90054-X. 13. Novikova, E., chen, Ya., & meleshko, A. V. (2024). Metody ocenki urovnya raznorodnosti dannyx v federativnom obuchenii. In mezhdunarodnaya konferenciya po myagkim vychisleniyam i izmereniyam Uchrediteli: Sankt-Peterburgskij gosudarstvennyj elektrotexnicheskij universitet «LETI» im. V. I. Ul'yanova (Lenina) (Vol. 1, pp. 447–450). 14. Theory of ridge regression estimation with applications / A. K. Md. Ehsanes Saleh, Mohamad Arashi, B. M. Golam Kibria – John Wiley & Sons, 2019. 384 p. ISBN: 978-1-118-64461-4. 15. Farhadkhani, S., Guerraoui, R., & Villemaud, O. (2022, June). An equivalence between data poisoning and byzantine gradient attacks. In International Conference on Machine Learning (pp. 6284–6323). PMLR. 16. Wainwright, M. J. (2019). High-dimensional statistics. Cambridge university press, 552 p. 17. Rigollet, P., & Hütter, J. C. (2023). High-dimensional statistics. arXiv preprint arXiv:2310.19244. 161 p. 18. El-Mhamdi, E. M., Farhadkhani, S., Guerraoui, R., Guirguis, A., Hoang, L. N., & Rouault, S. (2021). Collaborative learning in the jungle (decentralized, byzantine, heterogeneous, asynchronous and nonconvex learning). Advances in neural information processing systems, 34, 25044–25057. |
50-57 |
Kotenko, I. V. EXPLAINABLE INTERPRETATION OF INCIDENTS BASED ON A LARGE LANGUAGE MODEL AND A RETRIEVAL-AUGMENTED GENERATION / I. V. Kotenko, G. T. Abramenko // Cybersecurity issues. – 2025. – № 5(69). – С. 58-67. – DOI: 10.21681/2311-3456-2025-5-58-67.AbstractThe purpose of the study: to increase the reliability and explainability of interpreting Suricata IDS alerts by means of an ontologically enriched knowledge graph, heterogeneous graph representations, and Retrieval-Augmented Generation (RAG) based on a local large language model. Research methods: the construction of an ontology-guided knowledge graph that links Suricata data to MITRE ATT&CK tactics/techniques is the first stage of the research. Following this, a heterogeneous graph neural network (HGNN) is trained to obtain contextual node embeddings. The retrieval of relevant context via nearest neighbours in the embedding space is then conducted. Finally, a local LLM (about 7B parameters) is generated within a RAG pipeline to generate explanations. An experimental evaluation on a corpus of approximately 25,000 Suricata alerts is then conducted using metrics of interpretation accuracy, hallucination rate, and relevance. Results obtained: an ontology-guided method for interpreting Suricata alerts was developed, providing more complete and accurate explanations than a baseline approach. The utilisation of ontologies has been demonstrated to enhance the substantive content of explanations by approximately 15%, while concomitantly resulting in only a marginal increase in generation time. The integration of ontology and a heterogeneous knowledge graph has been demonstrated to improve the correct mapping of alerts to MITRE ATT&CK techniques and reduce the risk of erroneous explanations. Scientific novelty: the integration of an ontology and a heterogeneous knowledge graph with RAG-based generation over a local LLM to anchor low-level IDPS events to MITRE ATT&CK techniques has been suggested; the applicability of ontologies to explainable AI in cybersecurity has been shown. Keywords: cybersecurity, intrusion detection and prevention systems, threat hunting; explainable artificial intelligence, knowledge graph, deep learning: heterogeneous graph neural network, MITRE ATT&CK, LLM, RAG, Suricata. References1. Singh A. Contextual Threat Intelligence and Alert Prioritization with Foundation-Sec-8B // International Journal of Artificial Intelligence Research and Development. 2025. Vol. 3, No. 1. P. 131–145. DOI: 10.34218/IJAIRD_03_01_009. 2. Arreche O., Guntur T., Abdallah M. XAI-IDS: Toward Proposing an Explainable Artificial Intelligence Framework for Enhancing Network Intrusion Detection Systems // Applied Sciences. 2024. Vol. 14, No. 10. Article 4170. DOI: 10.3390/app14104170. 3. Hassanin M., Moustafa N. A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions // arXiv preprint arXiv:2405.14487. 2024. DOI: 10.48550/arXiv.2405.14487. 4. Fan W., Ding Y., Ning L., Wang S., Li H., Yin D., Chua T.-S., Li Q. A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models // Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’24). 2024. P. 6491–6501. 5. Mavromatis C., Karypis G. GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning // arXiv preprint arXiv:2405.20139. 2024. DOI: 10.48550/arXiv.2405.20139. 6. Wu D., Yan Y., Liu Z., Liu Z., Sun M. KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs // arXiv preprint arXiv:2506.09542. 2025. DOI: 10.48550/arXiv.2506.09542. 7. Al-Sada B., Sadighian A., Oligeri G. MITRE ATT&CK: State of the Art and Way Forward // ACM Computing Surveys. 2024. Vol. 57, No. 1. Article 12. P. 1–37. DOI: 10.1145/3687300. 8. Li H., Shi Z., Pan C., Zhao D., Sun N. Cybersecurity Knowledge Graphs Construction and Quality Assessment // Complex & Intelligent Systems. 2024. Vol. 10. P. 1201–1217. DOI: 10.1007/s40747-023-01205-1. 9. Hemberg E., Kelly J., Shlapentokh-Rothman M., Reinstadler B., Xu K., Rutar N., O’Reilly U.-M. Linking Threat Tactics, Techniques, and Patterns with Defensive Weaknesses, Vulnerabilities and Platforms for Cyber Hunting // arXiv preprint arXiv:2010.00533. 2021. DOI: 10.48550/arXiv.2010.00533. 10. Freitas S., Gharib A. GraphWeaver: Billion-Scale Cybersecurity Incident Correlation // Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM’24). 2024. P. 4479–4486. DOI: 10.1145/3627673.3680057. 11. Sikos L. F. Cybersecurity Knowledge Graphs // Knowledge and Information Systems. 2023. Vol. 65, No. 9. P. 3511–3531. DOI: 10.1007/s10115-023-01860-3. 12. Zhao X., Jiang R., Han Y., Li A., Peng Z. A Survey on Cybersecurity Knowledge Graph Construction // Computers & Security. 2024. Vol. 136. Article 103524. DOI: 10.1016/j.cose.2023.103524. 13. Xiong W., Legrand E., Åberg O., Lagerström R. Cyber Security Threat Modeling Based on the MITRE Enterprise ATT&CK Matrix // Software and Systems Modeling. 2022. Vol. 21. P. 157–177. DOI: 10.1007/s10270-021-00898-7. 14. Arikkat D. R., Abhinav M., Binu N., Rajendran N., Bhattacharjee D., Das R. K., Ajay C. R., Shiyam Sundar R., Bhavesh S. IntellBot: A Retrieval-Augmented Large Language Model Chatbot for Cyber Threat Knowledge Delivery // arXiv preprint arXiv:2411.05442. 2024. DOI: 10.48550/arXiv.2411.05442. 15. Kurniawan K., Kiesling E., Ekelhart A. CyKG-RAG: Towards Knowledge-Graph Enhanced Retrieval-Augmented Generation for Cybersecurity // CEUR Workshop Proceedings. 2024. Vol. 3950. P. 51–64. 16. Tellache A., Amara-Korba A., Mokhtari A., Moldovan H., Ghamri-Doudane Y. Advancing Autonomous Incident Response: Leveraging LLMs and Cyber Threat Intelligence // arXiv preprint arXiv:2508.10677. 2025. DOI: 10.48550/arXiv.2508.10677. 17. Qi Y., Gu Z., Li A., Zhang X., Shafiq M., Mei Y., Lin K. Cybersecurity Knowledge Graph Enabled Attack Chain Detection for Cyber-Physical Systems // Computers & Electrical Engineering. 2023. Vol. 108. Art. 108660. DOI: 10.1016/j.compeleceng.2023.108660. 18. Ekelhart A., Ekaputra F.J., Kiesling E. SLOGERT: Automated Log Knowledge Graph Construction // The Semantic Web – ESWC 2021. Lecture Notes in Computer Science. 2021. Vol. 12731. P. 219–234. DOI: 10.1007/978-3-030-77385-4_16. 19. Kurniawan K., Ekelhart A., Kiesling E., Winkler D., Quirchmayr G., Tjoa A.M. Virtual Knowledge Graphs for Federated Log Analysis // Proceedings of the 16th International Conference on Availability, Reliability and Security (ARES’21). 2021. Article 50. 10 p. DOI: 10.1145/3465481.3470077. 20. Bilot T., El-Madhoun N., Al-Agha K., Zouaoui A. Graph Neural Networks for Intrusion Detection: A Survey // IEEE Access. 2023. Vol. 11. P. 49114–49139. DOI: 10.1109/ACCESS.2023.3275789. 21. Zhong M., Lin M., Zhang C., Xu Z. A Survey on Graph Neural Networks for Intrusion Detection Systems: Methods, Trends and Challenges // Computers & Security. 2024. Vol. 141. Article 103821. DOI: 10.1016/j.cose.2024.103821. 22. Fang J., Liu W., Gao Y., Liu Z., Zhang A., Wang X., He X. Evaluating Post-hoc Explanations for Graph Neural Networks via Robustness Analysis // Advances in Neural Information Processing Systems (NeurIPS’23), Oral. 2023. 23. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., Küttler H., Lewis M., Yih W.-t., Rocktäschel T., Riedel S., Kiela D. RetrievalAugmented Generation for Knowledge-Intensive NLP Tasks // Advances in Neural Information Processing Systems. 2020. Vol. 33. P. 9459–9474. DOI: 10.5555/3495724.3495881. 24. Zhu X., Xie Y., Liu Y., Li Y., Hu W. Knowledge Graph-Guided Retrieval-Augmented Generation (KG²RAG) // Proceedings of NAACL 2025 (Long Papers). 2025. P. 8912–8924. DOI: 10.18653/v1/2025.naacl-long.449. 25. Farrukh Y. A., Wali S., Khan I., Bastian N. D. Xg-nid: Dual-modality network intrusion detection using a heterogeneous graph neural network and large language model // Expert Systems with Applications. 2025. p. 128089. 26. Novikova, E. S.; Bukhtiyarov, M. A.; Kotenko, I. V.; Saenko, I. B.; Fedorchenko, E. V. Intrusion Detection Based on Federated Learning: System Architecture and Experiments. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2023, no. 6(58), 50–66. https://doi.org/10.21681/2311-3456-2023-6-50-66. 27. Kotenko, I. V.; Khmyrov, S. S. Analysis of Models and Methods Used for Attribution of Cybersecurity Adversaries in Targeted Attacks. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2022, no. 4(50), 52–79. https://doi.org/10.21681/2311-3456-2022-4-52-79. 28. Fedorchenko, E. V.; Kotenko, I. V.; Fedorchenko, A. V.; Novikova, E. S.; Saenko, I.B. Assessing the Security of Information Systems Based on a Graph Model of Exploits. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2023, no. 3(57), 23–36. https://doi.org/10.21681/2311-3456-2023-3-23-36. 29. Vasiliev, V. I.; Vulfin, A. M.; Kartak, V. M.; Bashmakov, N. M.; Kirillova, A. D. Distributed Network Attack Detection System Based on Federated Transfer Learning. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2024, no. 6, 117–129. https://doi.org/10.21681/2311-3456-2024-6-117-129. 30. Tushkanova, O.; Levshun, D.; Branitskiy, A.; Fedorchenko, E.; Novikova, E.; Kotenko, I. Detection of Cyberattacks and Anomalies in Cyber-Physical Systems: Approaches, Data Sources, Evaluation. Algorithms, 2023, 16(2), 85. https://doi.org/10.3390/a16020085. 31. Kotenko, I. V.; Dun, H. Detection of Attacks in the Internet of Things Based on Multitask Learning and Hybrid Sampling Methods. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2024, no. 2(60), 10–21. https://doi.org/10.21681/2311-3456-2024-2-10-21. 32. Levshun, D. S.; Vesnin, D. V.; Kotenko, I. V. Predicting Categories of Vulnerabilities in Device Configurations Using Artificial Intelligence Methods. Voprosy kiberbezopasnosti [Cybersecurity Issues], 2024, no. 3(61), 33–39. https://doi.org/10.21681/2311-3456-2024-3-33-39. |
58-67 |
Tali, D. I. CONCEPTUAL MODEL OF FUNCTIONING DIGITAL DOCUMENT MANAGEMENT SYSTEMS WITHIN THE FRAMEWORK OF THE «INDUSTRY 4.0» PARADIGM / D. I. Tali, O. A. Finko // Cybersecurity issues. – 2025. – № 5(69). – С. 68-77. – DOI: 10.21681/2311-3456-2025-5-68-77.AbstractThe purpose of the study is to formalize the process of functioning of a digital document management system, which includes a document management system and data source systems. Implementation of the proposed approach in order to form a digital information management infrastructure that meets the basic provisions of the «Industry 4.0» concept. Research methods: application of the methodology of system analysis to the conditions of digitalization of structurally complex systems using the example of electronic document management. The result of the research: a conceptual model of the functioning of a digital document management system has been developed, taking into account such characteristics of promising digital systems as autonomy, distribution, and intelligence. A system of indicators and evaluation criteria has been introduced in order to improve the quality of information interaction between the structural divisions of organizations operating such an infrastructure. Scientific novelty: a conceptual model of the functioning of a digital document management system is presented and substantiated, based on the hierarchical decomposition of its structure, taking into account the relationship between the levels of interaction of the system under study. The proposed approach in the context of digital transformation makes it possible to ensure the intended purpose (integrity) of the system for a given period of time when exposed to destabilizing factors at any of its levels. Keywords: content, metadata, digital document, principles of digitalization, intelligent agents, digital transformation of document flow, system integrity. References1. Shvab K. Chetvertaya promyshlennaya revolyutsiya. – M: Eksmo, 2021. 208 s. 2. Upravleniye dokumentami v tsifrovoy ekonomike: organizatsiya, reglamentatsiya, realizatsiya / M. V. Larin, N. G. Surovtseva, Ye. V. Terent'yeva, V. F. Yankovaya / Pod red. M.V. Larina – M.: RGGU, 2021. 242 s. 3. Larin M. V. Elektronnyye dokumenty: teoreticheskiye aspekty // Samarskiy arkhivist. 2021. № 2. S. 3–9. 4. Yeliseyev N. I., Tali D. I. Problemy i perspektivy razvitiya sistem yuridicheski znachimogo elektronnogo dokumentooborota // V sbornike: Informatsionnaya bezopasnost'. Sbornik statey konferentsii. 2019. S. 61–66. 5. Ivanov A. I., Bezyayev A. V., Kachaykin Ye. I., Yelfimov A. V. Iskusstvennyy intellekt: avtomatizirovannyy neyrosetevoy analiz «mertvoy» podpisi pod dokumentami na bumazhnykh nositelyakh // V sbornike: Bezopasnost' informatsionnykh tekhnologiy. Sbornik nauchnykh statey po materialam II Vserossiyskoy nauchno-tekhnicheskoy konferentsii. Penza, 2020. S. 90–96. 6. Solov'yev A. V. Problema opredeleniya elektronnogo dokumenta dolgovremennogo khraneniya // Informatsionnyye tekhnologii i vychislitel'nyye sistemy. 2022. № 1. S. 47–54. 7. Tali D. I. Modeli elektronnogo dokumenta v ramkakh paradigmy «Industriya 4.0» // Upravleniye bol'shimi sistemami. 2025. № 115. S. 66-99. 8. Ul'yanova N. D. Chat-boty v sistemakh elektronnogo dokumentooborota // Vestnik obrazovatel'nogo konsortsiuma Srednerusskiy universitet. Informatsionnyye tekhnologii. 2023. № 2(22). S. 14–19. 9. Kovaleva N. N., Yeres'ko P. V., Izotova V. F. Problemy i perspektivy ispol'zovaniya iskusstvennogo intellekta v sistemakh elektronnogo dokumentooborota // Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Pravo. 2023. № 4(55). S. 87–92. 10. Yazov Yu. K., Avsent'yev A. O. Problemnyye voprosy sozdaniya mnogoagentnykh sistem zashchity informatsii ot utechki po tekhnicheskim kanalam // Vestnik Voronezhskogo instituta MVD Rossii. 2024. № 3. S. 86–97. 11. Shamsutdinov R. R., Vasil'yev V. I., Vul'fin A. M. Intellektual'naya sistema monitoringa informatsionnoy bezopasnosti promyshlennogo interneta veshchey s ispol'zovaniyem mekhanizmov iskusstvennykh immunnykh sistem // Sistemnaya inzheneriya i informatsionnyye tekhnologii. 2024. T. 6. № 4(19). S. 14–31. 12. Bogovik A. V., Safiulov D. M. Predlozheniya po modernizatsii protokola monitoringa telekommunikatsionnogo oborudovaniya uzla svyazi spetsial'nogo naznacheniya // Telekommunikatsii i svyaz'. 2025. № 2(5). S. 53–64. 13. Makarenko S. I. Informatsionnyy konflikt sistemy svyazi s sistemoy destabiliziruyushchikh vozdeystviy. Chast'. I: Kontseptual'naya model' konflikta s uchetom vedeniya razvedki, fizicheskogo, radioelektronnogo i informatsionnogo porazheniya sredstv svyazi // Tekhnika radiosvyazi. 2020. Vypusk 2(45). S. 104–117. 14. Goncharov V. V., Mishenina O. V. Zashchita informatsii v avtomatizirovannykh sistemakh: kontseptual'no-matematicheskiye aspekty // Pravovaya informatika. 2024. № 3. S. 43–57. 15. Makhov D. S. Povysheniye ustoychivosti upravleniya parametrami funktsionirovaniya prostranstvenno – raspredelennykh radiotekhnicheskikh sistem robototekhnicheskikh kompleksov na osnove nechetkikh mnozhestv // Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu. 2020. № 5-6 (143-144). S. 36–44. 16. Lepeshkin O. M., Ostroumov O. A., Sinyuk A. D., Chernykh I. S. Problema obespecheniya funktsional'noy ustoychivosti i nepreryvnosti funktsionirovaniya sistemy svyazi // Vestnik komp'yuternykh i informatsionnykh tekhnologiy. 2023. T. 20. № 4(226). S. 16–26. 17. Volkova V. N., Loginova A. V., Leonova A. Ye., Chernyy A. Yu. Zakonomernosti teorii sistem: sostoyaniye issledovaniy i primeneniya // V sbornike: Sistemnyy analiz v proyektirovanii i upravlenii. Sbornik nauchnykh trudov XXVI Mezhdunarodnoy nauchno-prakticheskoy konferentsii. V 3-kh chastyakh. Sankt-Peterburg. 2023. S. 65–74. 18. Kalinin V. I., Yusupov R. M., Sokolov B. V. Mezhdistsiplinarnoye vzaimodeystviye i razvitiye teorii sistem, kibernetiki i informatiki // V sbornike: Sistemnyy analiz v proyektirovanii i upravlenii. Sbornik nauchnykh trudov XXVI Mezhdunarodnoy nauchno-prakticheskoy konferentsii. V 3-kh chastyakh. Sankt-Peterburg. 2023. S. 7–13. 19. Novikov D. A. Printsip dekompozitsii v zadachakh upravleniya organizatsionno-tekhnicheskimi sistemami // V sbornike: Matematicheskaya teoriya upravleniya i yeye prilozheniya (MTUiP-2020). Materialy konferentsii. Gosudarstvennyy nauchnyy tsentr Rossiyskoy Federatsii AO «Kontsern «TSNII «Elektropribor». Sankt-Peterburg. 2020. S. 256–259. 20. Tali D. I. Printsip tselostnosti i integrativnosti v formirovanii elektronnogo dokumenta // Pravovaya informatika. 2022. № 3. S. 72–83. 21. Tali D. I., Fin'ko O. A. i dr. Sposob obespecheniya integrativnoy tselostnosti elektronnogo dokumenta // Patent na izobreteniye RU 2812304, opubl. 29.01.2024, byul. № 4. 22. Tali D. I., Fin'ko O. A., Dichenko S. A. Sposob formirovaniya i kontrolya tselostnosti mnogomernoy struktury elektronnykh dokumentov // Patent na izobreteniye RU 2840783, opubl. 28.05.2025, byul. № 16. 23. Tali D. I., Fin'ko O. A. Sposob i sistema raspredelennogo kontrolya tselostnosti elektronnykh dokumentov pri veroyatnoy komprometatsii klyuchey podpisi // Patent na izobreteniye RU 2844401, opubl. 29.07.2025, byul. № 22. |
68-77 |
Moldovyan, A. A. POST-QUANTUM ALGEBRAIC SIGNATURE ALGORITHM WITH THREE HIDDEN GROUPS / A. A. Moldovyan // Cybersecurity issues. – 2025. – № 5(69). – С. 78-87. – DOI: 10.21681/2311-3456-2025-5-78-87.AbstractPurpose of work is the creation of additional prerequisites for the development of a post-quantum standard for digital signature algorithms based on the computational complexity of solving large systems of nonlinear equations (LSNE) in a finite field. Research methods: application of three hidden commutative groups, the elements of each of which are non-commutative with the elements of another one, for the implementation of enhanced signature randomization in algebraic digital signature schemes, the security of which is based on the computational difficulty of solving the LSNE in the ground finite field GF(p). Calculation of the fitting signature element in the form of a matrix S depending on three pairwise non-commutative matrices selected randomly from the hidden groups. Application of the finite algebra of 3×3 and 5×5 matrices defined over the field GF(p) with 64-bit and 40-bit prime order p. Results of the study: a new mechanism for enhanced randomization of the signature fitting element is proposed and an algebraic algorithm for digital signature is developed, which is promising as a prototype of a practical post-quantum digital signature standard. The selection of random matrices from hidden groups is specified by exponentiating the generators of the corresponding hidden groups to random powers, calculated depending on the randomization parameters and the randomizing element of the digital signature. For the first time, to increase the security level to potential attacks based on alternative secret keys, the specified degrees are calculated as a solution to a system of linear equations. Estimates of the security to a direct attack and an attack based on known signatures are presented. A comparison of the parameters of the developed digital signature algorithm with known algorithms using the difficulty of solving the LSNE is given, and ways to improve its performance are discussed. Practical relevance: the obtained results consist in creating a new premise for substantiating the choice of algebraic digital signature algorithms with hidden groups as a basis for developing a practical post-quantum digital signature standard, which consists in increasing the level of resistance to potential attacks based on equivalent keys. Keywords: finite matrix algebra; associative algebra; computationally hard problem; post-quantum cryptography; hidden commutative group; digital signature; signature randomization. References1. Post-Quantum Cryptography. 15th International Conference, PQCrypto 2024, Oxford, UK, June 12–14, 2024, Proceedings // Lecture Notes in Computer Science. 2024, vol. 14771–14772. Springer, Cham. 2. Post-Quantum Cryptography. 14th International Conference, PQCrypto 2023, College Park, MD, USA, August 16–18, 2023, Proceedings // Lecture Notes in Computer Science. 2023, vol. 14154. Springer, Cham. 3. Ding J., Petzoldt A., Schmidt D. S. Multivariate Cryptography // In: Multivariate Public Key Cryptosystems. Advances in Information Security. 2020. V. 80. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0987-3_2. 4. J. Ding, A. Petzoldt Current State of Multivariate Cryptography // IEEE Security and Privacy Magazine. 2017, vol. 15, no. 4, pp. 28–36. 5. Hashimoto Y. Recent Developments in Multivariate Public Key Cryptosystems // In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto, K., Ikematsu, Y. (eds). International Symposium on Mathematics, Quantum Theory, and Cryptography. Mathematics for Industry. 2021, vol. 33, pp. 209–229. Springer, Singapore. https://doi.org/10.1007/978-981-15-5191-8_16. 6. Ikematsu Y., Nakamura S., Takagi T. Recent progress in the security evaluation of multivariate public-key cryptography // IET Information Security. 2022, pp. 1–17. DOI: 10.1049/ise2.12092. 7. Øygarden M., Felke P., Raddum H. Analysis of multivariate encryption schemes: Application to Dob and C* // Journal of Cryptology. 2024, vol. 37, no. 3, article 20. DOI: 10,1007/s00145-024-09501-w. 8. Omar S., Padhye S., Dey D. Cryptanalysis of multivariate threshold ring signature schemes // Information Processing Letters.2023, vol. 181, article 106357. DOI: 10.1016/j.ipl.2022.106357. 9. Moldovyan N. A. Finite algebras in the design of multivariate cryptography algorithms // Bulletin of Academy of Sciences of Moldova. Mathematics. 2023, no. 3(103), pp. 80–89. DOI: https://doi.org/10.56415/basm.y2023.i3.p80. 10. Moldovyan N. A. Parameterized method for specifying vector finite fields of arbitrary dimensions // Quasigroups and related systems. 2024, vol. 32, no. 2, pp. 299–312. DOI: 10.56415/qrs.v32.21. 11. Moldovyan A. A., Moldovyan N. A. Vector finite fields of characteristic two as algebraic support of multivariate cryptography // Computer Science Journal of Moldova. 2024, vol. 32, no. 1(94), pp. 46–60. DOI: 10.56415/csjm.v32.04. 12. Moldovyan N. A. Algebraic signature algorithms with a hidden group, based on hardness of solving systems of quadratic equations // Quasigroups and Related Systems. 2022, vol. 30 no. 2(48), pp. 287–298. DOI: 10.56415/qrs.v30.24. 13. Moldovyan D. N. A new type of digital signature algorithms with a hidden group // Computer Science Journal of Moldova. 2023, vol. 31, no. 1(91), pp. 111–124. doi:10.56415/csjm.v31.06. 14. Duong M. T., Moldovyan D. N., Do B. V., Nguyen M. H. Post-quantum signature algorithms on noncommutative algebras, using difficulty of solving systems of quadratic equations // Computer Standards & Interfaces. 2023, vol. 86, article 103740. DOI: 10.1016/j.csi.2023.103740. 15. Moldovyan D. N., Moldovyan A. A. Algebraic signature algorithms based on difficulty of solving systems of equations. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2022, no. 2(48), pp. 7–17. DOI: 10.21681/2311-3456-2022-2-7-17. 16. Moldovyan D. N. New Form of the Hidden Logarithm Problem and Its Algebraic Support // Bulletin of Academy of Sciences of Moldova. Mathematics. 2020, no. 2(93), pp. 3–10. 17. Moldovyan D. N. A practical digital signature scheme based on the hidden logarithm problem // Computer Science Journal of Moldova. 2021, vol. 29, no. 2(86), pp. 206–226. 18. Moldovyan N. A. Signature Schemes on Algebras, Satisfying Enhanced Criterion of Post-quantum Security // Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. 2020, no. 2(93), pp. 62–67. 19. Moldovyan A. A. Complete signature randomization in an algebraic cryptoscheme with a hidden group // Quasigroups and related systems. 2024, vol. 32, no. 1, pp. 95–108. DOI: DOI: 10.56415/qrs.v32.08. 20. Moldovyan A. A., Moldovyan D. N., Kostina A. A. Algebraic signature algorithms with complete signature randomization. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2024, no. 2(60), pp. 95–102. DOI: 10.21681/2311-3456-2024-2-95-102. 21. Moldovyan D. N., Kostina A. A. A method for strengthening signature randomization in algebraic signature algorithms on noncommutative algebras. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2024, no. 4(62), pp. 71–81. DOI: 10.21681/2311-3456-2024-4-71-81. 22. Moldovyan N. A., Petrenko A. S. Algebraic signature algorithm with two hidden groups. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2024, no. 6(64), pp. 98–107. DOI: 10.21681/2311-3456-2024-6-98-107. 23. Duong M. T.,, Do B. T., Nguyen M. H., Kurysheva A. A., Kostina A. A., Moldovyan D. N. Signature Algorithms on Non-commutative Algebras Over Finite Fields of Characteristic Two // Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. Springer Nature Singapore, 2022, pp. 273–284, DOI: 10.1007/978-981-19-8069-5-18. 24. Moldovyan D. N. A unified method for setting finite non-commutative associative algebras and their properties // Quasigroups and Related Systems. 2019, vol. 27, no. 2, pp. 293–308. 25. Moldovyan N. A. Unified method for defining finite associative algebras of arbitrary even dimensions, Quasigroups and Related Systems. 2018, vol. 26, no. 2, pp. 263–270. 26. Zakharov D. V., Moldovyan D. N., Kostina A. A., Morozova E. V., Moldovyan D. N. A digital signature algorithm on the algebra of 3×3 matrices, which uses two hidden groups. Voprosy kiberbezopasnosti [Cybersecurity issues]. 2025, no. 3(67), pp. 45–54. DOI: 10.21681/2311-3456-2025-3-45-54. |
78-87 |
Petrenko, A. S. PARAMETERIZATION OF THE POST-QUANTUM ELECTRONIC SIGNATURE KNAA-2-EDS / A. S. Petrenko // Cybersecurity issues. – 2025. – № 5(69). – С. 88-95. – DOI: 10.21681/2311-3456-2025-5-88-95.AbstractPurpose of work to formalize the choice of parameters and the definition of requirements for the KNAA-2-EDS, ensuring post-quantum stability (at least 2200 for Cat 3 and 2256 for Cat 5) while reducing the signature length to 112 bytes (Cat 3) and 128 bytes (Cat 5). Research methods: substantiation of compliance of KNAA-2-EDS with FIPS 204/205/206, SP 800-57-1 Rev.5, ISO/IEC 14888-4:2024 and GOST R 34.10-2018 standards with precise definition of ASN.1/DER and OID formats, development of two sets of parameters for resistance categories 3 and 5 on the NIST scale, setting quantitative targets, formulation of mandatory implementation requirements, in particular constant time, correct randomization and countermeasures. Results of the study: two sets of parameters have been established to ensure the durability of ≥2200 (Cat 3) and ≥2256 (Cat 5) and the compactness of keys and signatures, requirements for the size of keys and signatures have been defined, performance and security metrics have been set, criteria for verifying the correctness of implementation without a full ACVP cycle have been established, formats and validation procedures have been regulated, countermeasures against side attacks and constant execution time requirements are defined. Practical relevance: The result of the article is that the found parameters, requirements and usage profiles demonstrate for the first time the implementation of enhanced signature randomization without doubling the verification equation, ensuring the compactness of keys and signatures while maintaining high resistance to quantum attacks and side-channel attacks. This significantly reduces the amount of transactional data and bandwidth requirements for networks and storage, which is critical for scalable blockchain systems, hardware cryptoprocessors, and energy-efficient IoT devices. Keywords: finite matrix algebra; associative algebra; computationally hard problem; post-quantum cryptography; hidden commutative group; digital signature; signature randomization. References1. FIPS PUB 204. Module-Lattice-Based Digital Signature Algorithm (ML-DSA). – Gaithersburg, MD: National Institute of Standards and Technology, 2024. – 65 p. – DOI:10.6028/NIST.FIPS.204. 2. FIPS PUB 205. Stateless Hash-Based Digital Signature Algorithm (SLH-DSA). – Gaithersburg, MD: National Institute of Standards and Technology, 2024. – 76 p. – DOI:10.6028/NIST.FIPS.205. 3. FIPS PUB 206. Falcon Digital Signature Algorithm. – Gaithersburg, MD: National Institute of Standards and Technology, 2025. – 72 p. 4. Barker E., Chen L., Roginsky A., Mani A., Smid M., Polk T. Recommendation for Key Management, Part 1: General (Revision 5). – NIST Special Publication SP 800-57 Part 1 Rev. 5. – Gaithersburg, MD: National Institute of Standards and Technology, 2020. – DOI:10.6028/NIST.SP.800-57pt1r5. 5. ISO/IEC 14888-4:2024. Information security – Cryptographic techniques – Digital signatures with appendix – Part 4: Stateful hashbased mechanisms. – Geneva: ISO/IEC, 2024. 6. ITU-T Recommendation X.680 (08/2021). Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation. – Geneva: ITU-T, 2021. 7. Moldovyan, N. A., Petrenko, A. S. Algebraic signature algorithm with two hidden groups (2024), Voprosy kiberbezopasnosti [Cibersecurity issues], no. 6(64), pp. 98–107, 2024. DOI: 10.21681/2311-3456-2024-6-98-107. 8. Markov, A. S., Varenitca, V. V., Arustamyan, S. S. Topical issues in the implementation of secure software development processes. (2023). In the collection: Proceedings of the International Conference on Information Processes and Systems Development and Quality Assurance. IPSQDA-2023. P. 48–53. 9. Balyabin, A. A., Petrenko, S. A. Model of a blockchain platform with cyber-immunity under quantum attacks. (2025). Question Kiberbezopasnosti [Cybersecurity issues]. No. 3(67). P. 72–82. DOI: 10.21681/2311-3456-2025-3-72-82 (Russian Text). 10. Petrenko, A. S., Petrenko, S. A. Basic Algorithms Quantum Cryptanalysis. (2023). Question Kiberbezopasnosti [Cybersecurity issue]. No.1(53), pp. 100–115. DOI:10.21681/2311-3456-2023-1-100-115 (Russian Text). 11. Petrenko, A. S. Applied Quantum Cryptanalysis (scientific monograph). (2023). River Publishers. 256p. ISBN9788770227933. DOI:10.1201/9781003392873. 12. NIST CSRC. Automated Cryptographic Validation Testing System (ACVTS) [Electronic resource]. – Gaithersburg, MD: National Institute of Standards and Technology, 2020–2025. – URL: https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/how-toaccess-acvts (access date: 09/22/2025). 13. Housley R., Fluhrer S., Kampanakis P., Westerbaan B. Use of the SLH-DSA Signature Algorithm in the Cryptographic Message Syntax (CMS). – RFC 9814. – IETF, July 2025. – DOI:10.17487/RFC9814. 14. Housley R. Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection. – RFC 8933. – IETF, October 2020. – DOI:10.17487/RFC8933. |
88-95 |
Goncharov, R.RESEARCH OF APPROACHES TO THE IMPLEMENTATION OF A QUANTUM REPEATER / R. Goncharov, A. D. Kiselev, V. Egorov // Cybersecurity issues. – 2025. – № 5(69). – С. 96-102. – DOI: 10.21681/2311-3456-2025-5-96-102.AbstractPurpose of the study: systematization and critical analysis of existing approaches to error suppression in quantum repeaters, as well as to assess their advantages and limitations for the implementation of scalable quantum networks and the quantum internet. Methods of research: the paper provides a detailed analysis of modern literature, including a comparison of various quantum repeater schemes, as well as an assessment of resource costs and performance. Result(s): quantum repeaters can be divided into three generations, each of which demonstrates optimal efficiency under certain conditions. The first generation, implementing probabilistic error suppression by generating heralded entanglement and two-way entanglement distillation, is easy to implement and provides the basic functionality of a quantum network, but requires significant time due to the need to exchange classical signals and long-term storage of quantum states. The second generation combines probabilistic entanglement generation with deterministic operation error suppression using quantum error correction, which reduces the requirements for long-term quantum memory, although the exchange of classical signals between neighboring nodes remains mandatory. The third generation relies entirely on deterministic error suppression using one-way classical communication, which allows for a significant reduction in time delays and high entanglement generation rates, despite the need for a denser arrangement of repeaters and high-quality local gates. In addition, the review covers new areas such as memoryless repeaters and all-photonic repeaters. The conducted comparative analysis of resource costs demonstrates that optimization of repeater operating parameters is a key factor for the implementation of scalable quantum networks, which is of direct importance for quantum key distribution, quantum metrology, and distributed quantum computing. Scientific novelty: the scientific novelty lies in the integration of disparate approaches to the implementation of quantum repeaters into a single holistic representation, which allows for an objective assessment of their efficiency by key parameters. The review highlights the potential for new classes of repeaters, such as memoryless repeaters and all-photonic circuits, to become important elements in the development of a quantum internet. Keywords: quantum network, entanglement, elementary link, classification. References1. Pirandola, S. Advances in quantum cryptography / S. Pirandola, U. L. Andersen, L. Banchi et al. // Advances in Optics and Photonics. – 2020. – Vol. 12. – № 4. – P. 1012. DOI: 10.1364/AOP.361502. 2. Aver'janov, V. S. O pervichnyh tehnicheskih ustrojstvah i trebovanijah k kljucham bezopasnosti kvantovyh sistem / V. S. Aver'janov, I. N. Karcan // Voprosy kiberbezopasnosti. – 2023. – № 2(54). – S. 65–72. DOI: 10.21681/2311-3456-2023-2-65-72. 3. Petrenko, S. A. Model' kvantovyh ugroz bezopasnosti informacii dlja nacional'nyh blokchejn-jekosistem i platform / S. A. Petrenko, A. A. Baljabin // Voprosy kiberbezopasnosti. – 2025. – № 1(65). – S. 7–17. DOI: 10.21681/2311-3456-2025-1-7-17. 4. Azuma, K. Quantum repeaters: From quantum networks to the quantum internet / K. Azuma, S. E. Economou, D. Elkouss et al. // Reviews of Modern Physics. – 2023. – Vol. 95. – № 4. – P. 045006. DOI: 10.1103/RevModPhys.95.045006. 5. Wallnöfer, J. Faithfully Simulating Near-Term Quantum Repeaters / J. Wallnöfer, F. Hahn, F. Wiesner et al. // PRX Quantum. – 2024. – Vol. 5. – № 1. – P. 010351. DOI: 10.1103/PRXQuantum.5.010351. 6. Chakraborty, T. Towards a spectrally multiplexed quantum repeater / T. Chakraborty, A. Das, H. van Brug et al. // npj Quantum Information. – 2025. – Vol. 11. – № 1. – P. 3. DOI: 10.1038/s41534-024-00946-2. 7. Avis, G. Analysis of multipartite entanglement distribution using a central quantum-network node / G. Avis, F. Rozpędek, S. Wehner // Phys. Rev. A. – 2023. – Vol. 107. – № 1. – P. 12609. DOI: 10.1103/PhysRevA.107.012609. 8. Krutyanskiy, V. Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor / V. Krutyanskiy, M. Canteri, M. Meraner et al. // Physical Review Letters. – 2023. – Vol. 130. – № 21. – P. 213601. DOI: 10.1103/PhysRevLett.130.213601. 9. Kucera, S. Demonstration of quantum network protocols over a 14-km urban fiber link / S. Kucera, C. Haen, E. Arenskötter et al. // npj Quantum Information. – 2024. – Vol. 10. – № 1. – P. 88. DOI: 10.1038/s41534-024-00886-x.10. Liu, J.-L. Creation of memory–memory entanglement in a metropolitan quantum network / J.-L. Liu, X.-Y. Luo, Y. Yu et al. // Nature. – 2024. – Vol. 629. – № 8012. – P. 579–585. DOI: 10.1038/s41586-024-07308-0. 11. Knaut, C. M. Entanglement of nanophotonic quantum memory nodes in a telecom network / C. M. Knaut, A. Suleymanzade, Y. C. Wei et al. // Nature. – 2024. – Vol. 629. – № 8012. – P. 573–578. DOI: 10.1038/s41586-024-07252-z. 12. Goncharov, R. Performance of Quantum Repeaters Using Multimode Schrödinger Cat States / R. Goncharov, A. D. Kiselev, V. Egorov // Bulletin of the Russian Academy of Sciences: Physics. – 2024. – Vol. 88. – № 6. – P. 901–908. DOI: 10.1134/S1062873824706809. 13. Goncharov, R. Quantum repeaters and teleportation via entangled phase-modulated multimode coherent states / R. Goncharov, A. D. Kiselev, E. S. Moiseev et al. // Physical Review Applied. – 2023. – Vol. 20. – № 4. – P. 044030. DOI: 10.1103/PhysRevApplied.20.044030. 14. Davidson, J. H. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity / J. H. Davidson, P. Lefebvre, J. Zhang et al. // Physical Review A. – 2020. – Vol. 101. – № 4. – P. 042333. DOI: 10.1103/PhysRevA.101.042333. 15. Moiseev, E. S. Broadband quantum memory in a cavity via zero spectral dispersion / E. S. Moiseev, A. Tashchilina, S. A. Moiseev, B. C. Sanders // New Journal of Physics. – 2021. – Vol. 23. – № 6. – P. 063071. DOI: 10.1088/1367-2630/ac0754. 16. Lago-Rivera, D. Telecom-heralded entanglement between multimode solid-state quantum memories / D. Lago-Rivera, S. Grandi, J. V. Rakonjac et al. // Nature. – 2021. – Vol. 594. – № 7861. – P. 37–40. DOI: 10.1038/s41586-021-03481-8. 17. Askarani, M. F. Long-Lived Solid-State Optical Memory for High-Rate Quantum Repeaters / M. F. Askarani, A. Das, J. H. Davidson et al. // Physical Review Letters. – 2021. – Vol. 127. – № 22. – P. 220502. DOI: 10.1103/PhysRevLett.127.220502. 18. Wang, P.-C. Proposal and proof-of-principle demonstration of fast-switching broadband frequency shifting for a frequency-multiplexed quantum repeater / P.-C. Wang, O. Pietx-Casas, M. Falamarzi Askarani, G. C. do Amaral // Journal of the Optical Society of America B. – 2021. – Vol. 38. – № 4. – P. 1140. DOI: 10.1364/JOSAB.412517. 19. Bustard, P. J. Toward a Quantum Memory in a Fiber Cavity Controlled by Intracavity Frequency Translation / P. J. Bustard, K. BonsmaFisher, C. Hnatovsky et al. // Physical Review Letters. – 2022. – Vol. 128. – № 12. – P. 120501. DOI: 10.1103/PhysRevLett.128.120501. 20. Businger, M. Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5 / M. Businger, L. Nicolas, T. S. Mejia et al. // Nature Communications. – 2022. – Vol. 13. – № 1. – P. 6438. DOI: 10.1038/s41467-022-33929-y. 21. Senkalla, K. Germanium Vacancy in Diamond Quantum Memory Exceeding 20 ms / K. Senkalla, G. Genov, M. H. Metsch et al. // Physical Review Letters. – 2024. – Vol. 132. – № 2. – P. 026901. DOI: 10.1103/PhysRevLett.132.026901. 22. Moiseev, S. A. Optical Quantum Memory on Macroscopic Coherence / S. A. Moiseev, K. I. Gerasimov, M. M. Minnegaliev, E. S. Moiseev // Physical Review Letters. – 2025. – Vol. 134. – № 7. – P. 070803. DOI: 10.1103/PhysRevLett.134.070803. 23. Moiseev, S. A. Opticheskaja kvantovaja pamjat' na atomnyh ansambljah: fizicheskie principy, jeksperimenty i vozmozhnosti primenenija v kvantovom povtoritele / S. A. Moiseev, M. M. Minnegaliev, K. I. Gerasimov i dr. // Uspehi fizicheskih nauk. – 2025. – T. 195. – № 5. – S. 455–477. DOI: 10.3367/UFNr.2024.06.039694. 24. Brand, S. Efficient Computation of the Waiting Time and Fidelity in Quantum Repeater Chains / S. Brand, T. Coopmans, D. Elkouss // IEEE Journal on Selected Areas in Communications. – 2020. – Vol. 38. – № 3. – P. 619–639. DOI: 10.1109/JSAC.2020.2969037. 25. Asadi, F. K. Protocols for long-distance quantum communication with single 167 Er ions / F. K. Asadi, S. C. Wein, C. Simon // Quantum Science and Technology. – 2020. – Vol. 5. – № 4. – P. 045015. DOI: 10.1088/2058-9565/abae7c. 26. Yan, P.-S. A survey on advances of quantum repeater / P.-S. Yan, L. Zhou, W. Zhong, Y.-B. Sheng // EPL (Europhysics Letters). – 2021. – Vol. 136. – № 1. – P. 14001. DOI: 10.1209/0295-5075/ac37d0. 27. Hu, T. Quantum Network Routing Based on Surface Code Error Correction / T. Hu,J. Wu, Q. Li // 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS). – IEEE, 2024. – P. 1236–1247. 28. Schmidt, F. Error-corrected quantum repeaters with Gottesman-Kitaev-Preskill qudits / F. Schmidt, D. Miller, P. van Loock // Physical Review A. – 2024. – Vol. 109. – № 4. – P. 042427. DOI: 10.1103/PhysRevA.109.042427. 29. Azuma, K. Networking quantum networks with minimum cost aggregation / K. Azuma // npj Quantum Information. – 2025. – Vol. 11. – № 1. – P. 51. DOI: 10.1038/s41534-025-01000-5. 30. Djordjevic, I. B. Hybrid CV-DV Quantum Communications and Quantum Networks / I. B. Djordjevic // IEEE Access. – 2022. – Vol. 10. – P. 23284–23292. DOI: 10.1109/ACCESS.2022.3154468. 31. Sukachjov, D. D. Protjazhjonnye kvantovye seti / D. D. Sukachjov // Uspehi fizicheskih nauk. – 2021. – T. 191. – № 10. – S. 1077–1094. DOI: 10.3367/UFNe.2020.11.038888. 32. Azuma, K. Tools for quantum network design / K. Azuma, S. Bäuml, T. Coopmans et al. // AVS Quantum Science. – 2021. – Vol. 3. – № 1. – P. 14101. DOI: 10.1116/5.0024062. 33. Li, P.-Z. Memoryless Quantum Repeaters Based on Cavity-QED and Coherent States / P.-Z. Li, P. van Loock // Advanced Quantum Technologies. – 2023. – Vol. 6. – № 8. – P. 2200151. DOI: 10.1002/qute.202200151. 34. Benchasattabuse, N. Engineering Challenges in All-Photonic Quantum Repeaters / N. Benchasattabuse, M. Hajdušek, R. Van Meter // IEEE Network. – 2025. – Vol. 39. – № 1. – P. 132–139. DOI: 10.1109/MNET.2024.3411802. 35. Wei, S. Towards Real-World Quantum Networks: A Review / S. Wei, B. Jing, X. Zhang et al. // Laser & Photonics Reviews. – 2022. – Vol. 16. – № 3. – P. 2100219. DOI: 10.1002/lpor.202100219. 36. Li, Y. A Survey of Quantum Internet Protocols From a Layered Perspective / Y. Li, H. Zhang, C. Zhang et al. // IEEE Communications Surveys & Tutorials. – 2024. – Vol. PP. – P. 1-1. DOI: 10.1109/COMST.2024.3361662. 37. Singh, A. Quantum Internet—Applications, Functionalities, Enabling Technologies, Challenges, and Research Directions / A. Singh, K. Dev, H. Siljak et al. // IEEE Communications Surveys & Tutorials. – 2021. – Vol. 23. – № 4. – P. 2218–2247. DOI: 10.1109/COMST.2021.3109944. 38. Markov, A. S. Vazhnaja veha v bezopasnosti otkrytogo programmnogo obespechenija / A. S. Markov // Voprosy kiberbezopasnosti. – 2023. – № 1(53). – S. 2–12. DOI: 10.21681/2311-3456-2023-1-2-12. |
96-102 |
Sundeev, P. V.CRITERIA AND INDICATORS FOR CONSTRUCTIVE PROTECTION OF THE DISTRIBUTED REGISTRY / P. V. Sundeev // Cybersecurity issues. – 2025. – № 5(69). – С. 103-108. – DOI: 10.21681/2311-3456-2025-5-103-108.AbstractThe purpose of the study: to investigate the problem of formal criteria and indicators for evaluating the constructive protection of information systems, taking into account the features of the architecture of a distributed registry in the context of a quantum threat, to propose an approach to the formation of criteria for constructive protection that automate the analysis and synthesis of secure architecture. Research methods: object-oriented analysis of complex systems, system analysis, theory of modular cluster networks, graph theory, matrix theory, mathematical logic. Research result: an approach to the formation of a system of criteria and indicators for constructive protection of an information system architecture based on a cluster protection model with complete overlap, presented as a cluster multigraph of a modular cluster network, and an analysis of its topology is proposed. The assessment of architecture security according to the criteria of constructive protection consists in a formal analysis of the presence or absence of certain types of vertices and arcs of a cluster multigraph. The continuity indicator of constructive protection for assessing the safety of information process trajectories is based on comparing the weights of the marked vertices indicating the protection modules with the set value. The applicability of constructive protection criteria to the evaluation of distributed registry technology is shown. Scientific novelty: a new approach to the formation of formal criteria and indicators for constructive protection of information systems based on a cluster protection model with complete overlap in terms of the theory of modular cluster networks has been developed. The results were obtained with the financial support of the project «Technologies for countering previously unknown quantum cyber threats», implemented within the framework of the state program of the «Sirius» Federal Territory «Scientific and technological development of the «Sirius» Federal Territory (Agreement No. 23-03 dated September 27, 2024). Keywords: modular cluster network, quantum threat, information protection. References1. Antipov, I. S., Arustamyan, S. S., Ganichev, A. A., Markov, A. S. et al. Intelligent Fuzzing Method for Aviation Information Systems as Part of the Secure Software Development Cycle. (2025). Russian engineering research. No 45. P. 685–690. DOI: 10.3103/S1068798X25700728. 2. Ishchukova, E. A. On the influence of cryptographic stability of hashing functions on the stability of modern blockchain ecosystems and platforms. (2025). Voprosy Kiberbezopasnosti [Cybersecurity issue]. No 3 (67). P. 63-71. DOI: 10.21681/2311-3456-2025-3-63-71 (Russian Text). 3. Markov, A. S., Varenitca, V. V., Arustamyan, S. S. Topical issues in the implementation of secure software development processes. (2023). In the collection: Proceedings of the International Conference on Information Processes and Systems Development and Quality Assurance. IPSQDA-2023. P. 48–53. 4. Nasedkin, P. N. Assessment of the state of the integrated information security system based on ontologies. (2023). Informacionnye i matematicheskie tekhnologii v nauke i upravlenii. [Information and mathematical technologies in science and management]. No 1(29). P. 158–177. DOI:10.38028/ESI.2023.29.1.014 (Russian Text). 5. Balyabin, A. A., Petrenko, S. A. Model of a blockchain platform with cyber-immunity under quantum attacks. (2025). Voprosy Kiberbezopasnosti [Cybersecurity issue]. No 3(67). P. 72–82. DOI: 10.21681/2311-3456-2025-3-72-82 (Russian Text). 6. Petrenko, A. S., Petrenko, S. A. Basic Algorithms Quantum Cryptanalysis. (2023). Voprosy Kiberbezopasnosti [Cybersecurity issue]. No. 1(53), pp. 100–115. DOI: 10.21681/2311-3456-2023-1-100-115 (Russian Text). 7. Petrenko, A. S. Applied Quantum Cryptanalysis (scientific monograph). (2023). River Publishers. 256 p. ISBN 9788770227933. DOI: 10.1201/9781003392873. 8. Webber, M., Elfving, V., Weidt, S., Hensinger, W. The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime. (2022). AVS Quantum Sci. 4, 013801. DOI: 10.1116/5.0073075. 9. Battarbee, C., Kahrobaei, D., Perret, L., Shahandashti, S. F. SPDH-Sign: Towards Efficient, Post-quantum Group-Based Signatures. In: Johansson, T., Smith-Tone, D. (eds). (2023). Post-Quantum Cryptography. PQCrypto 2023. Lecture Notes in Computer Science. V. 14154. P. 113–138. Springer, Cham. DOI: 10.1007/978-3-031-40003-2_5. 10. Li, L., Lu, X., Wang, K. Hash-based signature revisited. (2022). Cybersecurity. V. 5. Article No. 13. DOI:10.1186/s42400-022-00117-w. 11. Sundeev, P. V. Functional stability of a distributed registry in the context of the emergence of a new quantum threat. (2025). Voprosy Kiberbezopasnosti [Cybersecurity issue]. No 3 (67). P. 83–89. DOI: 10.21681/2311-3456-2025-3-83-89 (Russian Text). 12. Muller, T., Alexander, T., Beverland, M., Buhler, M., Johnson, B., Maurer, T., Vandeth, D. Improved belief propagation is sufficient for realtime decoding of quantum memory. (2025). IBM Quantum. DOI: 10.48550/arXiv.2506.01779. 13. Yoder, T., Schoute, E., Rall, P., Pritchett, E., Gambetta, J., Cross, A., Carroll, M., Beverland, M. (2025). Tour de gross: A modular quantum computer based on bivariate bicycle codes. IBM Quantum. DOI: 10.48550/arXiv.2506.03094. 14. Skiba, V. Y., Petrenko, S. A., Gnidko, K. O., Petrenko, A. S. Concept of ensuring the resilience of operation of national digital platforms and blockchain ecosystems under the new quantum threat to security. (2025). Computing, Telecommunication and Control. Vol. 18, No. 2, pp. 56–73. |
103-108 |
Poltavtseva, M. A. AN APPROACH TO ANALYZING AND EVALUATING BIG DATA MANAGEMENT SYSTEMS SECURITY / M. A. Poltavtseva, D. P. Zegzhda // Cybersecurity issues. – 2025. – № 5(69). – С. 109-118. – DOI: 10.21681/2311-3456-2025-5-109-118.AbstractPurpose of the study: development of an approach to analyzing and evaluating the security of big data management systems, taking into account the technological features of this class of solutions that distinguish them from traditional cloud data processing systems. Methods of research: the paper analyzes the features of target systems, as well as the methods of data collection and security assessment proposed by another researchers. Their disadvantages are highlighted in the context of modern requirements. It is proposed to use an approach to data collection and modeling of the target system using the aggregate data model based on set theory, as well as the integration of a modified NIST assessment of access control in big data systems and an author's assessment, based on data granulation and trust in processing nodes. Result(s): as the result of the work, the technological features of the target systems were formulated in terms of security assessment. They are distribution, heterogeneity (multimodality), and a complex data lifecycle. The analysis of scientific papers showed, on the one hand, the interest of researchers in the task of assessing the security of big data management systems, and on the other hand, the lack of estimates proposed for the target class of systems. The authors have formulated security assessment requirements for big data management systems as a specific component of modern information systems. A new security assessment method is also proposed, which for the first time takes into account the specific properties of big data management systems. The proposed method, in addition to the previously proposed estimates, takes into account the disadvantages of access control caused by various data granulation in the target system components. As well, as a large number of trusted users. And, as a result, the need to process confidential data either on trusted nodes or in a hidden (obfuscated or encrypted) form. The proposed estimate is normalized, can be detailed to the evaluation of each specific data processing tool, easily expanded or integrated into higher-level estimates. The reliability and possibility of practical application of the proposed assessment is shown by developing a software prototype based on previously known and tested software solutions. Scientific novelty: the novelty lies in the author's method of assessing the security of big data management systems, which differs for the first time by taking into account the disadvantages of access control caused by different granulation of data and taking into account the trust in individual data processing nodes. Keywords: big data, information security, security assessment, data granulation, access control, trustworthiness. References1. Minzov A. S., Nevskij A. Ju., Baronov O. R. Bezopasnost' personal'nyh dannyh: novyj vzgljad na staruju problemu // Voprosy kiberbezopasnosti. 2022. №. 4(50). S. 2–12. DOI:10.21681/2311-3456-2022-4-2-12. 2. Colombo P., Ferrari E. Access controltechnologies for BigData management systems: literature reviewand future trends // Cybersecurity. 2019. T. 2. №. 1. S. 1–13. 3. Rafiq F. et al.PrivacyPrevention ofBigData Applications: ASystematic LiteratureReview // SAGEOpen. T.12(2).DOI:10.1177/21582440221096445 4. Markov A. S., Varenitca V. V., Arustamyan S. S. Topical Issues in the Implementation of Secure Software Development Processes // Proceedings of the International Conference on Information Processes and Systems Development and Quality Assurance IPSQDA-2023 (March 22–24, 2023, St. Petersburg Russia). IEEE. 2023. C. 48–54. 5. Alhazmi H. E., Eassa F. E., Sandokji S. M. Towards Big Data Security Framework by Leveraging Fragmentation and Blockchain Technology // IEEE Access. 2022. T. 10. S. 10768–10782. DOI: 10.1109/ACCESS.2022.3144632. 6. Wang T. et al. Edge-based auditing method for data security in resource-constrained Internet of Things // Journal of Systems Architecture. 2021. T. 114. C. 1–10. DOI: 10.1016/j.sysarc.2020.101971. 7. Stodt, J. at al. Security Audit of a Blockchain-Based Industrial Application Platform // Algorithms. 2021. T. 14(4), 121 c. DOI:10.3390/a14040121. 8. Kalinin M., Poltavtseva M., Zegzhda D. Ensuring the Big Data Traceability in Heterogeneous Data Systems // 2023 International Russian Automation Conference (RusAutoCon). Sochi, Russian Federation. 2023. C. 775–780. DOI: 10.1109/RusAutoCon58002.2023.10272905. 9. Attaallah A. et al. Analyzing the Big Data Security Through a Unified Decision-Making Approach // Intelligent Automation & Soft Computing, 2022. T. 32(2). C. 1071–1088. DOI: 10.32604/iasc.2022.022569. 10. Yang M. Information security risk management model for big data // Advances in Multimedia 2022. T.1 C. 1–10 DOI: 10.1155/2022/3383251 11. Theodorakopoulos L., Theodoropoulou A., Stamatiou Y. A State-of-the-Art Review in Big Data Management Engineering: Real-Life Case Studies, Challenges, and Future Research Directions // Eng. 2024. T. 5(3). C. 1266–1297. DOI: 10.3390/eng5030068. 12. Kalinin M., Poltavtseva M. Big Data Security Evaluation by Bidirectional Analysis of Access Control Policy // 2024 International Russian Smart Industry Conference (SmartIndustryCon). Sochi, Russian Federation. 2024. C. 98–103. DOI: 10.1109/SmartIndustryCon61328.2024.10515459. 13. Poltavtseva, M. A., Zaitseva, V. V., Ivanov, D. V. Assessing the Security of Big Data Systems // Aut. Control Comp. Sci. 2024. T. 58. C. 1352–1364. DOI: 10.3103/S0146411624701025. 14. Dhillon G., Smith K., Dissanayaka I. Information systems security research agenda: Exploring the gap between research and practice // The Journal of Strategic Information Systems. 2021. T. 30. № 4. DOI: 10.1016/j.jsis.2021.101693. 15. Kostogryzov, A. I. Metodicheskie polozhenija po verojatnostnom prognozirovaniju kachestva funkcionirovanija informacionnyh sistem ch. 1–3 / A. I. Kostogryzov, A. A. Nistratov, P. E. Golosov // Voprosy kiberbezopasnosti. 2025. № 2(66). S. 2–19. DOI: 10.21681/2311-3456-2025-2-2-19. 16. Ocenka ujazvimostej avtomatizirovannyh sistem s primeneniem teorii verojatnostej, raspredelenija St'judenta i normal'nyh sluchajnyh velichin / I. V. Atlasov, A. O. Efimov, E. A. Rogozin, A. S. Cherkasova // Voprosy kiberbezopasnosti. 2025. № 2(66). S. 124–131. DOI: 10.21681/2311-3456-2025-2-124-131. 17. Ali, T., Al-Khalidi, M., Al-Zaidi, R. Information Security Risk Assessment Methods in Cloud Computing: Comprehensive Review // Journal of Computer Information Systems. 2024. C. 1–28. DOI: 10.1080/08874417.2024.2329985. 18. Krjukov, R. O., Fedorchenko, E. V., Kotenko, I. V., Novikova, E. S., Zima, V. M. Ocenivanie zashhishhennosti geterogennyh infrastruktur na osnove grafov atak s ispol'zovaniem baz dannyh NVD i MITRE ATT & CK. / R. O Krjukov, E. V Fedorchenko, I. V. Kotenko, E. S Novikova, V. M. Zima / Informacionno-upravljajushhie sistemy. 2024. T. 2., C. 39–50. DOI: 10.31799/1684-8853-2024-2-39-50. 19. Wang J. et al. Big data service architecture: a survey //Journal of Internet Technology. 2020. T. 21. №. 2. S. 393–405. 20. Omotunde H., Ahmed M. A comprehensive review of security measures in database systems: Assessing authentication, access control, and beyond //Mesopotamian Journal of CyberSecurity. 2023. T. 2023. S. 115–133. 21. El Ahdab L. et al. Unified Models and Framework for Querying Distributed Data Across Polystores //International Conference on Research Challenges in Information Science. Cham: Springer Nature Switzerland. 2024. S. 3–18. 22. Wang S. et al. Data privacy and cybersecurity challenges in the digital transformation of the banking sector //Computers & security. 2024. T. 147. 23. Poltavtseva M., Aleksandrova E., Izotova O. Data modeling for consistent access control in heterogeneous big data systems // 2024IvannikovMemorialWorkshop(IVMEM).VelikiyNovgorod,RussianFederation.2024.C.42–48.DOI:10.1109/IVMEM63006.2024.10659707. 24. Hu V. C. et al. An access control scheme for big data processing //10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing. IEEE. 2014. C. 1–7. |
109-118 |
Meshcheryakov, R. V. MULTI-LEVEL ARCHITECTURE OF A MONITORING AND RESPONSE SYSTEM TO IMPACTS WITH BACKUP CONTROL AND ADAPTIVE RESOURCE ALLOCATION IN ERGATIC SYSTEMS / M. A. Poltavtseva, D. P. Zegzhda // Cybersecurity issues. – 2025. – № 5(69). – С. 119-127. – DOI: 10.21681/2311-3456-2025-5-119-127.AbstractPurpose of the article: the design of a multi-level monitoring and response system for impacts, ensuring the resilience of complex ergatic systems through the use of a backup control loop and adaptive resource allocation. Research methods: system analysis, modeling, architecture synthesis, resource allocation. Research results: a multi-level architecture of a monitoring and response system for impacts has been developed, aimed at improving the resilience of complex ergatic systems. A structural solution is proposed, including primary and backup control loops, which ensures continuous monitoring and coordinated response even in cases of partial degradation or failure of the communication infrastructure. A mechanism for adaptive resource reallocation between architecture components has been designed, ensuring efficient system operation under variable loads and limited computing and network capabilities. The theoretical significance of the work lies in advancing scientific knowledge on the design of multi-level architectures for the protection of ergatic systems, ensuring their functionality under complex impacts. The practical significance is determined by the possibility of applying the designed architectural solutions in the creation and modernization of distributed automated complexes of various purposes to increase their resilience and the efficiency of monitoring processes. Scientific novelty: for the first time, a multi-level architecture of a monitoring and response system for impacts is proposed, implementing a separation into primary and backup control loops to ensure operational resilience under communication degradation and failures. For the first time, a mechanism for adaptive resource reallocation between system levels has been developed, allowing the maintenance of monitoring and response efficiency under variable loads and limited computing and network capabilities. Keywords: fault tolerance, cyber resilience, federated interaction, backup control loop, adaptive resource allocation, ergatic systems, automated complexes, cybersecurity. References1. Zheleznov, E. G., Komissarov, P. V., & Tsymai, Y. V. (2021). Issledovanie ergaticheskikh sistem upravleniya [Research of ergatic control systems]. Sovremennye Naukoemkie Tekhnologii [Modern High Technologies], (4), 45–53. 2. Al-Khaysat, H., et al. (2024). Risk Assessment for Cyber Resilience of Critical Infrastructures. Applied Sciences, 14(24), Article 11807. https://doi.org/10.3390/app142411807. 3. Diana, L., Dini, P., & Paolini, D. (2025). Overview on Intrusion Detection Systems for Computers Networking Security. Computers, 14(3), Article 87. https://doi.org/10.3390/computers14030087. 4. Lezzi, M., Corallo, A., Lazoi, M., & Nimis, A. (2025). Measuring Cyber Resilience in Industrial IoT: A Systematic Literature Review. Management Review Quarterly, 75(4), 1213–1235. https://doi.org/10.1007/s11301-025-00495-8. 5. Soltani, M., Khajavi, K., Jafari Siavoshani, M., & Jahangir, A. H. (2023). A multi-agent adaptive deep learning framework for online intrusion detection. Cybersecurity, 6(2), 45–59. https://doi.org/10.1186/s42400-023-00199-0. 6. Kalashnikov, A. O., Bugayskiy, K. A., Anikina, E. V., Pereskokov, I. S., Petrov, An. O., Petrov, Al. O., Khramchenkova, E. S., & Molotov, A. A. (2023). Primenenie logiko-veroyatnostnogo metoda v informatsionnoy bezopasnosti (Chast' 2) [Application of the logicprobabilistic method in information security (Part 2)]. Voprosy Kiberbezopasnosti [Cybersecurity Issues], 5(57), 113–127. https://doi.org/10.21681/2311-3456-2023-5-113-127. 7. Vlasov, D. S. (2024). Mul'tikriterial'naya model' sistematizatsii sposobov obnaruzheniya insaydera [multi-criteria model of systematization of insider detection methods]. Voprosy Kiberbezopasnosti [Cybersecurity Issues], 2(60), 66–73. https://doi.org/10.21681/2311-3456-2024-2-66-73. 8. Lagraa, S., Husаk, M., Seba, H., Vuppala, S., State, R., & Ouedraogo, M. (2024). A review on graph-based approaches for network security monitoring and botnet detection. International Journal of Information Security, 23, 119–140. https://doi.org/10.1007/s10207-023-00742-7. 9. Hu, Q., Yu, S.-Y., & Asghar, M. R. (2020). Analysing performance issues of open-source intrusion detection systems in high-speed networks. Journal of Information Security and Applications, 51, 102426. https://doi.org/10.1016/j.jisa.2019.102426. 10. Zhu, Q., Rieger, C., & Basar, T. (2011). A hierarchical security architecture for cyber-physical systems. In Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (pp. 15–20). https://doi.org/10.1109/ISRCS.2011.6016081. 11. Sharma, S., & Sahay, S. K. (2022). Evolution and impact of distributed intrusion detection systems in network security and management. Computer Networks, 206, 108784. https://doi.org/10.1016/j.comnet.2021.108784. 12. Sharma, A., Rani, S., & Boulila, W. (2025). Blockchain-based zero trust networks with federated transfer learning for IoT security in industry 5.0. PLOS ONE, 20(6), e0323241. https://doi.org/10.1371/journal.pone.0323241. 13. Lim, W. Y. B., Xiong, Z., Niyato, D., Miao, C., Yang, Q., & Poor, H. V. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031–2063. https://doi.org/10.1109/COMST.2020.2986024. 14. Xu, R., Hang, L., Jin, W., & Kim, D. (2021). Distributed secure edge computing architecture based on blockchain for real-time data integrity in IoT environments. Actuators, 10(8), Article 197. https://doi.org/10.3390/act10080197. 15. Ji, R., Padha, D., & Singh, Y. (2024). Survey and analysis of intrusion detection frameworks for cyber-physical systems: A comprehensive study. In Recent Innovations in Computing (Vol. 1194, pp. 307–317). Springer. https://doi.org/10.1007/978-981-97-2839-8_21. 16. Singh, S., Ahmed, J., Raghuvanshi, K. K., & Agarwal, P. (2025). Adaptive resource management framework for secure and resilient IoT communication using federated learning and quantum encryption. Journal of Information Systems Engineering and Management, 10(21s). https://doi.org/10.52783/jisem.v10i21s.3405. 17. Rostami, M., & Goli-Bidgoli, S. (2024). An overview of QoS-aware load balancing techniques in SDN-based IoT networks. Journal of Cloud Computing, 13, Article 89. https://doi.org/10.1186/s13677-024-00651-7. 18. Belenguer, A., Navaridas, J., & Pascual, J. A. (2022). A review of federated learning in intrusion detection systems for IoT. arXiv. https://doi.org/10.48550/arXiv.2024.12443. 19. Yazov, Y. K., & Avsentyev, A. O. (2022). Puti postroeniya mnogoagentnoi sistemy zashchity informatsii ot utechki po tekhnicheskim kanalam [Ways to build a multi-agent information security system against leakage through technical channels]. Voprosy Kiberbezopasnosti [Cybersecurity Issues], (5)(51), 2–13. https://doi.org/10.21681/2311-3456-2022-5-2-13. 20. Lin D., He Y., Zhang Q. Real-time optimization of network response under cyber-physical attacks // IEEE Transactions on Industrial Informatics. 2025. Vol. 21. Iss. 2. PP. 1501–1513. DOI: 10.1109/TII.2024.3391750. |
119-127 |
Gordeev, E. N. ON THE USE OF GRAPH THEORY IN THE CLASSIFICATION INFORMATION / Gordeev E. N. , Leontiev V. K. // Cybersecurity issues. – 2025. – № 5(69). – С. 128-138. – DOI: 10.21681/2311-3456-2025-5-128-138.AbstractThe purpose of this work is to analyze the possibilities of applying graph theory for image coding and classification, which is especially relevant in connection with the use of artificial intelligence methods for image classification. Research method: combinatorics and graph theory, as well as heuristic algorithms. Results: The paper discusses the possibility of applying the classical results of graph theory concerning the problems of graph recovery and recognition and their characteristics in the field of image recognition. At the same time, various aspects of the problem of describing (representing) graphs using their invariants are analyzed. New classes of invariants for graphs are introduced and considered, which, in particular, can be used for image analysis and classification. In addition, the statements proved in the article relate to such aspects of the problem as the formation of complex types of invariants on the basis of basic ones and the finding of functional dependencies of some invariants on others. Scientific novelty: new composite invariants of graphs that can be effectively used in the recognition of graph-based images are constructed and substantiated. Keywords: recognition, feature tables, heuristics, reconstruction, graph invariant, chromatic number, independence number, number of external stabilities, number of internal stabilities. References1. Karkishhenko A. N., Mnuhin V. B. Metod detekcii harakternyh tochek izobrazhenija s pomoshh'ju znakovogo predstavlenija // Izvestija JuFU. Tehnicheskie nauki, 2020. Tom 214. № 4, str. 59–70. 2. Bazhenov A. V., Filjakin A. A. Teorema grafov kak osnova postroenija sistem svjazi // Universum: tehnicheskie nauki: jelektron. nauchn. zhurnal, 2022. № 3(96). 3. Akbasheva E. A., Akbasheva G. A., Tlupov I. Z. Metody predstavlenija tekstovyh dokumentov na osnove grafov v zadachah obrabotki estestvennogo jazyka // Informatika, vychislitel'naja tehnika i upravlenie. Serija: Estestvennye i tehnicheskie nauki. 2022. № 11, str. 67–72. 4. Stepkina A. V., Stepkina A. S. Algoritmy raspoznavanija prostyh grafov kollektivnym agentom // Komp'juternye issledovanija i modelirovanie, 2021., tom 13, № 1. S.33–45. DOI: 10.20537/2076-7633-2021-13-1-33-45. 5. Nagavarapu S. C., Vachhani L., Sinha A. et al. Generalizing Multi-agent Graph Exploration Techniques // International Journal of Control, Automation and Systems. 2020. Vol. 19. P. 491–504. https://doi.org/10.1007/s12555-019-0067-8. 6. Torshin I. Yu., Rudakov K. V. Topological Chemograph Analysis Theory as a Promising Approach to Simulation Modeling of QuantumMechanical Properties of Molecules. Part II: Quantum-Chemical Interpretations of Chemograph TheoryPattern // Recognition and Image Analysis. 2022. Vol. 22. P. 205–217. 7. Torshin I. Yu., Rudakov K. V. Topological Chemograph Analysis Theory as a Promising Approach to Simulation Modeling of QuantumMechanical Properties of Molecules. Part I: Quantum-Chemical Interpretations of Chemograph TheoryPattern // Recognition and Image Analysis. 2021. Vol. 21. P. 800–810. 8. Torshin I. Yu., Rudakov K. V. Local completeness of the ‘chemographs’ invariants in view of the combinatorial theory of solvability // Pattern Recognition and Image Analysis. 2014. Vol. 24. P. 196–208. 9. Abgaldaeva A. A., Pushkin A. Ju. Primenenie teorii grafov v sfere informacionnyh tehnologij // Universum: tehnicheskie nauki: jelektron. nauchn. zhurn. 2023. № 2(107). URL: https://7universum.com/ru/tech/archive/item/15061. 10. Sapunov S. V., Senchenko A. S. Lingvisticheskoe predstavlenie grafov s pomechennymi vershinami // Dopovіdі Nacіonal'noї akademії nauk Ukraїni. 2019. № 11. S. 17–24. 11. Kurapov S. V., Davidovskij M. V. Vychislitel'nye metody opredelenija invariantov grafa///International Journal of Open Information Technologies ISSN: 2307-8162. 2021. Vol. 9, № 2. S. 1–8. 12. Tutygin R. A., Zjabliceva L. V. Jeffektivnost' invariantov grafov, sootvetstvujushhih polugruppam // Sb trudov konferencii: Materialy VI Mezhdunarodnoj nauchno-prakticheskoj konferencii (shkoly-seminara) molodyh uchenyh. Tol'jatti, 2020. S.114–117. 13. Gjeri M., Dzhonson D. Vychislitel'nye mashiny i trudnoreshaemye zadachi // M.: Mir, 2012. 14. Zykov A. A., Graphs Theory (Nauka, Moscow, 1986) [in Russian]. 15. Leont'ev V. K. Kombinatorika i informacija. Chast' 1. Kombinatornyj analiz. M.: MFTI, 2015. 174 s. |
128-138 |
Sysoev, V. V. DIGITAL WATERMARK PROCESSING ALGORITHMS FOR COPYRIGHT PROTECTION OF GRAPHIC FILES / V. V. Sysoev, A. Yu. Bykov // Cybersecurity issues. – 2025. – № 5(69). – С. 139-148. – DOI: 10.21681/2311-3456-2025-5-139-148.AbstractThe purpose of the study: creation of steganographic algorithms for embedding a digital watermark in a graphic file and extracting it, resistant to various types of influences. Methods of research: fast Fourier transform, Bluestein's algorithm, actions on complex numbers, actions on matrices. Result(s): the stages of the algorithm for creating a steganogram based on a graphic container file containing a digital watermark, as well as an algorithm for extracting a digital watermark from a created steganogram, are described. When embedding a digital watermark in an image, a fast discrete Fourier transform using the Bluestein algorithm was used, embedding is recommended in the low or medium frequency spectrum. The simulation of the algorithm using the data obtained on the simulator is carried out. The simulation shows the stages of the algorithm's operation and demonstrates the features of changing container and data center data during embedding and extraction. Examples of algorithms for embedding and extracting a digital watermark are presented. A study of the dependence of changes in the original container on the size of the digital watermark after its embedding and a comparison of the new algorithm with popular steganographic algorithms has been conducted. The algorithm's resistance to various types of effects on the steganogram is shown. Scientific novelty: the goal is to develop a steganographic algorithm suitable for image copyright protection based on embedding a digital image into the brightness component of the color of a graphic container file using the fast Fourier transform. Keywords: steganography, digital graphic image, container file, pixel matrix. References1. Sysoev V. V., Bykov A. Yu. Zashchita avtorskogo prava s ispol'zovaniem cifrovoj [Copyright Protection using Digital Holography]. Sbornik trudov XIII vserossijskoj nauchno-tekhnicheskoj konferencii «Bezopasnye informacionnye tekhnologii». M.: MGTU im. N. E. Baumana. 2024. Pp. 207–213. 2. Makarenko, S. I. Etalonnaya model' vzaimodeystviya steganograficheskikh sistem i obosnovanie na ee osnove novykh napravleniy razvitiya teorii steganografii [The Reference Model of the Interaction of Steganographic Systems and the Justification based on it of New Directions in the Development of the Theory of Steganography]. Voprosy kiberbezopasnosti. 2014. No. 2(3). Pp. 24–32. 3. Li D., Yang Z., Jin X. Zero watermarking scheme for 3D triangle mesh model based on global and local geometric features. Multimed. Tools Appl. 2023. Vol. 82. P. 43635–43648. 4. Chen L. et al. IW-NeRF: Using Implicit Watermarks to Protect the Copyright of Neural Radiation Fields. Applied Sciences. 2024. Vol. 14. No. 6184. DOI:10.3390/app14146184. 5. Sun W. et al. RWNeRF: Robust Watermarking Scheme for Neural Radiance Fields Based on Invertible Neural Networks. Computers. Materials & Continua. 2024. Vol. 80. Pp. 4065–4083. DOI:10.32604/cmc.2024.053115. 6. Luo Z., Guo Q., Cheung K.C., See S., Wan R. CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields. 2023. DOI:10.48550/arXiv.2307.11526. 7. Li C., Feng B.Y., Fan Z., Pan P., Wang Z. StegaNeRF: Embedding Invisible InformationwithinNeuralRadiance Fields. 2022.DOI:10.48550/arXiv.2212.01602. 8. Sivachev A. V., Prokhozhev N. N., Mikhailichenko O. V., Bashmakov D. A. Effektivnost' steganoanaliza na osnove metodov mashinnogo obucheniya [Effectiveness of Steganalysis based on Machine Learning Methods]. Voprosy kiberbezopasnosti. 2017. No. 2(20). Pp. 53–-60. DOI 10.21581/2311-3456-2017-2-53-60. 9. Glinskaya, E. V., Chichvarin N. V. Informatsionnaya bezopasnost' otkrytykh kanalov peredachi proektnoy dokumentatsii, produciruemoy v SAPR [Information Security of open Transmission Channels of Project Documentation produced in CAD]. Voprosy kiberbezopasnosti. 2014. No. 4(7). Pp. 11–22. 10. Abasova, A. M., Babenko L. K. Zashchita informatsionnogo soderzhaniya izobrazheniy v usloviyakh nalichiya destruktivnogo vozdeystviya [Protection of Information Content of Images in the Presence of Destructive Influence]. Voprosy kiberbezopasnosti. 2019. No. 2(30). Pp. 50–57. DOI 10.21681/2311-3456-2019-2-50-57. 11. Kozachok, A. V., Kopylov S. A., Bochkov M. V. Otsenka parametrov neobnaruzhaemosti razrabotannogo podkhoda k markirovaniyu tekstovykh elektronnykh dokumentov [Evaluation of the Undetectability Parameters of the Developed Approach to Labeling Textual Electronic Documents]. Voprosy kiberbezopasnosti. 2020. No. 1(35). Pp. 62–73. DOI 10.21681/2311-3456-2020-01-62-73. 12. Morkovin, S. V. Algoritmy i programmnye sredstva cheloveko-mashinnoy obrabotki tsifrovykh vodyanykh znakov v videoposledovatel'nosti [Algorithms and software tools for human-computer processing of digital watermarks in video sequences]. Modeling, Optimization and Information Technology. 2022. Vol. 10. No. 3(38). Pp. 30–31. DOI: 10.26102/2310-6018/2022.38.3.024. 13. Kryvoshaev I. A., Linnik M. A. Staticheskij sposob steganograficheskogo vstraivaniya informacii na osnove LSB [Static Steganographic Information Embedding Method Based on LSB]. Sistemy i sredstva informatiki [Systems and Means of Informatics]. 2020. Vol. 30. No. 3. P. 56–66. DOI 10.14357/08696527200306. 14. Brūzgienė Rasa et al. Enhancing Steganography Through Optimized Quantization Tables. Electronics. 2024. Vol. 13. No. 2415. DOI: 10.3390/electronics13122415. 15. Binmin P., Qiao T. et al. Novel Hidden Bit Location Method Towards JPEG Steganography. Secur. Commun. Netw. 2022. Vol. 2022. No. 8230263. P. 13. DOI: 10.1155/2022/8230263. 16. Kramarenko S. M. Sposob vneseniya tsifrovykh metok v tsifrovoje izobrazheniye i ustroystvo dlya osushchestvleniya sposoba [Method for embedding digital marks into digital images and device for implementing this method]. 2020. Patent RU2739936C1. 17. Zhigalov I. E., Ozerova M. I., Evstigneev A. V. Application of Cutter-Jordan-Bossen method for data hiding in the image spatial domain. Bulletin of South Ural State University. Series: Computer Technologies, Control, Radioelectronics. 2022. Vol. 23. Pp. 16–23. DOI: 10.14529/ctcr230302. 18. Kushnerevich, P. M. Analiz effektivnosti algoritmov Patchwork i LSB dlya zashchity graficheskikh obrazov s pomoshch'yu vodyanykh znakov [Efficiency Analysis of Patchwork and LSB Algorithms for Graphical Image Protection by Watermarking]. Proceedings of the International Scientific Practical Conference «Integration of Science, Society, Production and Industry: Problems and Prospects». Volgograd. Russia. 2021. Pp. 121–124. |
139-148 |
Gaydamakin, N. A. METHODOLOGY OF EXPERT-ANALYTICAL ANALYSIS OF TECHNICAL AND ECONOMIC EFFICIENCY OF THE INFORMATION SECURITY SYSTEM OF AN ENTERPRISE BASED ON COMPARISON WITH «BEST PRACTICES»
/ N. A. Gaydamakin // Cybersecurity issues. – 2025. – № 5(69). – С. 149-161. – DOI: 10.21681/2311-3456-2025-5-149-161.AbstractPurpose of the study: to consider methods for analyzing the effectiveness of information security systems of enterprises and to develop a methodology for expert-analytical analysis of their technical and economic efficiency based on comparison «with best practices». Methods of research: application of methods for analyzing the efficiency of the IT sphere of enterprises based on the principles of «total cost of ownership». Result(s): The problems of two main approaches to the analysis of the effectiveness of information security systems of enterprises – risk-based and techno-economic - are considered and analyzed. Based on the analysis of technical and economic efficiency according to the principle of «total cost of ownership» in the field of information technology, a systematization of expenses (costs) for ensuring the information security of the enterprise was carried out in the form of a two-level hierarchical scheme – capital costs (according to the cost of acquiring and installing technical means of information protection and means of ensuring the security of information technologies, costs of carrying out organizational-technical and organizational-staffing measures, depreciation losses), operating costs (for wages and outsourcing, for support and technical maintenance, for personnel training, for preventive and preventive measures in the form of audit, pentesting, training and exercises), costs and losses associated with the result-target side of the information security system (losses from downtime of the corporate information system as a result of computer incidents, costs of its restoration, loss of working time on organizational and technological procedures for information protection in the form of time spent on identification and authentication procedures, blocking of automated workstations as a result of incorrect actions of users). The objective function of technical and economic efficiency of the information security system is presented based on the weighted summation of efficiency indicators for the components of the presented cost scheme, compared with «best practices» or average statistical values for the enterprise industry. A methodology has been developed for analyzing the technical and economic efficiency of enterprise information security systems based on the presented objective function and the application of the expert assessment method to take into account the specifics of enterprises in terms of IT infrastructure, business policy and information security policy. According to the formed methodology, an illustrative example of the results of the analysis of the technical and economic efficiency of the information security system of the enterprise is given. Scientific novelty: the systematization of costs, expenses and losses for ensuring information security in the methodology of «total cost of ownership» was carried out, a superposition objective function was proposed and an expert-analytical methodology based on it for analyzing the technical and economic efficiency of information security systems was proposed. Keywords: information security management system, effectiveness, total cost of ownership, risk-based analysis, technical and economic analysis, expert and analytical analysis, costs of ensuring information security. References1. Parshina I. S. Rentabel'nost' investitsiy (ROI) v proyekty razvitiya ispolnitel'nykh proizvodstvennykh sistem (IPS) na rossiyskikh predpriyatiyakh // Naukoyemkiye tekhnologii v ma-shinostroyenii. 2020. № 3(105). S. 37–43. 2. Zelezinskii et al. Modern Methods of Evaluating the Effectiveness of the Organization // Экономический вектор 2021. № 4(27). С. 65–70. 3. Zegzhda D. P., Saurenko T. N., Anisimov V. G., Anisimov E. G. Assessment of the Effectiveness of an Information Security System // Automatic Control and Computer Sciences. 2023. Volume 57, № 8. Pp. 855–861. https://doi.org/10.3103/S0146411623080345. 4. Mityakov E. S., Artemova S. V., Bakaev A. A., Dushkin A. V., Vegera Zh. G. Model for assessing the effectiveness of information security systems // Information Technology Security. 2024. Vol. 31, No. 4. Pp 56–66. doi: 10.26583/bit.2024.4.03. 5. Belov V., Belova N., Pestunova T., Kosov D. Technique for Evaluating the Effectiveness of the Information Security Department. IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE). 2023. Pp. 1130–1133. DOI: 10.1109/APEIE59731.2023.10347645. 6. Sukhov A. M., Krupenin A. V., Yakunin V. I. Metod rascheta effektivnosti effektivnogo protsessa preobrazovaniya obespecheniya informatsionnoy bezopasnosti // Avtomatizatsiya protsessov upravleniya. 2022. № 1(67). S. 33–42. 7. Dobryshin M. M. Podkhod k formirovaniyu obobshchennogo kriteriya effektivnosti effektivno-sti sistemy obespecheniya informatsionnoy bezopasnosti // Izvestiya tul'skogo gosu-darstvennogo universiteta. Tekhnicheskiye nauki. 2021. № 9. S. 113–121. 8. Sow M. et al. Evaluating Information Security System Effectiveness for Risk Management, Control, and Corporate Governance // Business and Economic Research. 2019. Vol. 9, № 1. Pp. 164–172. 9. Gromov YU. YU., Karasev P. I., Gubskov YU. A., Kotyukova V. O. Otsenka effektivnosti si-stem zashchity i analiz riskov informatsionnoy bezopasnosti // Informatsiya i bezopasnost'. 2022. T. 25, Vyp 2. S. 187–192. 10. Pashkov N. N., Drozd V. G. Analiz riskov informatsionnoy bezopasnosti i otsenki effektivnosti sistem zashchity informatsii na predpriyatii // Sovremennyye nauchnyye issledovaniya i innovatsii. 2020. № 1. [Elektronnyy resurs]. URL: https://web.snauka.ru/issues/2020/01/90380 (data obrashcheniya: 26.08.2025). 11. Krauze R. P. Issledovaniye metodicheskikh podkhodov k effektivnosti effektivnosti IT proyektov na predpriyatiyakh // Biznesobrazovaniye v ekonomike znaniy. 2020. № 3. S. 87–92. 12. ShaburovA.S.,ShlykovA. I.Razrabotkametodaotsenkiekonomicheskoyeffektivnosti sistemy zashchity informatsiidlyakommercheskikh predpriyatiy // Vestnik PNIPU. Elektrotekhnika, informatsionnyye tekhnologii, sistemy upravleniya. 2020. № 36. S. 193–213. 13. Kurilo A. P., Parshin I. S., Simachkov S. A., Potapov G. D. Opredeleniye effektivnosti kompleksnykh sistem informatsionnoy bezopasnosti metodom ekspertnykh otsenok / Aktual'nyye problemy zashchity informatsii: sovremennost' i perspektivy. Materialy II Nauchnoprakticheskoy konferentsii. Moskva, 2025. S. 43–48. 14. Butusov I. V., Nashchekin P. A., Romanov A. A. Teoretiko-semanticheskiye aspekty organizatsii kompleksnoy sistemy zashchity informatsionnykh sistem // Voprosy kiberbez-opasnosti. 2016. № 1(14). S. 9–16. 15. Ziro A., Gnatyuk S., Toibayeva S. Investigation of the Method of Evaluating the Effectiveness of the Information Security System Based on Fuzzy Inference // Scientific Journal of Astana IT University. 2023. Volume 13. Pp. 52–63. DOI: 10.37943/13dzev3953. 16. Bratchenko A. I., Butusov I. V., Kobelyan A. M., Romanov A. A. Metody primeneniya teorii nechetkikh mnozhestv k snizheniyu riska vozniknoveniya vazhneyshikh svoystv zashchitnykh resursov upravlencheskikh sistem upravleniya // Voprosy kiberbezopasnosti. 2019. № 1(29). S. 18–24. 17. Yermakov S. A., Chursin A. G., Bolgov A. A. Nechetko-mnozhestvennaya metodika otsenki riska dorozhnoy sistemy «umnyy dom» s dinamicheskoy topologiyey // Informatsiya i bezopasnost'. 2022. T. 25. Vyp. 4. S. 495–500. 18. Wojtaszek H. et al. Methods for Assessing the Economic Efficiency of IT Projects // European research studies journal. 2024. Volume XXVIΙ (Issue 3). Pp :637–651. DOI:10.35808/ersj/3457. 19. Kasim М. К. М. et al. A systematic literature review on the effect of information systems on the performance of government officials International // Journal of Advanced and Applied Sciences, 11(3) 2024, Pages: 46–54. 20. Ivanova L. N., Lugovskoy V. D. Ekspertnyye otsenki v upravlencheskikh resheniyakh // Sovremennyye nauchnyye issledovaniya i innovatsii. 2020.№10 [Elektronnyy resurs]. URL: https://web.snauka.ru/issues/2020/10/93677 (data obrashcheniya: 26.08.2025). |
149-161 |
Amit, Kumar Jaiswal ADAPTIVE CUMULATIVE ENTROPY THRESHOLD: A NOVEL APPROACH
TO DDOS ATTACK DETECTION IN IOT DEVICES AND SMART HOMES SYSTEMS / Amit Kumar Jaiswal // Cybersecurity issues. – 2025. – № 5(69). – С. 162-171. – DOI: 10.21681/2311-3456-2025-5-162-171.AbstractAbstract. The rising prevalence of smart home systems in everyday life, attacks such as cyber flooding on these interconnected devices have become critical. The present research talks about the innovative model using adaptive threshold, which applies cumulative entropy analysis of time series data to detect and mitigate flood attacks more effectively in the smart home environment. The model sets dynamic thresholds adaptable to changes in data fluctuations in realtime by utilizing cumulative entropy, a measure that identifies the unpredictability and variance of network traffic patterns. Advanced machine learning techniques will be further explored to refine the threshold process that will eventually lead to higher accuracy in detecting anomalies. In fact, essential factors including temporal patterns, types of protocols, and actions of users will be analyzed concerning their impact on objective metrics. Research aims at validating proposed adaptive threshold framework effectiveness in response toward significantly reducing false positives while improving responsiveness against emerging threats; hence contributing overall resilience of smart-home systems under flood attacks towards detected attacks. Anterior work shall focus on adapting algorithms and exploring scalability over diverse smart home architectures as an extension of this work. Research also intends to tackle questions linked with data privacy as well as system efficiency. Keywords: Adaptive Threshold, Cumulative Entropy, Time Series Analysis, Flood Attack Mitigation, Smart Home Security, Anomaly Detection, Network Traffic An al ysis, Temporal Data Patterns. References1. Lee S-H, Shiue Y-L, Cheng C-H, Li Y-H, Huang Y-F. Detection and Prevention of DDoS Attacks on the IoT. Applied Sciences. 2022; 12 (23): 12407. https://doi.org/10.3390/app122312407. 2. Shrahili, M.; Kayid, M. Cumulative Entropy of Past Lifetime for Coherent Systems at the System Level. Axioms 2023, 12, 899. https://doi.org/ 10.3390/axioms12090899 3. M. Tharun Kumar, G. Sesha Phaneendra babu, D. Lakshmi Narayana Reddy, «A Novel Framework for Mitigating DDoS Attacks in IoT Based Smart Network Environments using Machine Learning», Industrial Engineering Journal, ISSN: 0970-2555 Volume: 53, Issue 5, May: 2024. http://www.journal-iiie-india.com/1_may_24/125_online_may.pdf. 4. A. K. Jaiswal, «Deep Comparison Analysis: Statistical Methods and Deep Learning For Network Anomaly Detection», 2024. https://doi.org/10. 5281/zenodo.14051107 5. J. Dragos, J. P. Ziegler, A. de Villiers, A.-L. Jousselme, and E. Blasch, «Entropy-Based Metrics For URREF Criteria to Assess Uncertainty in Bayesian Networks For Cyber Threat Detection», in 2019 22nd International Conference on InFormation Fusion (FUSION), Ottawa, ON, Canada, 2019, pp. 1–8. DOI: 10.23919/FUSION43075.2019.9011276. 6. V. Timcenko and S. Gajin, «Machine Learning Enhanced Entropy- Based Network Anomaly Detection», Advances in Electrical and Computer Engineering, vol. 21, no. 4, pp. 51–60, 2021. DOI: 10.4316/AECE.2021.04006 7. P. Verma, S. Tapaswi, and W. W. Godfrey, «An Adaptive Threshold-Based Attribute Selection to Classify Requests Under DDoS Attack in Cloud- Based Systems», Arab Journal of Science and Engineering, vol. 45, pp. 2813–2834, 2020. DOI: 10.1007/s13369-019-04178-x. 8. P. Sahoo and Gurdial Arora, «A Thresholding Method Based on Two-Dimensional Renyi’s Entropy», Pattern Recognition, vol. 37, no. 6, pp. 1149–1161, 2004. DOI: 10.1016/j.patcog.2003.10.008. 9. H. Lin and N.Bergmann, «IoT Privacy and Security Challenges For Smart Home Environments,"InFormation, vol. 7, no. 44, 2016. DOI: 10.3390/ info7030044. 10. M.C. Dani et al., «Adaptive Threshold For Anomaly Detection Using Time Series Segmentation», in Neural InFormation Processing, S. Arik et al., Eds., vol 9491 of Lecture Notes in Computer Science., Springer Cham., 2015. 11. Amit Jaiswal., «DOS Attack Network Traffic Monitoring in Software Defined Networking Using Mininet and RYU Controller». 2022. DOI: 10.21203/ rs.3.rs-2282189/v1. 12. Berezin'ski P, Jasiul B, Szpyrka M. An Entropy-Based Network Anomaly Detection Method. Entropy. 2015; 17(4): 2367–2408. DOI: https://doi.org/ 10.3390/e17042367. 13. Rong Lan and Lekang Zhang. 2023. Image Thresholding Segmentation Algorithm Based on Two-parameter Cumulative Residual Masi Entropy. In Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition (AIPR ’22). Association For Computing Machinery, New York, NY, USA, pp.406–411. DOI: https://doi.org/10.1145/3573942.3574041. |
162-171 |
Leave a Reply